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Abstract

This is a review of the development of bumped-kinase inhibitors (BKIs) for the therapy of 

One Health parasitic apicomplexan diseases. Many apicomplexan infections are shared between 

humans and livestock, such as cryptosporidiosis and toxoplasmosis, as well as livestock only 

diseases such as neosporosis. We have demonstrated proof-of-concept for BKI therapy in 

livestock models of cryptosporidiosis (newborn calves infected with Cryptosporidium parvum), 

toxoplasmosis (pregnant sheep infected with Toxoplasma gondii), and neosporosis (pregnant sheep 

infected with Neospora caninum). We discuss the potential uses of BKIs for the treatment of 

diseases caused by apicomplexan parasites in animals and humans, and the improvements that 

need to be made to further develop BKIs.

Introduction

Apicomplexa afflict humans and livestock causing morbidity, mortality, and reproductive 

loss. This review discusses the apicomplexan parasites most likely to respond to a class of 

compounds called bumped-kinase inhibitors (BKIs), namely Cryptosporidium parvum, C. 
hominis, Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, Cystoisospora suis, 

and Besnoitia besnoiti.

Cryptosporidiosis annually afflicts millions of children, less than 2 years-old, with diarrhea 

in resource limited countries (Khalil et al., 2018). Cryptosporidiosis is responsible for 

about 25% of moderate-to-severe diarrhea (Kotloff et al., 2013). Cryptosporidiosis is 

associated with a more than 2-fold increased risk of death compared to children without 

Cryptosporidium with moderate-to-severe diarrhea; these children with moderate-to-severe 

diarrhea already have a more than 8-fold increased risk of dying compared to non-ill 

controls (Kotloff et al., 2013). Furthermore, cryptosporidiosis in children in resource-limited 

countries is highly associated with stunting, and stunting itself is associated with increased 

mortality and decreased neurodevelopment (Checkley et al., 1998; Checkley et al., 2015; 

Delahoy et al., 2018; Khalil et al., 2018; Korpe et al., 2018). Cryptosporidium is also 

a severe and sometimes fatal infection in immunocompromised patients, such as those 

with severe HIV or those immunosuppressed for transplantation (Silverlås et al., 2009; 

Trotz-Williams et al., 2011; White, 2020). For humans, only nitazoxanide is approved 

for cryptosporidiosis therapy. However, nitazoxanide is only minimally efficacious for 
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malnourished children and immunocompromised individuals, those who need therapy the 

most (Amadi et al., 2002; Amadi et al., 2009; Checkley et al., 2015). In animal health, 

cryptosporidiosis also takes a severe toll on newborn calves, and is associated with a 34 kg 

weight gain failure (Shaw, 2017; Shaw et al., 2020). For treatment of livestock, the only 

licensed product is halofuginone, which reduces the incidence of cryptosporidiosis about 

40% if given metaphylactically. However, halofuginone is not effective as a therapeutic once 

cryptosporidiosis diarrhea is established (Silverlås et al., 2009; Trotz-Williams et al., 2011).

Toxoplasma gondii infection in pregnancy is associated with fetal loss and fetal and 

newborn abnormalities in both humans and livestock, such as sheep, goats, and equids 

(Bigna et al., 2020; Dubey, 2009a, b; Dubey et al., 2020a; Dubey et al., 2020b; Rostami 

et al., 2019; Stelzer et al., 2019). T. gondii causes infections in the eye (retina) and 

brain, necessitating drugs that cross the placenta, brain, and eye barriers for penetration. 

In addition, acute toxoplasmosis can be caused by (partial) immunosuppression and 

reactivation of parasites from normally dormant tissue cyst stage bradyzoites. Available 

drugs in humans include pyrimethamine/sulfadiazine combination, clindamycin, spiramycin, 

and atovaquone. However, none of these drugs are very active and up to 40% of patients 

with moderate to severe toxoplasmosis have to stop therapy due to drug toxicity (Neville et 

al., 2015; Sanchez-Sanchez et al., 2018b).

Neospora caninum infection in cattle and sheep leads to repeated abortions and an estimated 

economic loss of 1.3 billion USD per year (Gonzalez-Warleta et al., 2018; Gonzalez­

Warleta et al., 2014; Reichel et al., 2013). Current experimental therapies for neosporosis 

include ponazuril, toltrazuril, decoquinate, and monensin, but none have been shown to be 

significantly effective in ruminant pregnancy models (Sanchez-Sanchez et al., 2018b).

Calcium-dependent protein kinase 1 and bumped-kinase inhibitors

Calcium-dependent protein kinase 1 (CDPK1) was first recognized to be important in 

Toxoplasma gondii gliding motility, exocytosis, and cell entry and exit (Kieschnick et 

al., 2001; Nagamune and Sibley, 2006). When the crystal structures of T. gondii and 

Cryptosporidium parvum CDPK1s were solved, it was discovered that the gatekeeper of 

this protein kinase was glycine (Murphy et al., 2010; Ojo et al., 2010; Wernimont et al., 

2010). This allowed selective targeting of these kinases with a class of molecules called 

“bumped-kinase inhibitors” or BKIs, that take advantage of a hydrophobic pocket that is 

opened up next to the gatekeeper when small sidechain gatekeepers, such as glycine, are 

present (Bishop et al., 1998; Bishop and Shokat, 1999) (Figure 1, left). BKIs provide 

increased potency by inhibiting CDPK1 through the hydrophobic “bump” that fills the 

pocket next to the glycine gatekeeper. But, more importantly, BKIs are excluded from 

almost all mammalian protein kinases in that they almost uniformly have gatekeeper side­

chain residues larger than the hydrogen of glycine (Figure 1, right). Apicomplexan parasites 

of human and veterinary public health importance, with a CDPK1 known to have a glycine 

gatekeeper and thus highly sensitive to inhibition by BKIs, include: C. parvum, C. hominis, 
T. gondii, Neospora caninum, Sarcocystis neurona, Besnoitia besnoiti, and Cystoisospora 
suis (Jimenez-Melendez et al., 2017; Murphy et al., 2010; Ojo et al., 2016; Ojo et al., 2010; 

Ojo et al., 2014; Shrestha et al., 2019).
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The most effective BKIs are made on two scaffolds, the pyrazolo[2,3-d]pyrimidine (PP) 

and the 5-aminopyrazole-4-carboxamide (AC) scaffolds (Figure 2) (Huang et al., 2017; 

Huang et al., 2015; Johnson et al., 2012; Murphy et al., 2010; Zhang et al., 2014). 

To date, we have made over 750 BKIs optimized for potency against T. gondii and C. 
parvum CDPK1 and anti-apicomplexan parasite activity. BKI safety parameters, including 

limiting mammalian protein kinase activity, pharmacokinetics (PK), including absorption, 

distribution, metabolism, and excretion properties (ADME), have been investigated.

BKIs for Cryptosporidiosis

Our lead for anti-cryptosporidiosis therapy is a PP compound, BKI-1369 (Figure 2). The 

characteristics of BKI-1369 are summarized in Table 1. It inhibits 50% of the C. parvum 
CDPK1 (CpCDPK1) recombinant enzyme phosphorylation activity (IC50) at 0.9 nM, but 

has no detectable inhibition at 10 μM of mammalian SRC protein kinase activity, which 

we use as a counterscreen for kinase specificity since SRC has one of the smallest 

mammalian gatekeepers, threonine (Hulverson et al., 2017b). BKI-1369 inhibits C. parvum 
nanoluciferase-expressing (Nluc)-UGA strain by 50% (EC50) at 2.4 μM, yet doesn’t inhibit 

mammalian cell line proliferation up to the limit of solubility, 80 μM (Hulverson et al., 

2017a). It does not demonstrate genotoxic properties in the modified AMES assay, has 

reasonable solubility properties at both pH 2 and pH 6.5, and demonstrates only moderate 

plasma protein binding in the four species of plasma tested (Arnold et al., 2017). One issue 

with BKI-1369 is that it blocks the human Ether-à-go-go-Related Gene (hERG) receptor at 

2 μM concentration, which is associated with human cardiotoxicity and this may preclude its 

development for human use. Additionally, BKI-1369 also actively inhibits other strains of C. 
parvum and C. hominis, the most common species of Cryptosporidium found in humans in 

the developing world (Table 2) (Hulverson et al., 2017a).

Testing of BKI-1369 in animal models of C. parvum and C. hominis demonstrated efficacy 

leading to profound reductions in parasite shedding, and in clinical models in reduction of 

diarrhea and better health outcomes. For instance, in the Nluc-C. parvum gamma-interferon 

knockout mouse model, 60 mg/kg and 30 mg/kg, administered once a day on days 6–10 

after infection, led to maximal clearing of infection, but even 5 mg/kg and 15 mg/kg were 

effective at reducing parasite excretion (Figure 3) (Hulverson et al., 2017a). In the newborn 

calf model of C. parvum infection, twelve two day-old calves were infected with 5 × 107 C. 
parvum Iowa strain oocysts (Cryptosporidium Production Lab, University of Arizona), and 

on day 2 P.I., randomized for treatment with BKI-1369 (5 mg/kg twice a day for 5 days) or 

vehicle control(Heine et al., 1984; Riggs and Schaefer, 2020). Calves that were treated with 

BKI-1369 had a 30-fold reduction in total oocyst excretion on days 3–10 P.I., and had almost 

immediate resolution of diarrhea, with a significant reduction of fecal volume on days 4–8 

P.I.. The treated group had a 4.5% weight gain whereas placebo treated animals had a slight 

weight loss by 10 days P.I. (Hulverson et al., 2017a) (Figure 4). In the gnotobiotic piglet 

model, eighteen piglets were infected with 106 C. hominis oocysts orally two days after 

birth, then randomized to treatment or vehicle only, twice a day for five days, and then 

followed for 10 days after therapy. In this C. hominis model, BKI-1369 administered at 

10 mg/kg twice a day was superior to vehicle control in total oocyst excretion (~10-fold 

reduction of oocysts in feces) (Figure 5). C. hominis DNA excreted in stool, and diarrhea 
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score were also significantly better in BKI-1369 group on days 1–3 post treatment (Lee et 

al., 2018).

For human cryptosporidiosis as mentioned above, avoiding hERG inhibition has led us to 

search for therapeutic alternatives. We have found active compounds on both the PP and AC 

scaffolds and these are under active investigation for the right balance of safety and efficacy 

parameters (Huang et al., 2017; Hulverson et al., 2019; Vidadala et al., 2016).

BKIs for Toxoplasmosis

The PK properties for BKIs that drive efficacy for cryptosporidiosis, where drug needs to 

be delivered to infected gut tissue, are very likely different than the PK properties of BKIs 

for systemic infections such as toxoplasmosis, where penetration of the blood brain barrier, 

placenta, and the eye are necessary for optimal therapy (Arnold et al., 2017). BKI-1369 does 

not reach very high plasma and CNS levels during efficacious therapy for cryptosporidiosis 

and high exposure in blood or brain is likely to decrease the safety unnecessarily for 

Cryptosporidium therapy. However, BKIs such as BKI-1294 and BKI-1553 have shown 

proof-of-concept in small and large animal models of systemic apicomplexan infections, 

such as toxoplasmosis (Figure 2).

BKI-1294 has a 3 nM IC50 when inhibiting T. gondii CDPK1 (TgCDPK1) and inhibits T. 
gondii proliferation in vitro at an EC50 of 0.137 μM. BKI-1294 was shown to primarily 

target TgCDPK1 by demonstration of an 11-fold resistance to BKI-1294 generated by 

expression of a mutant TgCDPK1 where the gatekeeper changed from glycine to methionine 

(Johnson et al., 2012). It shares many of the good safety aspects of BKI-1369, such as 

no measurable mammalian cell cytotoxicity and safety in pregnancy in mice and sheep 

(Johnson et al., 2012; Sánchez-Sánchez et al., 2019; Winzer et al., 2015). BKI-1294 was 

shown to be effective in reducing the intraperitoneal T. gondii RH strain by 93% at 30 

mg/kg given orally once a day for five days and more than 99% by 100 mg/kg dosed the 

same way (Doggett et al., 2014). In a mouse model of congenital toxoplasmosis based on 

oral infection of pregnant mice with 20 oocysts of the T. gondii ME49 strain, only 4 of 55 

(7%) of surviving pups treated with BKI-1294 at 50 mg/kg orally once a day for five days 

had detectable T. gondii in their brains, whereas 67 of 80 (84%) pups treated with placebo 

were T. gondii infected (Muller et al., 2017b). Thus, in two mouse models, including one 

involving transplacental and blood brain barrier passage, BKI-1294 appears to be efficacious 

and safe.

We have gone on to show that BKI-1294 is safe and effective in a sheep pregnancy model 

(Sánchez-Sánchez et al., 2019). In this model, pregnant sheep (Rasa Aragonesa breed) were 

infected with 1000 T. gondii sporulated oocysts of the TgShSp1 strain at 90 days gestation. 

Sheep were treated orally with 100 mg/kg BKI-1294 every other day for 5 treatments or 

with vehicle alone. An uninfected pregnant control group was treated with BKI-1294 as 

well. There was 100% fetal loss, in 8 out of 8 infected pregnant ewes by 9 days P.I., 

in the vehicle treated group. However, in the infected BKI-1294 treated pregnant ewes, 

fetal mortality was only detected in 2 of 7 ewes (71% reduction in fetal mortality) and 

upon examination of remaining lambs, there was a 53% reduction of T. gondii vertical 

transmission (Sánchez-Sánchez et al., 2019).
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Unfortunately, BKI-1294 also has an issue with inhibition of hERG at efficacious levels, and 

thus potential cardiotoxicity. We continue to actively search for a compound without this 

issue for toxoplasmosis therapy. However, the proof-of-concept experiment with BKI-1294 

to block congenital transmission in the sheep model demonstrates unprecedented protection 

of fetuses during acute toxoplasmosis infection, spurring us to find the ideal BKI for this 

indication for both human and animal therapy.

BKI-1553 (Figure 2, Compound 32 in the reference) has a 1 nM IC50 when inhibiting T. 
gondii CDPK1 (TgCDPK1) and inhibits T. gondii proliferation in vitro at an EC50 of 0.060 

μM and did not inhibit hERG up to 10 μM (Vidadala et al., 2016). BKI-1553 was very 

effective at greatly reducing T. gondii in acute mouse infection (Vidadala et al., 2014). In 

experiments where mice were infected for 5 weeks with ME49 strain T. gondii, to allow 

establishment of bradyzoites in brain, treatment with BKI-1553 for 2 weeks led to 89% 

reduction in brain bradyzoites (Vidadala et al., 2016). This demonstrates that BKI therapy 

can treat the latent form of toxoplasmosis.

BKIs for Neosporosis

BKI-1294 and BKI-1553 (Figure 2) are both active against N. caninum CDPK1 (3 nM and 

1 nM IC50s, respectively) and N. caninum growth in vitro (360 nM and 180 nM EC50s, 

respectively) (Müller et al., 2017; Ojo et al., 2014). In a non-pregnant mouse model of N. 
caninum infection, treatment with BKI-1294 was found to reduce the brain load of parasites 

by over 80%, whether 50 mg/kg daily treatment was applied for either 5 or 10 days after 

infection (Ojo et al., 2014). In a pregnant mouse model using infection with N. caninum 
Nc-Liv or Nc-Spain7 strains, 50 mg/kg × 5 days demonstrated an 87% reduction in brain 

infection with both strains; 100% of mice given vehicle alone had brain infection (Winzer 

et al., 2015). BKI-1553 was also used in a pregnant N. caninum Nc-Spain7 infection mouse 

model. BKI-1553 led to about 33% increased neonatal mortality at 20 mg/kg daily for 5 

days, probably representing an adverse effect of the high levels of BKI-1553 achieved, but 

surviving BKI-1553 treated fetuses had 44% reduced frequency of N. caninum in the brain 

compared to 100% infection of the control group (Müller et al., 2017).

Finally, BKI-1553 has demonstrated partial efficacy in a pregnant sheep model of N. 
caninum infection (Sánchez-Sánchez et al., 2018). In this model, pregnant ewes at day 90 

of gestation were infected intravenously with 106 N. caninum tachyzoites of the Nc-Spain7 

strain. They were treated at 48 hr. P.I. with either of two dose regimens (#1: 35 mg/kg 

injected subcutaneously (SQ) at the first dose and 10 mg/kg SQ on a subsequent dose 7 

days later; #2: 10 mg/kg administered every other day for 7 total doses). The BKI-1553 

dose regimen #1 resulted in a 37% reduction in fetal loss (vehicle control and N. caninum 
infection led to 100% fetal loss) while the BKI-1553 dose regimen #2 led to a 50% reduction 

in fetal loss. Parasite detection in fetal brain tissue decreased from 94% in the infected/

vehicle treated control group to about 70% in the two treated groups (Sánchez-Sánchez et 

al., 2018). Though this experiment demonstrated BKI-1553 was not optimal for treating N. 
caninum in sheep pregnancy, it did demonstrate that partial efficacy could be obtained. Thus, 

a BKI with better transplacental and brain penetration, and with better pregnancy safety 

characteristics might be expected to effectively treat N. caninum associated pregnancy loss.
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Discussion and Conclusion

BKIs show great promise as a one-health therapeutic for cryptosporidiosis, toxoplasmosis, 

and neosporosis, as reviewed above (Table 3). In addition to these indications, BKIs show 

great promise in the therapy of the livestock diseases sarcocystiosis or equine protozoal 

myeloencephalitis (EPM), cystoisosporosis or epidemic diarrhea in piglets, and besnoitiosis 

in livestock (Table 3). BKIs have low nanomolar activity against CDPK1 in the parasites 

that cause these diseases and have nanomolar activity against the parasites in cell culture 

(Jimenez-Melendez et al., 2017; Ojo et al., 2016; Shrestha et al., 2019). In a mouse model 

of sarcocystiosis, infection with Sarcocystis neurona was greatly reduced or eliminated with 

BKI treatment (Ojo et al., 2016). Two studies in the piglet model of cystoisosporosis, where 

diarrhea was induced with Cystoisospora suis, demonstrated efficacy in abrogating diarrhea 

and eliminating parasite shedding, and in the most recent study, only two doses of BKI-1369 

were required for efficacy (Shrestha et al., 2019; Shrestha et al., 2020). Further optimization 

of efficacy and safety is likely required for the systemic apicomplexan diseases, especially to 

provide transplacental and CNS coverage.

With respect to the human apicomplexan diseases, cryptosporidiosis and toxoplasmosis, 

further optimization is necessary to remove hERG activity, which is indicative of potential 

cardiotoxicity in humans. The BKI AC scaffold compounds tend to lack hERG activity and 

are highly efficacious against C. parvum and T. gondii (Figure 2) (Castellanos-Gonzalez 

et al., 2016; Huang et al., 2017; Huang et al., 2019; Huang et al., 2015; Hulverson et al., 

2019; Schaefer et al., 2016). In addition, transplacental, ocular, and CNS penetration, and 

balancing efficacy and safety are needed for successful therapy of human toxoplasmosis, 

and we are conducting new synthesis and testing of BKI AC compounds to find the correct 

balance of these properties.
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Figure 1: Bumped Kinase Inhibitors (BKIs) exploit the small gatekeeper structural differences to 
achieve both potency and specificity.
Shown at left is the binding site of T. gondii CDPK1 with a small glycine (Gly) gatekeeper 

residue, forming a large hydrophobic sub-pocket that allows the BKI to bind at the ATP­

binding pocket of CDPK1. On the right is the binding pocket of a typical mammalian 

kinase with a bulky gatekeeper residue, in this case methionine, demonstrating a clash takes 

place with the “bump” of BKIs, such that BKIs are excluded from the ATP binding pocket, 

granting BKIs specificity over almost all mammalian protein kinases.
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Figure 2: 
Pyrazolo-pyrimidine and aminopyrazole-carboxamide scaffolds, compounds described in 

this paper
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Figure 3: BKI-1369 is effective at reducing nanoluciferase-tagged C. parvum from gamma­
interferon knock out mice:
BKI-1369 was administered orally at the doses shown (mpk = milligrams per kg), on day 

6–10 post infection (P.I.) with 10,000 oocysts of Nluc-UGA1 C. parvum. The stool was 

isolated and relative luminescence units (RLU) are shown on the days P.I. Data from that 

published in (Hulverson et al., 2017a).
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Figure 4: C. parvum neonatal calf model demonstrates efficacy of BKI-1369 via reduction in 
total oocyst excretion, diminished fecal output, and favorable weight gain compared with control 
infected calves.
Two-day old calves were infected orally with 5×107 C. parvum (Iowa strain, 

Cryptosporidium Production Laboratory, Univ. AZ) and two days later begun on BKI-1369 

treatment or vehicle alone. Shown, left to right, are (1) the total number of oocysts excreted 

over the 5 days of treatment and 3 days after treatment in each group of control (vehicle 

alone treated on days 3–7 post infection (P.I.)) or treated (BKI-1369 5 mg/kg administered 

twice a day orally); (2) the total daily fecal volume excreted by the calves in each group; 

and, (3) weight gain or loss in each group over the 10-day observation period. Data replotted 

from (Hulverson et al., 2017a).
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Figure 5: Gnotobiotic piglet C. hominis infection shows a significant reduction in oocysts 
excreted during and after therapy with BKI-1369.
Shown are cumulative oocyst counts from daily rectal swabs taken on days 1–10 post­

initiation of BKI-1369 (‘C. hominis +1369’, 10 mg/kg administered orally twice a day for 

the first 5 days) or vehicle alone (‘C. hominis only’). Data replotted from (Lee et al., 2018).
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Table 1:

Properties of BKI-1369

Compound C. 
parvum 
CDPK1 
IC50 
(μM)

Human 
SRC 
IC50 
(μM)

NIuc-C. 
parvum 
EC50 
(μM)

Mammalian 
cytotox CC50 
(μM)

Cardiotox 
hERG IC50 
(μM)

MUTAGEN/
GENOTOX

Aqueous 
SOLUBILITY 
(μM)

% PLASMA 
PROTEIN 
BINDING

BKI-1369 0.0009 >10 2.5

>80

1.5 (−)

100
77 40

Human Dog

>80 54
40 76

Mouse Rat

IC50: Concentration in micromolar (μM) that gives 50% inhibition of enzyme activity; Human SRC: Proto-oncogene tyrosine-protein kinase SRC; 

CC50: concentration that yields 50% growth inhibition (cytotoxicity) of mammalian CRL-8155 or HEPG2 cell lines; hERG: human ether-a-go-go 

related gene, a potassium channel found in heart tissue; Modified AMES test is the AMES test that includes liver microsome metabolized 
compound; Aqueous endpoint solubility performed at 2 pHs shown; and plasma protein binding shows the bound percentage of compound when 
incubated with plasma from species shown. Adapted from data in (Hulverson et al., 2017a; Hulverson et al., 2017b)
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Table 2:

In vitro potency of BKI-1369 against various Cryptosporidium isolates

Cryptosporidium Isolate EC50 (μM)

Cryptosporidium Production Lab Iowa C. parvum1 0.8

Bunch Grass Farm C. parvum1 1.1

C. hominis 
1 0.3

1
Assayed using high-content imaging for Cryptosporidium proliferation: Melissa Love and Case McNamara, CALIBR/Scripps, La Jolla, CA, 

adapted from data in (Hulverson et al., 2017a)
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Table 3

BKI potential uses: Animal Health

Treatment of sick calves: cryptosporidiosis/scours
Moderate/severe crypto → sustained growth detriment, 34 kg average (Hannah Shaw, Moredun Univ) (Shaw, 2017)

• Proof-of-Concept (POC) calves, Michael Riggs (Univ. of AZ) (Hulverson et al., 2017b; Schaefer et al., 2016)

Cryptosporidium metaprophylaxis: prevent disease on contaminated farms
Get calves to milk/market earlier & establish immunity

• POC calves, Jennifer Zambriski (Virginia Tech) (Unpublished)

Therapy or prophylaxis of Neospora caninum: epidemic abortion in cattle
Eliminate need for culling

• POC pregnant mice, Andrew Hemphill (Univ. of Bern) (Muller et al., 2017a; Winzer et al., 2015)

• POC pregnant sheep, Luis Ortega-Mora (UCM) (Sanchez-Sanchez et al., 2018a; Sánchez-Sánchez et al., 2018)

Active low nM: Toxoplasma gondii: a frequent cause of sheep/goat abortions

• POC pregnant sheep, Luis Ortega-Mora (UCM) (Sánchez-Sánchez et al., 2019)

Prophylactic treatment of felines for T. gondii to prevent feline-derived T. gondii infection?

Active low nM on Sarcocystis neurona: Equine protozoal myeloencephalitis (EPM) in the Americas

• POC in mice, J.P. Dubey/Dan Howe (Univ of KY)(Ojo et al., 2016)

Active low nM: Cystoisospora suis: epidemic diarrhea in piglets

• POC in infected piglets, Anja Joachim (Vetmeduni, Vienna) (Shrestha et al., 2019; Shrestha et al., 2020)

Active low nM on Besnoiti besnoiti: cattle disease in Europe/Central Asia, skin and systemic damage

• POC in vitro, Gema Álvarez-García (UCM) (Jimenez-Melendez et al., 2017)
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