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ABSTRACT: Dye-sensitized solar cells (DSSCs) are one of the most versatile and low-cost
solar cells. However, DSSCs are prone to low power conversion efficiency (PCE) compared
to their counterparts, owing to their different synthesis parameters and process conditions.
Therefore, designing efficient DSSCs and identifying the parameters that control the PCE of
DSSCs are a critical tasks. We have collected data from hydrothermally synthesized DSSCs
in the present work, published from 2005 to 2020. In line with publishing trends in the said
period, we evaluate ZnO as a popular photoactive material for DSSC applications. We
further analyzed the performance of hydrothermally synthesized ZnO DSSCs using different
statistical techniques and provided some significant insights. We further applied the
machine-learning technique with a decision tree algorithm to understand and discover the
possible set of rules and heuristics that govern the morphology of the hydrothermally grown
ZnO. In addition, we also employed supervised and unsupervised machine-learning models
using conventional decision trees and classification and regression trees, respectively, to
identify the dependence of the PCE of ZnO DSSCs on the different synthesis parameters.
The reported work also evidences the PCE predictions of the ZnO DSSCs by using random forest and artificial neural network
algorithms. The results substantiate that the random forest and artificial neural network algorithms successfully predict the PCE of
the ZnO DSSCs with reasonable accuracy. Thus, we present a novel approach of applying statistical analysis and machine-learning
algorithms to understand, discover, and predict the performance of DSSCs. We recommend extending the said know-how to other
solar cells to identify rules and heuristics and experimentally realize highly efficient solar cells in shrinking manufacturing windows
with a cost-effective approach.

1. INTRODUCTION

Machine learning (ML) has made a remarkable impact on the
materials science and energy sector by discovering the hidden
patterns and heuristics of many materials and devices at lower
computational cost and time.1−3 The new insights provided by
the ML models are scientifically and technologically relevant,
and they help accelerate the discovery of new materials.4 For
instance, the fabrication of highly efficient solar cells requires in-
depth knowledge of physical processes and insights into the
experimental procedures. Many variables in the above said
experimental procedures compete to have a trade-off affecting
the device’s performance. Therefore, it is an arduous task for
conventional modeling and simulation methods to discover new
materials and predict the device properties.5

On the other hand, ML uses the black-box approach to
discover properties and correlations between physical and
chemical parameters which are otherwise unattainable by
traditional methods.6 In ML-assisted solar energy research,
most of the time, the data set is created by using density
functional theory calculations. However, this approach has very
high computational costs, poor scaling, and a homogeneous data

set, limiting its effectiveness for general purpose applications.7

Considering this, designing an ML model based on
experimentally available data can become an effective solution,
and such approaches have paved the way to outstanding
results.8,9 Dye-sensitized solar cells (DSSCs), the subject for
investigation in this research, are considered low-cost and
promising solutions to overcome the current energy-related
issues.10 In recent years, the photovoltaic research community
has been looking forward to providing highly efficient solar cells
based on the DSSC principle. Many researchers are trying hard
to achieve this goal. The popularity of DSSCs lies in its low-cost
solution-processable synthesis techniques, simple device design,
and scale-up possibilities.11,12 The Scopus database reveals more
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than 25 thousand research articles published onDSSCs. It seems
that this number will proliferate in the future (Scopus search
keyword: DSSCs). The Scopus data showcases many
researchers adopting different approaches with a broad range
of combinations of oxide materials, precursors, dyes, and various
synthesis methods to obtain highly efficient DSSCs. These
combinations challenge the early-stage researcher to select a
particular material and the combinations thereof and develop
efficient solar cells in a minimal development time window.
Moreover, there are still significant gaps in the research and
many impediments in front of the scientific and industrial
community to overcome the different issues and challenges of
DSSC technology that are perceived to be addressed by applying
techniques like ML.13,14

In the DSSC research field, ZnO-based DSSCs are one of the
hot topics of research.15,16 The popularity of ZnO-based DSSCs
lies in the availability of a low-cost precursor, easy synthesis and
manufacturability of ZnO powder and thin films, control over
different morphologies of ZnO, and well-known scientific
understanding of ZnO’s physical, chemical, structural, morpho-
logical, and electrical properties.17 These important parameters

make ZnO a potential candidate for low-cost DSSC applications.
In the case of ZnO synthesis, different techniques are available
such as the hydrothermal method, the sol−gel method, spray
pyrolysis, spin coating, dip coating, successive ionic layer
adsorption and reaction, and so forth. Among the many
synthesis techniques, the hydrothermal method is proven to
be the best technique to grow different micro- and
nanostructures and also provide the best-in-class physical and
chemical properties.18 Furthermore, the hydrothermal method
is useful to obtain reliable and repeatable ZnO powder and thin
films for DSSC application.19

Considering the research scenario depicted above, we report
research investigations emanating in three main directions. The
said directions are (i) statistical analysis of DSSCs based on
hydrothermally grown ZnO, (ii) understanding the possible set
of rules and heuristics which govern the morphology and power
conversion efficiency (PCE) of the ZnO DSSCs by using a
decision tree algorithm, and (iii) prediction of efficiencies using
random forest and artificial neural network (ANN) algorithms.
Looking at the data-intensive approach implicit in ML, more
than 150 research articles related to this field were delved to put

Figure 1. Representation of the data set used in the present investigation. (a) Distribution of the published articles and corresponding year of
publication. (b) Distribution of the experimental observation and corresponding year of publication. (c) Classification of the different ZnO structures
and corresponding substructures. Box plot and statistical measures related to the (d) PCE, (e) synthesis temperature, and (f) synthesis time of the
hydrothermally synthesized ZnO DSSCs.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c04521
ACS Omega 2021, 6, 29982−29992

29983

https://pubs.acs.org/doi/10.1021/acsomega.1c04521?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04521?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04521?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04521?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c04521?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


in place a data set of 298 experimental observations. Our
investigations also explore the effect of different synthesis
parameters on the morphology of ZnO. Furthermore, with the
help of different statistical measures, we have investigated the
effect of different precursors, dyes, synthesis time, synthesis
temperature, and seed layer on the efficiencies of the
hydrothermally grown ZnO DSSCs. Additionally, we explored
the effect of different variables and yearly progress of the ZnO
DSSC field from 2005 to 2020 through reported publications
using the bubble chart method. Our investigation provides some
key insights related to this field and gives researchers direction
for understanding, optimizing, and improving the overall PCE of
hydrothermally grown ZnO DSSCs. Finally, we conclude that
the present approach can be extended to other types of solar cells
as well. The present paper comprises different sections. After
introducing the theme, the second section deals with the data set
preparation. The data set thus prepared is further processed
through statistical analysis. This is followed by the application of
ML algorithms and thereafter discussion of results and
conclusion.

2. RESULTS AND DISCUSSION

2.1. Statistical Analysis for Implementing MLMethod-
ology. As stated in the Introduction, the present research aims
to apply ML algorithms to predict optimum parameters, leading
to an accurate model that leads to efficient DSSCs. Success lies
in selecting the size and quality of data sets followed by deciding
the dependent and independent variables, with which one can
tweak the algorithms. Previous sections have reported the data-
gathering process, while this section presents the process and
criterion for zeroing down on dependent and independent
variables.
The typical DSSC structure consists of a photoanode, a dye

sensitizer, a counter electrode, and an electrolyte.20 In this work,
we have investigated the role of the hydrothermally synthesized
ZnO as a photoanode for DSSC application. In most
experimental DSSCs, the counter electrode is always a fluorine-
or indium-doped tin oxide (FTO or ITO) substrate. Similarly,
iodide/triiodide (I−/I3

−) is a common electrolyte used in most
experimental DSSCs. Therefore, the counter electrode and
electrolyte are the statistically insignificant variables for the

Figure 2. (a) Structure-, (b) precursor-, and (c) dye-dependent minimum, maximum, and average efficiencies of the ZnO-based DSSCs. Comparison
of the number of data points (bubble size) and average efficiencies of the ZnO-based DSSCs at different years based on the (d) structures, (e)
precursors, and (f) dyes. The number of experimental observations is shown at the center of each bubble.
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present analysis and prediction purposes. Figure 1 presents the
infographics of the data set used in the present investigation. The
year-wise distribution of the published articles and experimental
observation is shown in Figure 1a,b, respectively, forming the
standard repository for the investigation. These figures indicate a
trend that ZnO DSSC-based research papers favored more
publication between 2010 and 2015. Further decline in the
overall growth in the DSSC research is evident, which might be
attributed to the emergence of perovskite solar cells. In fact, the
research on perovskite materials was started due to the discovery
of an alternative absorber material for DSSCs.8 The holistic
picture is realized by categorizing different ZnO structures into
four major types: microstructure, 1D nanostructure, 2D
nanostructure, and 3D nanostructure. The different substruc-
ture categorization is shown in Figure 1c. The number of
experimental observations of each case is shown in the bracket.
These results indicate that the hydrothermal synthesis process
can produce different kinds of morphologies using ZnO as a
model material.21,22 In addition to morphology, we have also
investigated the effect of different precursors, dyes, hydro-
thermal synthesis time, hydrothermal synthesis temperature,
and seed layers on the PCE of the hydrothermally synthesized
ZnODSSCs. The box plot and statistical measures related to the
PCE, synthesis temperature, and synthesis time of the
hydrothermally synthesized ZnO DSSCs are shown in Figure
1d−f, respectively. The data points are shown using blue, red,

and orange spheres (298 data points) together with a box plot to
comprehend the variability of the experimental observations.
The mentioned statistical analysis makes us understand the
relationship between the ZnO morphology and its effect on the
PCE of the DSSCs.
Figure 2 presents the effect of different process parameters on

the PCE of the ZnO DSSCs. The statistical measures and year-
wise comparative performance point out the parameters
affecting the PCE of DSSCs. Figure 2a presents the effect of
the ZnO morphology or structure on the PCE of DSSCs. The
minimum PCE was found to be independent of the structure.
However, the microstructure and 3D structure show higher
PCEs than the other two structures. The results indicate that the
microstructure and 2D and 3D nanostructures show better
average efficiencies than the 1D structure. The resulting superior
efficiencies may be attributed to the larger surface area in the
microstructure and 2D and 3D nanostructures to capture
incident photons and convert them into electrical energy.23

Furthermore, the higher surface area can help dye molecules
absorb on the ZnO surface, which results in maximum visible-
region photon absorption24 and delayed the interfacial charge
recombination.25 The effect of the precursor on the PCE of the
ZnODSSCs is shown in Figure 2b. The results comprehensively
indicate that the maximum PCE was recorded for precursor-1
(zinc nitrate). However, a large sample size of precursor-1 is
affecting the average PCE of DSSCs. Precursor-2 (zinc acetate)

Figure 3. (a) Synthesis time-, (b) synthesis temperature-, and (c) seed layer-dependent minimum, maximum, and average efficiencies of the ZnO-
based DSSCs. Comparison of the number of data points (bubble size) and average efficiencies of ZnO-based DSSCs at different years based on the (d)
synthesis time, (e) synthesis temperature, and (f) seed layer. The number of experimental observations is shown at the center of each bubble.
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shows the highest average PCE than the remaining two
precursors. Interestingly, precursor-3 (zinc chloride) is the
least reported chemical compound for ZnO DSSC application.
Figure 2c presents the dye-dependent minimum, maximum,

and average efficiencies of the ZnODSSCs. Dye-1 (N719) is the
most effective dye to obtain highly efficient ZnO DSSCs.
Furthermore, it is a frequently reported dye for DSSC
applications, and its average efficiencies are also comparable
with those of other dyes.26 Interestingly, dye-4 and dye-5 have
also provided higher efficiencies than the remaining dyes, which
intuitively conclude that there is room to achieve maximum
efficiencies using dye-4 and dye-5. Onemore critical revelation is
about some of the process parameters possessing surplus data
points than the remaining ones; therefore, sample size
contribution plays an essential role in the analysis. Given this,
we have plotted the year-wise trend of the average efficiencies
using a bubble plot. The comparison related to the data points
(bubble size) and average efficiencies of ZnO-based DSSCs at
different years based on the structures, precursors, and dyes is
illustrated in Figure 2d−f, respectively. The trend indicates that
though many researchers frequently report the 1D nanostruc-
ture, its average PCE is lower than that of microstructure- and
2D and 3D nanostructure-based DSSCs (Figure 2d). The
bubble plot of different dyes implies that precursor-2 (zinc
acetate) has good average PCE compared to that of the other
two precursors (Figure 2e). However, precursor-1 (zinc nitrate)
was found to be the most favored chemical compound for the
hydrothermal synthesis of ZnO for DSSC application. The
bubble plot of the dyes entails that dye-1 (N719) was the most
effective and most used dye among all dyes (Figure 2f). The
average efficiencies of the N719 dye were comparable to those of
the other dyes.
Nevertheless, another facet of the present research work

investigates the role of the hydrothermal synthesis time,

synthesis temperature, and seed layer on the PCE of the ZnO
DSSCs. We applied the same methodology as reported
previously to calculate statistical measures and plotted the
data in a bubble plot format to understand the comparative
performance. Subsequently, Figure 3a shows the effect of the
hydrothermal synthesis time on the efficiencies of DSSCs. The
results affirm that the low (0.5−3 h), medium (3−6 h), and high
(6−12 h) hydrothermal synthesis time conditions result in
maximum PCE. Furthermore, the average PCE also suggests
that the lower hydrothermal synthesis time is a better option to
realize highly efficient DSSCs. Additionally, the hydrothermal
synthesis temperature also plays a vital role in DSSC operation.
It is observed that the medium (90−95 °C), high (95−120 °C),
and very high (120−220 °C) temperature conditions are the
natural choice to fabricate efficient ZnO DSSCs (Figure 3b).
Herein, both the average and maximum efficiencies are found to
be higher for medium, high, and very high hydrothermal
synthesis temperatures. It is a general presumption that a seed
layer can improve the growth of the 1D nanostructure. However,
our previous results (Figure 2a) suggested that the micro-
structure and 2D and 3D nanostructures show better average
efficiencies than 1D structure-based ZnODSSCs. Therefore, the
effect of the seed layer (presence or absence) on the PCE of the
ZnODSSCs is shown in Figure 3c. The absence of the seed layer
shows promising results in terms of all three statistical measures,
that is, minimum, maximum, and average efficiencies. The year-
wise comparative performance of different process parameters
such as synthesis time, synthesis temperature, and the seed layer
is presented using bubble plots, as shown in Figure 3d−f,
respectively. Most of the synthesis time process conditions (low,
medium, high, and very high) were explored equally by various
research groups. However, a very high growth period only shows
consistently poorer results than the remaining three cases
(Figure 3d). On the other hand, medium, high, and very high

Figure 4. Decision tree model to identify possible rules and heuristics related to how synthesis conditions affect the morphology of ZnO. Herein, we
have used the classification feature of the decision tree which provides different classes of structures/morphologies.
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hydrothermal synthesis temperatures are natural choices to
obtain high-performance ZnO DSSCs (Figure 3e). The bubble
plot of the seed layer clearly shows two separate regions and
suggested that the researchers could achieve good average
efficiencies whenever the seed layer was absent (Figure 3f).
2.2. Decision Tree-Based Heuristics for ZnO Synthesis

and PCE Predictions. As revealed in the previous section, the
statistical analysis provides a holistic picture of hydrothermally
synthesized ZnO DSSCs. However, these techniques cannot
provide significant insights and rules, leading to the highly
efficient ZnO DSSCs. Considering these aspects, we have used
the decision tree ML algorithm to obtain possible rules and
heuristics from the data set. In particular, we have investigated
different synthesis conditions and device parameters that affect
the PCE of the ZnODSSCs. At the outset, we aimed to look out
for a possible set of rules and heuristics to obtain the different
morphologies of ZnO. We intended to discover the inherent
synthesis rules to obtain different morphologies of ZnO. For
this, the data set was divided into four classes in line with the
observed morphology of ZnO. These four classes are micro-
structure, nano-1D, nano-2D, and nano-3D structures. This is
followed by formulating a decision tree based on the available
data set, as shown in Figure 4. Different classes of the decision
tree are highlighted in different colors. The decision rules were
placed at the bottom of each decision node. The percentage
numbers located at the bottom of each decision node represent
the total data obeying the decision rule. The fraction numbers
located in the middle of the decision node represent the
probabilities of classes, and upper numbers (0−3) represent

different classes.9 After executing the decision tree algorithm on
the data set, we found that the decision tree splits from the root
node (node-1), which consists of 100% data. The first split was
done for the seed-layer level, and it checks the association rule: if
the seed layer is present, then a nano-1D morphology can be
obtained (node-2). Herein, the probability of the occurrence of
a nano-1D morphology is 87%. If this condition was not
satisfied, then the decision tree checks the other rules. In the
negation case also, the decision tree shows the occurrence of a
nano-1Dmorphology (node-3). However, the probability of this
event is very low, that is, 29%. Therefore, the decision tree
executes another rule. Herein, the decision tree splits into
different branches and checks the rule: if the synthesis
temperature is greater than or equal to 190 °C, then a nano-
1Dmorphology can be obtained (probability: 90%, node-4); if a
rule is not satisfied, then a nano-3Dmorphology can be obtained
(probability: 30%, node-5). On a similar note, we recommend
that prospective researchers can evaluate the outcomes of the
present decision tree. Considering the various structure-related
decision tree, we have made the following observations:

(i) The microstructure morphology (node-12, probability:
50%) is achievable by synthesizing ZnO without the seed
layer (node-1), synthesis temperature < 93 °C (nodes 8,
6, and 3), and precursor 1 (zinc nitrate, node-5).
Additionally, the microstructure is attainable by main-
taining the synthesis time less than 2.5 h (node-16) at
synthesis temperatures greater than 93 °C (negation case,
node-8, probability: 36%). There is another way to

Figure 5. Decision tree model to identify possible rules and heuristics related to how synthesis conditions affect the PCE of the ZnO DSSCs. Herein,
we have used the classification feature of the decision tree which provides different classes of PCE. This is a supervised learning model of the ZnO
DSSCs.
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synthesize microstructured ZnO (node-14) by using
precursors 2 (zinc acetate) and 3 (zinc chloride, node-5)
with a synthesis time ≥ 9 h and synthesis temperature ≥
140 °C. However, the probability of this case is 33%.

(ii) The nano-1D morphology (nodes 1 and 2) can be
obtained by the addition of the seed layer during the ZnO
growth process (probability: 87%).When the seed layer is
absent, one can also obtain the nano-1D morphology
(nodes 4 and 17) by maintaining the synthesis temper-
ature greater than 190 °C (node-3) and synthesis
temperature less than 2.5 h (node-17). The nano-1D
morphology (node-9) can also be obtained by maintain-
ing the synthesis temperature from 168 °C to 190 °C and
using precursor 1 (zinc nitrate). However, the probability
of growth is low, that is, 35%.

(iii) The nano-2D morphology (node-15) can be obtained
without the seed layer (node-1), utilizing precursors 2
(zinc acetate) and 3 (zinc chloride, node-5), and
maintaining the synthesis time ≥ 9 h (node-7) and
synthesis temperature ≤ 140 °C (node-10, negation
case). The synthesis probability of this case is high (75%).

(iv) The nano-3D structure (node-11) can be effectively
synthesized without the seed layer (node-1), maintaining
the synthesis temperature ≤ 190 °C (node-3, negation
case) and synthesis time ≤ 9 h (node-7, negation case).
The said route is 53% effective in the synthesis of the
nano-3D morphology and higher among other routes
(nodes: 5, 6, 8, and 13).

After executing the workflow of ML described above, in the
next step, we obtain the possible set of rules and heuristics which
govern the PCE of the ZnO DSSCs. The objective is to discover
how synthesis conditions affect the PCE of the hydrothermally
synthesized ZnO DSSCs. For this, we employed supervised and
unsupervised learning algorithms of the decision tree. Figure 5
presents the supervised decision tree learning model of the ZnO
DSSCs. This model employs the classification feature of the

decision tree to discover the hidden set of rules and heuristics.
This kind of model is beneficial for the qualitative segregation of
the data. Given this, the root node (node-1) splits into two
branches and checks the association rule: if the structure is
greater than the 2D nanostructure, then very low PCE can be
obtained (node-2, probability: 34%); otherwise, very high PCE
can be obtained (negation case, node-3, probability: 96%). With
this, it is evident that the morphology/structure is the most
crucial factor to obtain efficient ZnO DSSCs. The remaining
rules can be assessed by carefully examining the decision tree.
Subsequently, for simplifying the workflow, we have made the
following observation from the supervised decision-tree learning
model:

(i) Very low-PCE results are obtained with the micro-
structure and 1D nanostructure (node-2 and node-4).
Additionally, very low PCE (node-12) is obtained by
maintaining the synthesis temperature ≥ 94 °C (node-5)
and synthesis time between 9.5 h (node-6) and 32 h
(node-8). For the lower synthesis temperature (≤94 °C
node-5, negation case), very low PCE (node-10) can be
observed if precursors 2 (zinc acetate) and 3 (zinc
chloride) are used during the synthesis (node-7).

(ii) Low PCE (node-5, -6, and -9) can be observed in the case
of the 1D nanostructure (node-2) and by maintaining the
synthesis temperature ≥ 94 °C (node-5) and synthesis
time ≤ 9.5 h (node-6, negation case).

(iii) High PCE (node-13) can be obtained by synthesizing the
1D nanostructure (node-2, negation case) and synthesiz-
ing ZnO at a synthesis temperature≥ 94 °C (node-5) and
synthesis time > 32 h (node-8). On the other hand, high
PCE (node-7 and 11) can also be obtained by
synthesizing the 1D nanostructure (node-2, negation
case) and synthesizing ZnO at a synthesis temperature ≤
94 °C (node-5) with precursor-1 (zinc nitrate, node-7).

(iv) Very high PCE (node-3) can be obtained by utilizing the
2D and 3D nanostructures (node-1, negation case).

Figure 6.CARTmodel to identify possible rules and heuristics related to how synthesis conditions affect the PCE of the ZnO DSSCs. The CART is a
decision tree that results in different clusters representing the average efficiency values. Herein, we have used the clustering feature of the decision tree
which provides different clusters of PCE. This is an unsupervised learning model of the ZnO DSSCs.
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Unlike supervised learning, the unsupervised learning models
do not require the labeling of data, which lowers the manual
work and expenses.27 In addition to this, the unsupervised
models can help reduce the dimensionality of the data and easily
find out the patterns from the data set.28 Considering the above
advantages, we have modeled the ZnODSSCs by employing the
unsupervised learning algorithm of the decision tree, that is,
classification and regression tree (CART). In the present case,
the CART model provides different clusters as nodes with
average PCE values and describes how different synthesis
conditions affect the PCE of the ZnODSSCs, as shown in Figure
6. In this case, the percentage numbers located at the bottom of
each decision node represent the total data obeying the decision
rule, and fraction numbers located at the upper side of the
decision node represent the average values of efficiencies
belonging to that cluster. The CART model verifies that the
synthesis temperature is a major factor for deciding the PCE of
the ZnO DSSCs. In the case of supervised learning, the
structure/morphology of ZnO was found to be an important
factor (Figure 5). The implementation of the CARTmodel leads
to four different clusters from very low PCE to very high PCE. In
this case, the root node (node-1) is split into two nodes by
evaluating the association rule: if the synthesis temperature is
less than 100 °C, then very low PCE is obtained (node-2);
otherwise, high PCE can be obtained (negation case, node-3).
Similar to the workflow in the case of decision trees portrayed
above, the following observations are noted:

(i) Very low PCE (cluster-1) can be obtained by synthesizing
ZnO at a temperature lower than 100 °C (node-1) and

producing the microstructure and 1D nanostructure
(nodes 2 and 4).

(ii) Low PCE (cluster-2) can be obtained by synthesizing
ZnO at a temperature lower than 100 °C (node-1) with
2D and 3D nanostructures (node-2, negation case). If the
synthesis temperature is ≥93 °C (node-5), then also low
PCE can be obtained (node-8). In addition to this, low
PCE can be obtained by using the following parameters:
synthesis temperature > 100 °C (node-1, negation case),
precursor-1 (zinc nitrate, node-6), and synthesis time ≥
3.5 h (node-10). The use of precursor-3 (zinc chloride,
node-3) and the 3D nanostructure (node-7) can also
achieve low PCE (node-12).

(iii) High PCE (cluster-3, node-9) can be obtained by
synthesizing ZnO at a temperature lower than 100 °C
(node-1) with 2D and 3D nanostructures (node-2,
negation case) and a synthesis temperature ≤ 93 °C
(node-5). The high PCE (nodes 3 and 15) can also be
obtained by using the following parameters: temperature
> 100 °C (node-1), precursor-1 (node-3, zinc nitrate),
and synthesis time ≥ 3.5 h (node-6) with 2D and 3D
nanostructures (node-10). High PCE (node-16 and 18)
can also be obtained by using precursors 2 and 3 (node-3,
negation case) and micro- and 1D and 2D nanostructures
(node-7) with synthesis times < 3.5 h (node-17) and≥11
h (node-13).

(iv) Very high PCE (cluster-4, node-11) can be obtained by
synthesizing ZnO at a temperature greater than 100 °C
(node-1, negation case), using precursor-1 (zinc nitrate,
node-3), and maintaining the synthesis time < 3.5 h. In
addition to this, very high PCE (node-19) can also be

Figure 7. Prediction of the PCE using random forest and ANN algorithms. (a) Predicted vs the actual experimental PCE performance of the random
forest algorithm. (b) Confusion matrix of the random forest algorithm. (c) Predicted vs the actual experimental PCE performance of the ANN
algorithm. (d) ANN structure to predict the PCE of the ZnO DSSCs using different synthesis parameters.
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obtained by synthesizing ZnO at a temperature greater
than 100 °C (node-1), using precursors 2 and 3 (node-3),
utilizing micro- and 1D and 2D nanostructures (node-7),
and maintaining the synthesis time < 11 h (node-13) and
>3.5 h (node-17 and 19).

2.3. PCE Predictions Using Random Forest and ANN
Algorithms. In this section, we showcase the prediction of the
PCE of the hydrothermally synthesized ZnO DSSCs using two
popular ML algorithms. In particular, we have used random
forest and ANN algorithms to predict the efficiencies of the ZnO
DSSCs by employing different synthesis conditions as input
variables. A cross-validation technique was used for both
analyses. For the predictions, the data was divided into two
parts: 70% of the data was used for the training of the model,
whereas the remaining 30% of the data was used for testing
purposes. In this case, the random sampling method was used to
segregate the data into the training and testing data sets. The
models were built up using a training data set, whereas the test
data set was used to check the performance of these models with
the help of the accuracy measure. Figure 7 depicts the results
related to the PCE prediction using random forest and ANN
algorithms. The scatter plots (Figure 7a,c) of random forest and
ANN algorithms are built upon the unlabeled data set to
visualize the relationship between the actual and predicted PCE.
On the other hand, the confusion matrix is created using a
labeled data set (Figure 7b). Figure 7a displays the predicted
versus the actual experimental PCE performance of the random
forest algorithm. For model building, different synthesis
conditions such as structures, precursors, dyes, synthesis
temperature, synthesis time, and the seed layer were taken as
input variables, and the output PCE was predicted based on
these variables. The scatter plot confirms that the random forest
algorithm can predict the PCE very well (Adj. R2 = 0.7232). In
particular, it can predict the PCE up to 3% very accurately,
whereas the model deviates for very high PCE. The confusion
matrix of the random forest algorithm is depicted in Figure 7b.
The numbers shown in each cell represent the number of
observations classified for given actual and predicted class labels.
Most of the numbers have appeared in the diagonal cells,
validating the model, and thereby predicting the PCE of the
ZnO DSSCs. In the present case, the accuracy of the random
forest algorithm turns out to be 96.62%, which substantiates the
prediction ability of the model. On the other hand, the
misclassification factor turns out to be relatively low, that is,
0.0112, which corroborates the prediction ability. We observed
that there is a trade-off between Adj. R2 and the accuracy of the
model. Such kind of trade-off may lead to overfitting, and it can
be addressed through implementing ensemble methods like
bagging and boosting to prevent overfitting of the model.29

To validate the ML-based prediction as mentioned earlier, we
have used one more widely used ML algorithm. The approach
adopted by us is doubly checked by employing the ANN
algorithm on the same data set. The ANN is designed based on
the human brain, and it mimics the functionality of the biological
neurons and synapses.30 The ANN provides better results in the
case of complex and nonlinear data.31,32 Figure 7c reveals the
predicted versus the actual experimental PCE performance of
the ANN algorithm (training data set). The scatter plot shows a
good relationship between the experimental PCE and model-
predicted PCE with Adj. R2 equal to 0.7447. Most of the data lie
on the straight line, which suggested that the ANN algorithm
more accurately and effectively predicts the PCE of the ZnO

DSSCs. Similar to the previous case (random forest), we have
used different synthesis parameters to build the ANN model.
The resultant ANN structure with input, hidden, and output
layers is shown in Figure 7d. The synaptic weights and bias of the
models are also shown in the ANN structure. The ANN model
takes structures, precursors, dyes, synthesis temperature,
synthesis time, and the seed layer as input variables and predicts
the PCE based on the optimized connections between input,
hidden, and output layers. The ANN model’s root-mean-square
error was found to be 2.44% and computes the results in the
23658 steps. The prediction results of the random forest and
ANN are very satisfactory and show a similar performance level
for PCE predictions. This can be seen from the Adj. R2 values of
the scatter plots (Figure 7a,c). These results asserted that the
random forest and ANN algorithms are better options for PCE
predictions. Our work confirms that it is possible to improve the
accuracy of estimates of material properties manyfold by
incorporating the latest advances in ML. Currently, we are
working on Monte Carlo simulations for predicting the PCE of
solar cells, and the results in the initial stage are encouraging in
terms of accuracy, offering a significant advantage in predicting
the properties of complex material systems based on small data
sets.

3. CONCLUSIONS

In conclusion, the present report showcases the importance of
the statistical andML tools for analysis and predictions of DSSC
properties. The statistical results suggested that the morphol-
ogy/structure of ZnO is an important property and many times
it governs the PCE of the DSSCs. Apart from this, the type of
precursor, dyes, and different synthesis conditions also have an
impact on the PCE.With the help of bubble charts, the year-wise
(2005−2020) trend in the use of different morphologies,
precursors, dyes, and other synthesis parameters has been
elucidated. The major insights, set of rules, and heuristics have
been investigated by using different ML algorithms. In
particular, we addressed two major questions, that is, how
synthesis conditions affect the morphology of hydrothermally
synthesized ZnO and how the PCE of the ZnO DSSCs depends
on the different synthesis parameters. For this, the classification
and clustering features of the decision tree and CART are used
and possible rules and heuristics are discussed. In the case of
predictions, random forest and ANN-based ML algorithms
accurately predict the PCE of the ZnO DSSCs.

4. MATERIALS AND METHODS

4.1. Data Set Preparation: Data Gathering, Prepro-
cessing, and Cleaning. We have created a data set of 298
experimental observations for the present work using the
published work from 2005 to 2020. The research papers were
searched through Scopus scientific databases, and relevant
information was extracted from each paper. The search
keywords were ZnO + hydrothermal method + DSSCs. The
manual method was adopted to collect the experimental data
from each research paper. During the initial data set creation, we
have collected more than 350 experimental observations.
However, some of the papers did not mention sufficient
information. Therefore, few papers were excluded from the data
set. In some instances, the authors’ domain knowledge was
applied to complete missing information. For prospective
readers and researchers, a complete investigation data set is
provided in the Supporting Information (Table S1). Table 1
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presents the categorical features and variables used in the
present investigation to analyze and predict the properties of the
hydrothermally synthesized ZnO DSSCs using statistical
methods and ML techniques.
4.2. Computational Details. The focus of the DSSC

research community is on the improvements of the PCE of the
solar cells. Therefore, the PCE was considered a significant
performance variable for the statistical analysis and ML
predictions. In the descriptive statistical analysis, the PCE of
the DSSCs was investigated for each process condition
(structure, precursor, dye, synthesis time, synthesis temperature,
and seed layer). For statistical analysis, the PCE was classified
into three categories, viz., minimum, maximum, and average. In
addition to this, bubble plots were drawn to assess the year-wise
comparative performance of the DSSCs at different process
conditions. For this, the average efficiencies were plotted against
the year of publication. The bubble size represents the number
of experimental observations in a particular year. In the case of
ML investigations, we have used a decision tree as a supervised
ML algorithm to identify possible rules and heuristics from the
data set. In particular, we have tried to identify how synthesis
conditions affect the different morphologies of ZnO and
efficiencies of the ZnO DSSCs. In addition to this, we have
employed random forest and ANN algorithms to predict the

efficiencies of the ZnO DSSCs. The details of the decision tree,
random forest, and ANN algorithms are explained in the
Supporting Information. The source code of all algorithms was
created using RStudio (R version 3.6.2).
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Table 1. Categorical Features and Variables of the
Hydrothermally Synthesized ZnO DSSCs

categorical
feature variables of the DSSCs

number of
experimental
observations

morphological
structures

microstructure (0): microflower, microrod,
microsheet, microsphere, and microurchin

30

nano-1D (1): nanobullets, nanocone,
nanoforest, nanograss, nanoneedles, nanorod,
nanotree, nanotube, and nanowire

193

nano-2D (2): nanobead, nanobelt, nanocrystal,
nanodisk, nanoflakes, nanoplates, nanosheet

34

nano-3D (3): nanocaterpillar, nanocluster,
nanocubes, nanoflower, nanomushrooms,
nanoparticle, nanopyramid, nanosphere,
nanostar, and nanourchin

41

precursors precursor 1: zinc nitrate 216

precursor 2: zinc acetate 68

precursor 3: zinc chloride 14

dyes dye 1: N719 222

dye 2: N3 21

dye 3: D102 8

dye 4: D149 8

dye 5: natural dye, rodhamine B, eosin-Y, D205,
mercurochrome, Z907, LEG-4, and C-218

39

synthesis
temperature

low: 40−90 °C 110

medium: 90−95 °C 18

high: 95−120 °C 37

very high: 120−220 °C 133

synthesis time low: 0.5−3 h 79

medium: 3−6 h 72

high: 6−12 h 78

very high: 12−144 h 69

seed layer present 183

absent 115

PCE minimum: 0.005%

first Quartile (Q1): 0.33%

second quartile (Q2): 0.93% 298

third quartile (Q3): 1.94%

maximum: 7.66%
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