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ABSTRACT: Born−Oppenheimer molecular dynamics (BOMD)
is a powerful but expensive technique. The main bottleneck in a
density functional theory BOMD calculation is the solution to the
Kohn−Sham (KS) equations that requires an iterative procedure
that starts from a guess for the density matrix. Converged densities
from previous points in the trajectory can be used to extrapolate a
new guess; however, the nonlinear constraint that an idempotent
density needs to satisfy makes the direct use of standard linear
extrapolation techniques not possible. In this contribution, we
introduce a locally bijective map between the manifold where the
density is defined and its tangent space so that linear extrapolation
can be performed in a vector space while, at the same time,
retaining the correct physical properties of the extrapolated density
using molecular descriptors. We apply the method to real-life, multiscale, polarizable QM/MM BOMD simulations, showing that
sizeable performance gains can be achieved, especially when a tighter convergence to the KS equations is required.

1. INTRODUCTION
Ab initio Born−Oppenheimer molecular dynamics (BOMD) is
one of the most powerful and versatile techniques in
computational chemistry, but its computational cost represents
a big limitation to its routine use in quantum chemistry. To
perform a BOMD simulation, one needs to solve the quantum
mechanics (QM) equations, usually Kohn−Sham (KS) density
functional theory (DFT), at each step, before computing the
forces and propagating the trajectory of the nuclei. The
iterative self-consistent field (SCF) procedure is expensive, as
it requires to build, at each iteration, the KS matrix and to
diagonalize it. Convergence can require tens of iterations,
making the overall procedure, which has to be repeated a very
large number of times, very expensive. To reduce the cost of
BOMD simulations, it is therefore paramount to be able to
perform as little iterations as possible while, at the same time,
obtaining an SCF solution accurate enough to afford stable
dynamics. From a conceptual point of view, at each step of a
BOMD simulation, a map is built from the molecular geometry
to the SCF density and then to the energy and forces. The
former map, in practice, requires the solution to the SCF
problem and is not only very complex but also highly
nonlinear. However, the propagation of the molecular
dynamics (MD) trajectory uses short, finite time steps so
that the converged densities at previous steps, and thus at
similar geometries, are available. As a consequence, the
geometry to the density map can be in principle approximated
by extrapolating the available densities at previous steps. The
formulation of effective extrapolation schemes has been the

object of several previous works.1 Among the proposed
strategies, one for density matrix extrapolation was developed
by Alfe,̀2 as a generalization of the wavefunction extrapolation
method by Arias et al.,3 which is based on a least-squares
regression on a few previous atomic positions. The main
difficulty in performing an extrapolation of the density matrix
stems from the nonlinearity of the problem. In other words, a
linear combination of idempotent density matrices is not an
idempotent density matrix, as density matrices are elements of
a manifold and not of a vector space. To circumvent this
problem, strategies that extrapolate the Fock or KS matrix4,5 or
that use orbital transformation methods6−8 have been
proposed.
A completely different strategy has been proposed by

Niklasson and co-workers.9−11 In the extended Lagrangian
Born-Oppenheimer (XLBO) method, an auxiliary density is
propagated in a time-reversible fashion and then used as a
guess for the SCF procedure. The strategy is particularly
successful, as it combines an accurate guess with excellent
stability properties. In particular, the XLBO method allows one
to perform accurate simulations converging the SCF to average
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values [for instance, 10−5 in the root-mean-square (RMS)
norm of the density increment], which are usually insufficient
to compute accurate forces. An XLBO-based BOMD strategy
has been recently developed by some of us in the context of
polarizable multiscale BOMD simulations of both ground and
excited states.12−15 Multiscale strategies can be efficiently
combined, in a focused model spirit, to BOMD simulations to
extend the size of treatable systems. Using a polarizable
embedding allows one to achieve good accuracy in the
description of environmental effects, especially if excited states
or molecular properties are to be computed. In such a context,
the XLBO guessing strategy allows one to perform stable
simulation even using a modest 10−5 RMS convergence
threshold, which, thanks to the quality of the XLBO guess,
typically requires only about four SCF iterations. Recently,
SCF-less formulations of the XLBO schemes have also been
proposed.16,17

Unfortunately, the performances of the XLBO-based BOMD
scheme are not so good when a tighter SCF convergence is
required, which can be the case when one wants to perform
MD simulations using post Hartree−Fock (HF) methods or
for excited states described in a time-dependent DFT
framework.14,18 In fact, such methods require the solution to
a second set of QM equations which are typically nonvaria-
tional, making them more susceptible to numerical errors and
instabilities. Computing the forces for non-SCF energies
therefore requires a more accurate SCF solution.
The present work builds on all previous methods for density

matrix extrapolation and aims at proposing a simple framework
to overcome the difficulties associated with the nonlinearity of
the problem. The strategy that we propose is based on a
differential geometry approach and is particularly simple. First,
we introduce a molecular descriptor, that is, a function of the
molecular geometry and other molecular parameters that
represent the molecular structure in a natural way that respects
the invariance properties of the molecule within a vector space.
At the (n + 1)-th step of an MD trajectory, we fit the new
descriptor in a least-square fashion using the descriptors
available at a number of previous steps and obtain a new set of
coefficients. However, we do not use them to directly
extrapolate the density. Instead, we first map the unknown
density matrix that we aim to approximate from the manifold
where it is defined to its tangent space. We then perform the
extrapolation to approximate the representative density matrix
in the tangent space, before mapping this approximation back
to the manifold in order to obtain an extrapolated density
matrix that satisfies the required physical constraints. This
geometrical strategy, which has recently been introduced in the
context of density matrix approximation by us,19 allows one to
use standard linear extrapolation machinery without worrying
about the nonlinear physical constraints on the density matrix,
since both the space of descriptors and the tangent space are
vector spaces. As the mapping between the manifold and the
tangent space is locally bijective, no concerns about redundant
degrees of freedom (such as rotations that mix occupied
orbitals) arise. The map and its inverse, which are known as
Grassmann logarithm and exponential, are easily computed
and the implementation of the strategy is straightforward. We
shall denote this approach as Grassmann extrapolation (G-
Ext).
In this contribution, we choose a simple, yet effective

molecular descriptor, and, for the extrapolation, a least square
strategy. These are not the only choices. As our strategy allows

one to use any linear extrapolation technique, which can be in
turn coupled with any choice of molecular descriptor, more
advanced strategies can be proposed, including machine
learning. Our approach ensures that the extrapolated density,
independent of how it is obtained, satisfies all the physical
requirements of a density stemming from a single Slater
determinant.
The paper is organized as follows. In the upcoming Section

2, we present all necessary theoretical foundations required for
the development and implementation of the presented G-Ext
approach. Section 3 then presents detailed numerical tests
illustrating the performance of the extrapolation scheme,
including realistic applications of BOMD within a QM/
molecular mechanics (MM) context before we draw the
conclusion in Section 4.

2. THEORY
We consider ab initio BOMD simulations where the position
vector ∈R M3 evolves in time according to classical
mechanics as

̈ =M t F t tR R( ) ( , ( ))i i i (1)

where ∈t F tR ( ), ( )i i
3 denote the position of the i-th atom

with mass Mi, respectively, and the force acting on it at time t.
We consider a general QM−MM method, but the setting also
trivially applies to pure QM models. The forces at a given time
t and position R of the nuclei arise from different interactions,
namely, QM−QM, QM−MM, and MM−MM interactions.
The computationally expensive part is to determine the state of
the electronic structure, which is modeled here at the DFT
level with a given basis set of dimension . Note that
considering HF instead of DFT would not change much in the
presentation of the method. It consists of computing the
instantaneous nonlinear eigenvalue problem

=
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where ∈ ×C N
R  and ∈ ×DR  denote the coefficients,

respectively, of the occupied orbitals and density matrix and
∈ ×E N N

R  denotes the diagonal matrix containing the energy
levels. Furthermore, FR denotes the DFT operator acting on
the density matrix and SR denotes the customary overlap
matrix.
At this point, it is useful to note that the slightly modified

coefficient matrix ̃ ≔C S CR R R
1/2 belongs to the so-called

Stiefel manifold defined as follows

≔ { ∈ | = }×t N V V V( , ) IdN
N

T (3)

due to the second equation in eq 2. In consequence, the
normalized density matrix D̃R = C̃RC̃R

T = SR
1/2DRSR

1/2 belongs
to the following set

≔ { ∈ | = = = }×r N D D D D D D N( , ) , , Tr2 T
(4)

which can be identified with the Grassmann manifold of N-
dimensional subspaces of  by means of the spectral
projectors. In the following, we always assume that the density
matrix has been orthonormalized and therefore drop the ∼
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from the notation. For any ∈D r N( , ), one can associate
the tangent space D which has the structure of a vector space.
The evolution of the electronic structure can therefore be seen
as a trajectory →t D tR( ) on r N( , ) where →t tR( )
denotes the trajectory of the nuclei.
The goal of the present work is to find a good approximation

for the electronic density matrix at the next step of MD
trajectory by extrapolating the densities at previous steps. More
precisely, based on the knowledge of the density matrices

≔D Di tR( )i , i = n − Nt, ..., n − 1, at Nt previous times ti, one
aims to compute an accurate guess of the density matrix Dn at
time tn.
Thus, the problem formulation can be seen as an

extrapolation problem of the following form: given the set of
couples t DR( ( ), )i i and a new position vector tR( )n provide a
guess for the solution Dn. Here and in the remaining part of the
article, we restrict ourselves on the positions of the QM atoms,
that is, with slight abuse of notation, we denote from now on
by R the set of QM positions only, even within a QM−MM
context.
In order to approximate the mapping → DR R , we split this

mapping in several submaps that will be composed as follows

→ → →

→ → Γ → = Γ

r N

d DR

( , )

Exp ( )

M
D

DR R R R

3
0

0



(5)

where the first line shows the concatenation of maps in terms
of spaces and the second in terms of variables. The different
mappings will be presented and motivated in the following.
The first map is a mapping of the nuclear coordinates
∈R M3 to a (possibly high-dimensional) molecular descrip-

tor that accounts for certain symmetries and invariances of the
molecule. The last map, known as the Grassmann exponential,
is introduced in order to obtain a resulting density matrix
belonging to r N( , ) and thus to guarantee that the guess
fulfils all properties of a density matrix. As r N( , ) is a
manifold, this is not straightforward. The second mapping is
the one that we aim to approximate but before we do that let
us first introduce those two special mappings, that is, the
molecular descriptor and the Grassmann exponential, in more
details.
2.1. Molecular Descriptors. The map → dR R is a map

from atomic positions to molecular descriptors. These
descriptors are used as fingerprints for the considered
molecular configurations. Such molecular descriptors have
been widely used in the past decades, for example, to learn
potential energy surfaces (PESs)20−26 or to predict other
quantities of interest. Among widely used descriptors, one can
find Behler−Parinello symmetry functions,27 Coulomb ma-
trix,21 smooth overlap of atomic positions (SOAP),28 permuta-
tionally invariant polynomials,29 or the atomic cluster
expansion (ACE).30,31 These molecular descriptors are usually
designed to retain similar symmetries as the targeted quantities
of interest.
In this work, the quantity we are approximating is the

density matrix, which is invariant with respect to translations
and permutations of like particles. The transformation of the
density matrix with respect to a global rotation of the system
depends on the implementation, as it is possible to consider
either a fixed Cartesian frame or one that moves with respect
to the molecular system. In the former case, there is an

equivariance with respect to rotations of the molecular system,
while in the latter, the density matrix is invariant. We should
therefore in principle use a molecular descriptor satisfying
those properties.
However, the symmetry properties we will rely on are mostly

translation and rotation invariance. Therefore, we will use a
simple descriptor in the form of the Coulomb matrix denoted
by dR, given by

=
=

|| − ||
d

z i j
z z

t tR R
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0.5 if

( ) ( )
otherwiseij

i

i j

i j

R

2.4l
m
oooooo

n
oooooo (6)

Note that such a descriptor is not invariant (nor equivariant)
with respect to permutations of identical particles. However,
we have found this descriptor to offer a good trade-off between
simplicity and efficiency. Note that since we aim to extrapolate
the density matrix from previous time steps, permutations of
identical particles never occur from one time step to another
and we do not need to rely on this property. Nevertheless, we
expect that a better description could be achieved using more
flexible descriptors, such as ACE polynomials or the SOAP
descriptors, where the descriptors themselves can be tuned.

2.2. Grassmann Exponential. We only give a brief
overview as the technical details have already been reported
elsewhere,19,32,33 and are recapitulated in the Supporting
Information. The set r N( , ) is a smooth manifold and thus,
at any point, say ∈D r N( , )0 in our application, there
exists the tangent space D0

such that one can associate nearby

points ∈D r N( , ) to tangent vectors Γ ∈D( ) D0
. The

mapping → = ΓD D DLog ( ) ( )D0
is known as the Grassmann

logarithm and its inverse mapping is known as the Grassmann
e x p o n e n t i a l Γ → Γ = DExp ( )D0

. F u r t h e r m o r e ,

=DLog ( ) 0D 0
0

and = DExp (0)D 0
0

. These mappings are not

only abstract tools from differential geometry but can also be
computed by means of performing a singular value
decomposition (SVD).19,32,33 In our application, we use the
same reference point D0 in all cases which brings some
computational advantages as will be discussed in more detail in
the upcoming Section 2.3.

2.3. Approximation Problem. Since the tangent space
D0

is a (linear) vector space, we can now aim to approximate
the mapped density matrix on the tangent space D0

. To
simplify the presentation, we shift the indices in the following
and describe the extrapolation method for the first Nt time
steps. In the general setting, we should consider the positions
R(ti) for i = n − Nt, ..., n − 1, to extrapolate the density matrix
at position R(tn), where n is the current time step of the MD.
We look for parameter functions ci such that, given previous
snapshots Γi = Log(Di) for i from 1 to Nt, corresponding to
some R(ti)’s, the approximation of any density matrix on the
tangent space is written as

∑→ Γ = Γ ∈
=

cR R( )
i

N

i i DRapp
1

,

t

0
(7)

with Γ = Γi tR( )i .
The question is then how to find these coefficient functions

c iR, and we propose to find those via the resolution of a
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(standard) least-square minimization problem. For a given
position R, we look for coefficients that minimize the l2-error
between the descriptor dR and a linear combination of the
previous ones dR(ti)

∑−
∈ =

d c dmin
c i

N

i tR R R
1

, ( )

2

Nt

t

i
R  (8)

In the matrix form, this simply reads

|| − ||
∈

d P cmin
c

R R
T 2

Nt
R  (9)

where P is the matrix of size Nt × Nd containing the descriptors
Pi,j ≔ (dR(ti))j. Note that we only fit on the level of the
descriptor, that is, the mapping from the position vector R to
the descriptor dR and that this method is similar to the ones
used by Alfe ̀2 and Arias et al.,3 where the descriptors they used
were the positions of the atoms and only considered the
previous three time steps of the MD.
If the system is underdetermined, we select the vector cR that

has the smallest norm. However, in general, the system is
overdetermined as we have more descriptors than snapshots.
This implies that this formulation verifies the interpolation
principle: for every i and j from 1 to Nt, the solution of
problem (8) at the positions R(tj) satisfies cR(tj)i = δji.
In principle, should we consider a large amount of previous

descriptors, then the system may become undetermined and
violate the interpolation principle. To mitigate this, we can use
a stabilization scheme, as explained in the upcoming
subsection.
Note that once we have computed the coefficients cR by

solving problem (12), one computes the initial guess for the
density using the same coefficients in the linear combination
on the tangent space as in eq 7 and finally takes the exponential
(see eq 5). The rational for this step is that if the second
mapping in eq 5, which we denote here by →: D0

, was
linear, then there would hold

∑ ∑ ∑= = Γ
= = =

c d c d c( )
i
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i
i

N
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i iR R R R R
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t

i
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k
jjjjjj

y

{
zzzzzz (10)

In practice, the mapping is, however, not linear and this
approach works well in the test cases we considered. A possible
explanation for this is the unfolding of the nuclear coordinates
into a high-dimensional descriptor-space . Indeed, the high-
dimensionality of seems to allow an accurate approximation
of by a linear map. Furthermore, if the system is
overdetermined, the scheme satisfies the interpolation property

Γ = Γ tR( ( ))j j , and hence, we recover the expected density

matrix = ΓD PExp ( )t D jR( )j 0
.

2.3.1. Stabilization. To stabilize the extrapolation by
limiting high oscillations of the coefficients, we apply a
Tikhonov regularization

∑ ε− + || ||
∈ =

d c d cmin
c i

N

iR R R R
1

,

2
2

Nt

t

i
R 

i

k

jjjjjjjj

y

{

zzzzzzzz (11)

for some choice of ε. This problem is always well-posed and
corresponds to solving the following problem

||∼ − ̃ ||
∈

d P cmin
c

R R
T 2

Nt
R  (12)

where
∼ ∈ +d N N

R
d t is the vector dR padded with Nt zeroes and

̃ ∈ × +P N N Nt d t  is the P matrix padded with the square
diagonal matrix εIdNt

. We observe in practice that using such a
stabilization makes possible to use more previous points
without degradation of the initial guess.

2.4. Final Algorithm. Given previous density matrices
DR(tj) for j = 1, ..., Nt, the initial guess is computed following
Algorithm 1. That is, we start by computing the logarithms of
the density matrices DR(tj), from the coefficients CR(tj) that are
first orthonormalized by performing C̃R = SR

1/2CR. Here, we
remark that we assume that the density matrices DR(tj) have
been previously Löwdin orthonormalized.
We then compute the descriptors needed to build the P̃

matrix and solve problem (12). This provides the coefficients
in the linear combination of the Γi’s on the tangent space.
Finally, we compute the exponential of the linear combination
in order to obtain the predicted density matrix.
Note that the reference point D0 is chosen once and for all,

which makes the computations of these logarithms lighter,
even though there is no theoretical justification for keeping a
single point D0 as a reference. Indeed, it is known that the
formulae are only correct locally (around D0) on the manifold.
However, in practice, we have never observed the need to
change the reference point. This enables us to compute only
one logarithmic map per time step and hence, only two SVDs
in total per time step. To have a robust algorithm that will
work even in this edge case, it will be sufficient to check that
the exponential and logarithmic maps are still inverse of one
another.
Finally, to be on the safe side with respect to the

computations of the exponential, we have added a check on
the orthogonality of the matrix that is obtained: if the residue is
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higher than a certain threshold, we then perform an
orthogonalization of the result.

3. NUMERICAL TESTS
In this section, we present a series of numerical tests of the
newly developed strategy. We test our method on four
different systems. All the systems have been an object of a
previous or current study by some of us and can therefore be
considered representative of real-life applications.
The first system is 3-hydroxyflavone (3HF) in acetonitrile.18

Two systems (OCP and APPA) are chromophores embedded
in a biological matrixnamely, a carotenoid in the orange
carotenoid protein (OCP) and avine in acid phosphatase
(APPA), a blue light-using flavine photoreceptor.34−36 The
fourth system is dimethylaminobenzonitrile (DMABN) in
methanol.14 The main characteristics of the systems used for
testing are recapitulated in Table 1.

The systems used for testing include a quite large QM
chromophore, the OCP, and three medium-sized systems,
embedded in large- (APPA and 3HF) and medium-sized
environments (DMABN), and are representative of different
possible scenarios.
To test the performances of the new G-Ext strategy, we

performed three sets of short (1 ps) multiscale BOMD
simulations on OCP, APPA, 3HF, and DMABN. KS density
functional theory was used to model the QM subsystem, using
the B3LYP37 hybrid functional and Pople’s 6-31G(d) basis
set.38 For the stability and energy conservation of the method,
we did a longer and more realistic simulations of 10 ps on
3HF, where the flavone moiety was described using the ωB97X
hybrid functional39 and Pople’s 6-31G(d) basis set. In all cases,
the environment was modeled using the AMOEBA polarizable
force field.40

All the simulations have been performed using the
Gaussian−Tinker interface previously developed by some of
us.12,13 In particular, we use a locally modified development

version of Gaussian41 to compute the QM, electrostatic, and
polarization energy and forces and Tinker42 to compute all
other contributions to the QM/MM energy. We implemented
the G-Ext extrapolation scheme in Tinker that acts as the main
driver for the MD simulation, being responsible of summing
together all the various contributions to the forces and
propagating the trajectory. At each MD step, using the
GauOpen interface,43 the density matrix, molecular orbital
(MO) coefficients, and overlap matrix produced by Gaussian
are retrieved. These are used to compute the extrapolated
density, as described in Section 2. The density is then passed
back to Gaussian to be used for the next MD step. All the
simulations were carried out in the NVE ensemble, using the
velocity Verlet integrator and a 0.5 fs time step. Concerning
stabilization, we found that good overall results were obtained
using a parameter ε ≔ 103 × rscf, where rscf is the tolerance of
the SCF algorithm.

3.1. Numerical Results. To assess the performance of the
G-Ext guess, we perform 1 ps MD simulations on the four
systems described in Section 3 starting from the same exact
conditions (positions and initial velocities) and using various
strategies to compute the guess density for the SCF solver. We
compare various flavors of the G-Ext method with the XLBO
extrapolation scheme.10 Here, we note that the original XLBO
method performs a propagation of an auxiliary density matrix,
which is then used as a guess. The latter is not idempotent: to
restore such a property, we perform a purification step at the
beginning of the SCF procedure using McWeeny’s algorithm.44

In the following, we therefore compare our method, where we
use 3 to 6 previous points for the fitting and extrapolation, to
both the standard XLBO and to XLBO followed by
purification (XLBO/MW). We use an SCF convergence
threshold of 10−5 with respect to the RMS variation of the
density.
We report in Table 2, for each method, the average number

of SCF iterations performed along the MD simulation together
with the associated standard deviation. As the XLBO strategy
requires eight previous points, during which a standard SCF is
performed, we discard the first points from the evaluation of
the aforementioned quantities to have a fairer comparison.
We do not report the total time required to compute the

guess, as it is in all cases very small (up to 0.1 s wall clock time
for the largest system using the G-Ext(6) guess). This is an
important consideration, as the G-Ext method requires one to
perform various linear-algebra operations (in particular, thin
SVD) that can in principle be expensive. Thanks to the

Table 1. Overview of the System Size in Terms of Number
of QM Atoms (NQM), Number of MM Atoms (NMM), and
the Total Number of QM Basis Functions ( )

system NQM NMM

OCP 129 4915 1038
APPA 31 16,449 309
DMABN 21 6843 185
3HF 28 15,018 290

Table 2. Performances of the G-Ext Method for Different Numbers of Extrapolation Points, Compared with the XLBO
Algorithm with and without McWeeny Purificationa

OCP DMABN APPA 3HF

method average σ average σ average σ average σ

XLBO 3.82 0.66 3.98 0.16 3.00 0.03 4.00 0.14
XLBO/MW 2.95 0.31 3.76 0.56 3.00 0.34 3.96 0.31
G-Ext(3) 2.57 0.84 3.54 0.78 2.95 0.50 3.09 0.41
G-Ext(4) 2.48 0.88 3.14 0.62 2.51 0.50 3.25 0.68
G-Ext(5) 2.25 0.96 3.23 0.75 2.51 0.50 3.30 0.72
G-Ext(6) 2.20 0.96 2.99 0.02 2.51 0.50 3.14 0.56

aAll the results were obtained using a 10−5 convergence threshold for the RMS increment of the density matrix and are derived from a 1 ps long
MD simulation, using a 0.5 fs time step. We report the average number of iterations required to converge the SCF, together with the associated
standard deviation. Note that the first eight steps were discarded.
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availability of optimized LAPACK libraries, this is in practice
not a problem.
From the results in Table 2, we see that the G-Ext

algorithms systematically outperforms the XLBO method. It is
interesting to note that the McWeeny purification step has a
sizeable effect on the performances of the XLBO method only
for the largest system, OCP, where it results in the gain of
almost one SCF iteration on average. On the other systems,
the purification step has a smaller effect.
In all the systems we tested, the performances of the G-Ext

method are systematically better than in XLBO, including
McWeeny purification. The effectiveness of the G-Ext
extrapolation increases when going from 3 to 6 points but
quickly stagnates. We have performed further tests with more
than 6 (up to 20) extrapolation points but never noted any
further gain.
We observe a reduction in the number of iterations that goes

from 0.5 in DMABN to 0.75 in OCP (1.62 when compared to
XLBO without McWeeny purification). We remark that these
gains, while apparently not so large, are greatly amplified
during the MD simulation, due to the large number of steps
that need to be performed.
The tests performed with a 10−5 convergence threshold are

representative of a standard, DFT ground-state BOMD
simulation. When performing a more sophisticated quantum
mechanical calculation, such as a BOMD on an excited-state
PES,18 such a convergence threshold may not be sufficient to
guarantee the stability of the simulation, as the SCF solution is
used to set up the linear response equations and the numerical
error can be amplified, resulting in poorly accurate forces.
We tested the G-Ext algorithm in its best-performing

version, the one that uses six extrapolation points, with a
tighter, 10−7 threshold, again for the RMS variation of the
density. The results are reported in Table 3, where we compare
the G-Ext(6) scheme with the XLBO method with McWeeny
purification.

The XLBO method is based on the propagation of an
auxiliary density, and therefore, the accuracy of the guess it
generates depends little on the accuracy of the previous SCF
densities. As a consequence, its performances are reduced if a
tighter convergence is required. The G-Ext guess, on the other
hand, uses previously computed densities as its building blocks
and one can expect the accuracy of the resulting guess to be
linked to the convergence threshold used during the
simulation.
This is exactly what we observe. Using a threshold of 10−7,

the G-Ext(6) guess exhibits significantly better performances
than XLBO, gaining, on average, from about 0.7 to about 3
SCF iterations on the tested systems.

3.1.1. Stability. The good performances of the G-Ext guess
come, however, at a price, namely, the lack of time reversibility.
We can thus expect the total energy in an NVE simulation to
exhibit a long-time drift (LTD). Time reversibility and long-
time energy conservation are, on the other hand, one of the
biggest strengths of the XLBO method.
To investigate the stability of BOMD simulations using the

G-Ext guess, we build a challenging case, where we start a
BOMD simulation far from well-equilibrated conditions. We
use the 3HF system as a test case and achieve the noisy starting
conditions by starting from a well-equilibrated structure and
changing the DFT functional from B3LYP to ωB97XD. This
way, we have a physically acceptable structure, with no close
atoms or other problematic structural situations, but obtain
starting conditions that are far from equilibrium.
We report in Figure 1 the total energy along a 10 ps BOMD

simulation of 3HF in acetonitrile using either a 10−5 SCF
convergence threshold (left panel) or a 10−7 one (right panel).
The same results for a 10−6 threshold are reported in the
Supporting Information. We compare the G-Ext(3) and G-
Ext(6) methods to the XLBO one including McWeeny
purification. As already noted, while in principle the

Table 3. Performances of the G-Ext(6) Method Compared with the XLBO Algorithm with McWeeny Purificationa

OCP DMABN APPA 3HF

method average σ average σ average σ average σ

XLBO/MW 5.02 0.17 7.30 0.64 7.49 0.84 7.47 0.63
G-Ext(6) 3.58 0.79 4.23 0.50 4.39 0.57 6.81 0.78

aAll the results were obtained using a 10−7 convergence threshold for the RMS increment of the density matrix and are derived from a 1 ps long
MD simulation, using a 0.5 fs time step. We report the average number of iterations required to converge the SCF, together with the associated
standard deviation. Note that the first eight steps were discarded.

Figure 1. Total energy (kcal/mol) as a function of simulation time (fs) for 3HF comparing G-Ext(3), G-Ext(6), and XLBO with McWeeny
purification, using a convergence threshold for the SCF algorithm of 10−5 (left panel) and 10−7 (right panel). The total energy was shifted to
+505,000 kcal/mol for readability.
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purification may spoil the time reversibility, this has no
noticeable effect in practice.
The very noisy starting conditions are apparent from the

energy profiles that exhibit large oscillations in the first couple
of hundreds of femtoseconds.
To better estimate the short- and long-time energy stability,

we report in Table 4 the average short-time fluctuation (STF)

and LTD of the energy. The former is computed by taking the
RMS of the energy fluctuation every 50 fs and averaging the
results over the trajectory, discarding the first 500 fs, the latter
by fitting the energy with a linear function and taking the slope.
All methods show comparable short-term stability, which is

to be mainly ascribed to the chosen integration time step. On
the other hand, from both the results in Table 4 and Figure 1,
we observe a clear drift of the energy when the G-Ext method
is used. In particular, the system cools of about 10 kcal/mol
with either G-Ext(3) or G-Ext(6). The XLBO trajectory,
despite the McWeeny purification, exhibits an almost perfect
energy conservation.
These results are not surprising but should be taken into

account when choosing to use the G-Ext guess, which, if
coupled to a 10−5 SCF convergence threshold, cannot
guarantee long-term energy conservation. The drift is overall
not too large and can be handled using a thermostat. Whether
or not the trade between performances and energy
conservation is acceptable for a production simulation is a
decision that ultimately lies with the user.
Increasing the accuracy of the SCF computation improves

the overall stability for G-Ext, which is already good at 10−6

and becomes virtually identical to the one offered by the
XLBO method at 10−7.

4. CONCLUSIONS
In this contribution, we presented an extrapolation scheme to
predict initial guesses of the density matrix for the SCF
iterations within BOMD. What makes our approach new is
that we enforce the idempotency of the density matrix by
extrapolating not the densities themselves but their map onto a
vector space, which is the tangent plane to the manifold of the
physically acceptable densities. Such a map is locally bijective
so that after performing the extrapolation, we can map the new
density back to the original manifold, providing thus an
idempotent density. The main element of novelty of the
algorithm is that by working on a tangent space, it allows one
to use any linear extrapolation technique, while, at the same
time, automatically ensuring the correct geometrical structure
of the density matrix. As such, the technique presented in this
paper can be seen as a simple case of a more general
framework. Such a framework allows one to recast the problem

of predicting a guess density by extrapolating information
available from previous MD steps as a mapping between two
vector spaces, that is, the space of molecular descriptors and
the tangent plane. This geometric approach can be seen as an
alternative to extrapolating quantities derived from the density,
such as the Fock or Kohn−Sham matrix, as proposed by Pulay
and Fogarasi4 and by Herbert and Head-Gordon.5 However,
the framework we developed, using molecular descriptors and
a general linear extrapolation technique, can in principle be
easily extended to such approaches.
That being said, our choices of both the molecular

descriptor and of the extrapolation strategies are far from
being unique. In recent years, molecular descriptors gained
attraction within the rise of machine-learning (ML)
techniques. Our choice, namely, using the Coulomb matrix,
is only one of the many possibilities, and while being simple
and effective, more advanced descriptors may be used and
possibly improve the overall performances of the method. We
also used a straightforward (stabilized) least-square interpola-
tion of the descriptors at the previous point to compute the
extrapolation coefficients for the densities. This strategy is,
again, simple yet effective. However, many other approaches
can be used. In particular, ML techniques may not only
provide a very accurate approximated map but also benefit of a
larger amount of information (i.e., use the densities computed
at a large number of previous steps), further improving the
accuracy of the guess. Improvements on the descriptors and
extrapolation strategies are not the only possible extensions of
the proposed method. A natural extension that is under active
investigation is the application to the G-Ext guess to geometry
optimization, for which the XLBO scheme cannot be used.
Overall, even the simple choices made in this contribution

produced an algorithm that exhibits promising performances.
In all our tests, the G-Ext method outperformed the well-
established XLBO technique, especially for tighter SCF
accuracies which may be relevant for post-SCF BOMD
computations, including computations on excited-state PES.
While we tested the method only for KS DFT, it can also be
used for HF or semiempirical calculations. The main
disadvantage of the proposed strategy with respect to the
XLBO method is, however, the lack of time reversibility, which
manifests itself as a lack of long-term energy conservation. In
particular, for longer MD simulations, the total energy may
exhibit a visible drift, which is something that the user must be
aware of. In our test, the observed drift was relatively small and
the use of a thermostat should be enough to avoid problems in
practical cases; however, this is a clear, and expected, limitation
of the proposed approach. We note that using a tighter SCF
convergence, which is also the case where the proposed
method shows its best performances and produces an energy
conserving trajectory, even starting from very noisy conditions.
A time-reversible generalization of the G-Ext method is
anyways particularly attractive and is at the moment under
active investigation.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00751.

Julia template of the G-Ext algorithm is available at
https://github.com/epolack/GExt.jl, figure representing
the total energy computation with an SCF convergence

Table 4. Short- and Long-Term Stability Analysis of the G-
Ext(3) and G-Ext(6) Methods, Compared to the XLBO
Algorithm with McWeeny Purification, for the 3HF Systema

conv. 10−5 conv. 10−6 conv. 10−7

method STF LTD STF LTD STF LTD

XLBO/MW 0.55 −0.04 0.55 −0.03 0.57 −0.03
G-Ext(3) 0.55 −0.42 0.57 −0.15 0.53 −0.04
G-Ext(6) 0.56 −0.53 0.52 −0.13 0.57 −0.04

aFor each method, we report the STF and the LTD and the average
number of SCF iterations, for three convergence thresholds of the
SCF algorithm.
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threshold of 10−6 for the molecule 3HF, and formulae
for the exponential and logarithm functions (PDF)
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