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Abstract: Deep learning (DL)-based convolutional neural networks facilitate more accurate detection and rapid 
analysis of MLS. Our objective was to assess the feasibility of applying a DL-based convolutional neural network 
to non-contrast computed tomography (CT) for automated 2D/3D brain midline shift measurement and outcome 
prediction after spontaneous intracerebral haemorrhage. In this retrospective study, 140 consecutive patients were 
referred for CT assessment of sICH from January 2014 to April 2019. The level of consciousness of patients was 
evaluated using the Glasgow Coma Scale (GCS) score, and the Glasgow Outcome Scale (GOS) score was calculated 
to classify the outcome. The distance of midline shift (MLS-D) and volume of midline shift (MLS-V) were automati-
cally measured via DL methods. Patients were divided into three groups based on GCS scores: mild degree (GCS 
score: 13-15), moderate degree (GCS score: 9-12), and severe degree (GCS score: 3-8). Spearman’s correlation 
analysis revealed statistically significant (P<0.01) positive correlation between GCS and MLS-D (r=0.709) and MLS-
V (r=0.754). The AUC of MLS-V was slightly larger than that of MLS-D (0.831 vs 0.799, P=0.318) in the midline 
shifting group. The AUC of MLS-V was significantly larger than that of MLS-D (0.854 vs 0.736, P=0.03) in patients 
with severe degree GCS scores. The DL-based measurements of both MLS-D and MLS-V enable the assessment 
of consciousness and the prediction of the outcome of sICH. Compared to MLS-D, MLS-V measurement can better 
indicate mass effect and predict outcomes, particularly in severe cases.

Keywords: Spontaneous intracranial haemorrhage, midline shift, Glasgow coma scores, Glasgow outcome scores, 
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Introduction

Spontaneous intracranial haemorrhage (sICH) 
is a severe type of stroke that causes high mor-
bidity and mortality with high treatment cost 
[1-3]. Patients with sICH often have greater 
neurological instability than patients with isch-
aemic stroke, as early deterioration is common 
in the first few hours after sICH ictus [4]. The 
midline shift is regarded as the marker of mass 
effect caused by unilateral, space-occupying 
lesions, and it is associated with increased 
intracranial pressure and elevated morbidity 
and mortality [5-9]. Earlier works reported the 
relation between the degree of midline shift in 

the brain and the diminution of consciousness 
and poor clinical outcomes [6, 10-14]. There- 
fore, accurate evaluation of MLS is very impor-
tant in the assessment of consciousness, treat-
ment, and prognosis of sICH.

The conventional measure of MLS-D is the 
length between the distal deformed midline of 
the brain and the ideal midline (connecting the 
most anterior and posterior visible points on 
the falx). However, MLS-D measurement lacks 
standardisation and shows considerable varia-
tion in early works. It is possible to measure 
MLS-D using the septum pellucidum (SP), pine-
al gland, or third ventricle as an anatomical 
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landmark. Pullicino and his team [15] found 
crude risk factors for 14-day mortality correlat-
ed with an SP MLS of 9 mm or larger, or a pineal 
MLS of 4 mm or larger. Ross et al. [13] have 
reported that patients with septal shifts over 
15 mm had a poor outcome at 3 months of 
injury. Zazulia and his team [16] indicated that 
SP shift was a more sensitive marker of mass 
effect after ICH than pineal shift, while Ropper 
[12] found that pineal gland shift was better 
correlated with the level of consciousness than 
SP shift. Yang et al. [17] investigated the differ-
ent MLS locations (in the pineal gland, SP, and 
cerebral falx) for prediction and identified that 
maximal MLS tended to be the best neuroimag-
ing predictor for unfavourable outcomes in 
patients with ICH.

Deep learning (DL) has been used to help doc-
tors in clinical work, and many computer pro-
grams have been developed for automatic MLS 
measurements [18, 19]. In the present study, 
the largest deviation of the given midline struc-
ture from the ideal midline on the maximum 
offset slice was automatically measured as 
MLS-D. The DL-based automated estimation 
used in this study presented satisfactory accu-
racy. Compared to the gold standard, the shift 
distance and area errors were 1.14±0.91 mm 
and 0.88±0.79 cm2, respectively, and the 
Pearson coefficients between the radiologist 
and the proposed method for total data were 
0.943 and 0.911, respectively [20]. Moreover, 
the volume measurement of MLS was difficult 
to perform manually in the past, but it can be 
done quickly and accurately with the help of DL. 
The MLS-V measurement collects the entirety 
of middle shift voxel data, which reflects mass 
effect accurately. Additionally, it can avoid mea-
surement bias caused by varying location in 
repeat tests, which may mislead neurosur-
geons. We speculated that MLS-V might be a 
better predictive indicator for sICH.

The aim of this study is to assess the feasibility 
of DL-based automated 2D/3D brain midline 
shift measurement and outcome prediction 
after spontaneous intracerebral haemorrhage. 
The relationships between (1) MLS-D/MLS-V 
and alteration of the level of consciousness, 
and (2) MLS-D/MLS-V and clinical outcome of 
haemorrhage at 12 months follow-up, were 
analysed using DL-based methods.

Materials and methods

Data from our electronic database from 
patients with a primary diagnosis of supraten-
torial ICH, admitted to the acute-care stroke 
unit of Qilu Hospital of Shandong University 
(Qingdao) from January 2014 to April 2019, 
were retrospectively reviewed. This retrospec-
tive study was approved by the ethics commit-
tee (2013-24-224) and informed consent  
was not required. All CT scans were performed 
using Siemens (SOMATOM Definition FLASH, 
Siemens Healthcare) and Philips (Brilliance 64, 
Philips Medical Systems) scanners and post-
processed by DL methods. Patients were eligi-
ble for our study if their non-enhanced CT scans 
were conducted within 24 hours after stroke 
ictus. Patients older than 18 years old without 
severe pre-existing co-morbidity (e.g., malig-
nant disease, severe heart, lung, or endocrine 
disease) and without physical or mental disabil-
ity were selected. Patients were excluded if the 
haemorrhage was due to an external cause 
such as trauma, anticoagulant therapy, tumour, 
aneurysm, or arteriovenous malformation and 
haemorrhagic transformation after acute isch-
aemic stroke. Moreover, patients with multiple 
or recurrent ICH were also excluded. CT find- 
ings of MLS-D and MLS-V were automatically 
detected by software named “Dr. Wise 
Hemorrhagic Stroke Analyzer”.

Patients were grouped by the degree of midline 
shifting into no-shifting and midline-shifting 
groups. The baseline demographic and medical 
characteristics of patients are shown in Table 
1. According to GCS scores, the severity of sICH 
was divided into mild degree (GCS: 13-15), 
moderate degree (GCS: 9-12), and severe 
degree (GCS: 3-8). The clinical outcome at 12 
months follow-up was divided into good out-
come, with a GOS score of 4-5, and poor out-
come, with a GOS score of 1-3. Demographic 
characteristics, medical history, radiological 
data, and GCS/GOS scores were recorded in a 
standardised data collection form. The flow-
chart of the study process is shown in Figure 1. 
The automated midline delineation algorithm 
aligned an input brain CT image into the pre-
established standard space, and the aligned 
image was processed by a segmentation net-
work for the midline prediction [21]. Then, the 
optimal midline was selected based on the pre-
vious prediction using a pathfinding method 
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(see Figure 2). The ideal midline was acquired 
by connecting the starting and ending points of 
the actual midline. The horizontal distances 
had been calculated between the actual mid-
line and the ideal midline on all shifted slices 
and the largest one chosen as MLS-D. The 
MLS-V was calculated as the number of voxels 
between the actual and ideal midline multi- 
plied by the physical size of a voxel. The voxel 
was defined as a discrete element of volume 
(x-spacing × y-spacing × z-spacing). The model 
had been validated using a dataset from three 
hospitals and one public dataset (CQ500) [21].

Data were analysed by SPSS software version 
19.0 and MedCalc software version 19.4.1. All 

There were 57 men out of 94 patients (mean 
age 55.5±14.7 years) in the midline-shifting 
group, compared with 27 men out of 46 
patients (mean age 13.7±1.9 years) in the no-
shifting group. The mean GCS score ± (SD) on 
admission was 9.7±3.9 in the midline-shifting 
group and 13.7±1.9 in the no-shifting group 
(P<0.01). Clinical outcomes revealed that 36 
(38.3%) patients had poor or unfavourable out-
comes in the midline-shifting group, and 7 
(15.2%) had such outcomes in the no-shifting 
group, based on dichotomised GOS scores 
(P<0.01). At 12 months follow-up, one patient 
(2.2%) died in the no-shifting group, while 14 
patients (14.9%) died in the middle-shifting 
group (P<0.05). In the no-shifting group, there 

Figure 1. Consort diagram showing the inclusion and exclusion criteria of 
patients in this study.

Table 1. Baseline characteristics of the patients (n=140)
With MLS (n=94) Without MLS (n=46) p*

Age 55.5±14.7 58.9±12.0 0.18
Gender (M/F) 57/37 27/19 0.83
GCS 9.7±3.9 13.7±1.9 <0.01
Consciousness
    awake 16 (17.0%) 22 (47.8%) <0.01
    drowsy 32 (34.0%) 21 (45.7%)
    comatose 46 (48.9%) 3 (6.5%)
Therapy (operative) 60 (63.8%) 3 (6.5%) <0.01
GOS (favourable) 58 (61.7%) 39 (84.8%) <0.01
Data are presented as n, n (%), or mean ± standard deviation. *The T, Wilcoxon 
and Pearson Chi-square tests were significant at P<0.05.

continuous variables were anal-
ysed using an unpaired t test 
for normally distributed data 
and the Wilcoxon test for 
skewed data. Categorical vari-
ables were compared using 
the Chi-square or Fisher exact 
tests. To explore the relation 
between MLS-D/MLS-V and 
GCS, Spearman’s correlation 
coefficient was calculated. The 
area under the receiver operat-
ing characteristic curve (AUC) 
was calculated to compare the 
predictive power of MLS-D and 
MLS-V. The cut-off values of 
the ROC curve with optimal 
sensitivity and specificity for 
MLS-D and MLS-V were used 
for dichotomised analysis. 
Optimal cut-off points were 
determined using the Youden 
index method. A P-value of less 
than or equal to 0.05 (two-
tailed) was considered as 
significant.

Results

In this study, 140 consecutive 
patients with supratentorial 
sICH admitted to the acute-
care stroke unit of Qilu Hos- 
pital of Shandong University 
(Qingdao) from January 2014 
to April 2019 were retrospec-
tively analysed. The baseline 
characteristics of the patients 
are presented in Table 1.
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were 37 (80.4%), 8 (17.4%), and 1 (2.2%) 
patient(s) in the mild, moderate, and severe 
GCS degree groups, respectively, while in the 
middle-shifting group, there were 34 (36.2%), 
19 (20.2%), 41 (43.6%) patients, respectively.  
A statistically significant difference was found 
between the no-shifting group and the middle-
shifting group (P<0.01).

In the midline-shifting group, the medians of 
MLS-D in the mild, moderate, and severe 
groups were 5.8±1.7, 8.2±2.3, and 11.0±3.9 
mm, respectively (P<0.01). The medians of 
MLS-V in the mild, moderate, and severe gro- 
ups were 13.0±3.9 ml, 21.9±6.8 ml and 
29.0±12.0 ml, respectively (P<0.01) (Table 2). 
Spearman correlation analysis showed that  
the correlation coefficients between GCS and 
MLS-D/MLS-V were 0.709 (P<0.01) and 0.754 
(P<0.01), respectively. No statistically signifi-
cant difference was found between MLS and 
MLS-V (P=0.513) (Figure 3). Table 3 shows  
the AUC curve, sensitivity, specificity, and the 
cutoff values for MLS-D/MLS-V. The AUC of 
MLS-V was larger than that of MLS-D (0.831 vs 
0.799, P=0.318), and the model of MLS-V pre-

dicting poor outcomes at 12 months follow-up 
had higher sensitivity but lower specificity  
than that of MLS-D (Table 3 and Figure 4). This 
study identified MLS-D larger than 9.303 mm 
and MLS-V larger than 17.531 ml as two predic-
tors of poor outcomes in patients at 12 months 
follow-up after sICH. In the mild GCS degree 
group, the AUC for MLS-V was 0.613 compared 
to 0.570 for MLS-D, and in the moderate GCS 
group, the AUC was 0.550 for MLS-V compared 
to 0.593 for MLS-D; for both investigated items, 
a statistically significant difference was not 
found (P=0.918, P=0.861).

In the severe GCS degree group, the AUC of 
MLS-V was larger than that of MLS-D (0.854 vs 
0.736, P=0.030). The difference was statisti-
cally significant, and MLS-D larger than 11.859 
mm and MLS-V larger than 27.353 ml appeared 
as the predictors of poor outcome at 12 months 
follow-up after sICH for patients with severe 
GCS (Table 3 and Figure 3).

Discussion

The relationship between increasing midline 
brain shift caused by intracranial abnormalities 
and diminution of consciousness has been 
studied previously [13, 14]. These studies con-
firmed that the rate of coma patients in the 
middle-shifting group (48.9%) was significantly 
higher than that in the no-shifting group (6.5%) 
(P<0.05), which was in agreement with previ-
ous studies [13, 14]. To assess consciousness 
disorders, the Glasgow Coma Scale (GCS) was 
firstly proposed by Teasdale and Jennett in 

Table 2. Midline shift and GCS score
GCS severity

p*

Mild Moderate Severe
MLS-D (mm) 5.8±1.7 8.2±2.3 11.0±3.9 <0.01
MLS-V (ml) 13.0±3.9 21.9±6.8 29.0±12.0 <0.01
Data are presented as mean ± standard deviation. *The 
Kruskal Wallis tests were significant at P<0.05.

Figure 2. Proposed framework of automated midline detection and its application. The framework included three 
stages: image alignment, midline segmentation and pathfinding. From: (21).
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1974 and can objectively and reproducibly 
quantify the degree of neurological impairment 
and help perform early prediction of the clinical 
outcome [22, 23]. Chiewvit et al. [10] confirmed 
that the degree of midline shift was related to 
the severity of head injury (GCS=3-12), but the 
lower GCS (≤12) was not statistically signifi-
cantly correlated with a large degree of midline 
shift (shift greater than 10 mm) in patients with 
brain injury (P=0.061). However, our study 
showed different results, i.e. the GCS decreased 
as the MLS-D increased. A similar relationship 
of increased MLS-V and decreased GCS was 
found as well. Few studies found the correl- 

ation coefficient between the MLS-D and GCS. 
In our study, there was a moderate correlation 
between the MLS-D and GCS (r=0.709, P< 
0.01). Many other factors such as hematoma 
volume, location, density, heterogeneity, and 
age may affect the GCS, and we speculated 
that it was one of the reasons for why the cor-
relation between the MLS and GCS was moder-
ate but appreciable.

In this study, patients who presented no mid-
line shift had a higher GOS at 12 months follow-
up than patients with midline shift (84.8% vs 
61.7%, P<0.01), which was consistent with a 

Figure 3. Scatterplots for Spearman correlation coefficients between the MLS and GCS. Both MLS-D (A, rs=0.709, 
P<0.01) and MLS-V (B, rs=0.754, P<0.01) showed moderate correlation with GCS.

Table 3. Poor outcome cutoff point
Poor outcome at 12 months

Cutoff point AUC [95% CI] Sensitivity (%) Specificity (%) p*

Midline shift group
    MLS-V (ml) >17.464 0.831 [0.739-0.900] 86.1% 70.7% 0.318
    MLS-D (mm) >9.230 0.799 [0.704-0.875] 63.9% 84.5%
Mild GCS subgroup
    MLS-V (ml) >9.892 0.613 [0.431-0.774] 66.7% 90.3% 0.918
    MLS-D (mm) >6.188 0.570 [0.389-0.738] 66.7% 71.0%
Moderate GCS subgroup
    MLS-V (ml) >22.747 0.550 [0.309-0.775] 100.0% 50.0% 0.861
    MLS-D (mm) >6.426 0.593 [0.348-0.808] 100.0% 35.7%
Severe GCS subgroup
    MLS-V (ml) >27.353 0.854 [0.709-0.945] 71.4% 100.0% 0.030
    MLS-D (mm) >11.859 0.736 [0.575-0.861] 53.6% 92.3%
*The tests were significant at P<0.05.
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previous study [8]. Similarly, we observed that 
patients with midline shift had a higher rate of 
mortality than those with no midline shift 
(14.9% vs 2.2%, P<0.01). Furthermore, the uni-
variate study showed that MLS-D was moder-
ately associated with poor outcome (AUC: 
0.799) with a cutoff value of 9.303. This was 
consistent with other studies, which also identi-
fied the midline shift as the predictor of func-
tional outcome [11, 13, 24], and the same con-
clusion could also be obtained in paediatric 
patients with sICH [25]. A prospective cohort 
study [11] in Malaysia found the survival rate 
was only 45% at 6 months follow-up after sICH 
onset. Any patient with a midline shift exceed-
ing 5 mm had almost 21 times higher chances 
of poor outcome. Another study found that lat-
eral shift of cerebral midline structures less 
than 6 mm was one of the two most important 

come than MLS-D (AUC: 0.831 vs 0.799), 
although the results were not statistically sig-
nificant. The optimal cut-off points for MLS-V 
and MLS-D were >17.531 ml and >9.303 mm, 
respectively. The MLS-V had a higher sensitivity 
and lower specificity than the MLS-D as a pre-
dictor of outcome at 12 months (86.1% vs 
63.9%, 70.7% vs 84.5%). Therefore, the MLS-V 
may be preferable as a screening tool to iden-
tify patients with worse outcomes. However, if 
an invasive surgical intervention is planned, the 
MLS-D may be superior due to a lower number 
of false positives. The MLS-D merely provides 
the displacement information of the maximum 
shifted CT slice, ignoring the information of 
adjacent shifted slices, whereas the MLS-V can 
reflect more comprehensive deviation informa-
tion at every middle shift plane. Previous stud-
ies [27-29] have unveiled that damage to any 

Figure 4. ROC Curve Analysis. A. Mild GCS group. MLS-D (cut off >6.188 
mm) and MLS-V (cut off >9.892) AUC comparison in predicting poor out-
come at 12 months (AUC: 0.570 vs 0.613, P=0.918). B. Moderate GCS 
group. MLS-D (cut off >6.426 mm) and MLS-V (cut off >22.747) AUC com-
parison in predicting poor outcome at 12 months (AUC: 0.593 vs 0.550, 
P=0.861). C. Severe GCS group. MLS-D (cut off >11.859 mm) and MLS-V 
(cut off >27.353) AUC comparison in predicting poor outcome at 12 months 
(AUC: 0.736 vs 0.854, P=0.918). D. Midline shift group. MLS-D (cut off 
>9.303 mm) and MLS-V (cut off >17.531) AUC comparison in predicting 
poor outcome at 12 months (AUC: 0.799 vs 0.831, P=0.318).

predictors for 28-day survival 
in ICH [26]. Our study also 
showed a higher rate of favour-
able outcomes and a larger 
midline shift cut-off point than 
the previous studies. One 
recovery trajectory in a previ-
ous study revealed a possible 
continued outcome improve-
ment if those patients were 
closely followed for longer than 
6 months [8]. We speculated 
that the long-term follow-up 
might be attributable to the  
different outcomes of hema- 
toma.

We found that the correlation 
coefficient of MLS-V and GCS 
was slightly higher than that of 
MLS-D and GCS (0.754 VS 
0.709, P=0.513), but the dif-
ference was not significant. 
This result indicates that 
MLS-V is reliable in response 
to consciousness changes and 
has a tendency to improve 
accuracy contrast to MLS-D. 
We speculated that MLS-V 
might be a more accurate 
marker of consciousness ch- 
anges. The ROC curve analysis 
revealed that the MLS-V had  
a slightly stronger predictive 
power of unfavourable out-
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functional area adjacent to the midline struc-
ture may correlate with poor outcomes. At the 
upper level of the supratentorial brain, resear- 
chers [27] concluded that damage to cortical 
midline structures might bring about disturbed 
consciousness. At the middle level of the  
supratentorial brain, the author discovered that 
ICH affecting the thalamus was correlated with 
poor clinical outcomes [28]. At the lower level of 
the supratentorial brain, pineal shift may affect 
cerebral autoregulation, consequently reducing 
cerebral blood flow, interrupting the ascending 
reticular activation system, and leading to poor 
outcomes [29]. Therefore, MLS-V tends to be a 
better neuroimaging predictor than MLS-D for 
poor outcomes at 12-month follow-up.

Furthermore, we demonstrated that the AUC of 
MLS-V was larger than that of MLS-D in both 
mild and severe GCS groups (0.613 vs 0.570, 
P=0.918; 0.854 vs 0.736, P=0.030). In con-
trast, the AUC of MLS-V was smaller than MLS- 
D (0.550 vs 0.593, P=0.861) in the moderate 
group. Among them, the AUC comparison in the 
severe GCS group was statistically significant 
and the AUC was larger in the severe GCS  
group than in the other two groups. Moreover, 
both the MLS-D and MLS-V were more signifi-
cant in the severe group than in the other two 
groups, and the difference between MLS-D and 
MLS-V was more dramatic. The results suggest 
that the MLS-V performs better in predicting 
poor outcome of sICH than MLS-D, particularly 
in critical cases with more notable MLS. Except 
for the moderate group, the results showed 
that the AUC of MLS-V was larger than that  
of MLS-D, despite without t statistical signifi-
cance in the mild group. As there were only 19 
patients in the moderate group, the results and 
conclusions may be biased because of the 
small sample size.

There were some limitations in our study. As a 
retrospective study, there were inherent meth-
odological issues. The study was from only one 
hospital, and the therapeutic schedule for the 
patients might affect the outcome. The dataset 
was insufficiently large. Additionally, the out-
come was assessed according to GOS, which 
provided relatively limited information about 
the disability and overall quality of life. There- 
fore, more complementary scales such as 
Functional Status Examination should be 
included to evaluate the outcome in the future 

[30]. Dhar et al. [31] developed an imaging 
algorithm based on deep learning that can 
accurately measure the bleeding volume and 
PHE volume. This is a fast and consistent auto-
matic biomarker quantification that may accel-
erate the robust and accurate study of patients 
with massive cerebral hemorrhage, but the 
research failed to study the severity of the dis-
ease. While this paper aims to help analyse 
MLS and evaluate its severity more accurately 
and quickly based on DL convolutional neural 
network. The study performed the GCS score to 
evaluate the patient’s level of consciousness, 
and calculated the GOS score to classify the 
prognosis. DL-based MLS-D and MLS-V mea-
surements can assess awareness and predict 
the results of sICH. Compared with MLS-D, 
MLS-V measurement can better show the mass 
effect and predict the prognosis, especially in 
severe cases.

Conclusions

In summary, our study has demonstrated that 
the automatic measurement of MLS-D/MLS-V 
performs satisfactorily in evaluating conscious-
ness and guiding clinical practice in patients 
with sICH. The DL-based method can provide 
fast, reproducible, and accurate data. The per-
formance of MLS-V is slightly better in indicat-
ing mass effect, which provides further infor-
mation than MLS-D, especially in severe cases. 
Further quantitative performance analysis is 
needed to confirm these findings.
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