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Abstract

Studies of recombination and how it varies depend crucially on accurate recombination maps. 

We propose a new approach for constructing high-resolution maps of relative recombination 

rates based on the observation of ancestry switch points among admixed individuals. We show 

the utility of this approach using simulations and by applying it to SNP genotype data from a 

sample of 2,565 African Americans and 299 African Caribbeans and detecting several hundred 

thousand recombination events. Comparison of the inferred map with high-resolution maps from 

non-admixed populations provides evidence of fine-scale differentiation in recombination rates 

between populations. Overall, the admixed map is well predicted by the average proportion of 

admixture and the recombination rate estimates from the source populations. The exceptions to 

this are in areas surrounding known large chromosomal structural variants, specifically inversions. 

These results suggest that outside of structurally variable regions, admixture does not substantially 

disrupt the factors controlling recombination rates in humans.

The extent to which patterns of recombination vary across human populations remains 

uncertain. Increasing evidence has suggested a high concordance between populations in 

large-scale recombination rates and more variation between populations in small-scale 

recombination rates1-5. The lack of high-resolution genome-wide recombination maps for 

admixed individuals, such as African Americans, has limited the possibility of incorporating 

admixed populations in comparative analyses of recombination rates. The development 

of new genome-wide recombination maps is therefore an essential step for understanding 

recombination in admixed populations and enabling broader comparative analyses.

Generating new recombination maps has traditionally depended on observations of 

recombination events in pedigrees6. Large-scale applications of this approach have been 

limited to a few samples of European descent with unusually detailed genealogic data, 

such as samples from Iceland7,8, Mormons from Utah9 and Hutterites10. For example, a 

recombination map based on inferences from about 15,000 meioses in the Icelandic pedigree 

genotyped with nearly 300,000 SNPs achieved a resolution of recombination rate variation 

down to the 10-kb scale8. In contrast, for non-European and admixed populations, such as 

Wegmann et al. Page 2

Nat Genet. Author manuscript; available in PMC 2021 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



African Americans, the best available pedigree-based maps use many fewer meioses and 

~1,000 microsatellites or less11,12.

Assessment of linkage disequilibrium (LD), or the non-random association of alleles on 

chromosomes, in unrelated individuals provides a second, more indirect means for inferring 

recombination rates in a population. The advent of high-density, genome-wide SNP data 

has enabled LD-based maps to achieve a resolution of about 1 kb13,14 and has shown that 

recombination rates at such fine scales are dominated by recombination hotspots. Using LD

based maps in analyses of short target regions1-4 and genome-wide SNP data5, comparisons 

between populations have documented some variation in small-scale recombination rates but 

very little variation in large-scale recombination rates. LD-based maps, however, conflate 

the effective population size and recombination rates, which complicates the interpretation 

of inter-population variation in recombination6. This conflation of the effective population 

size and recombination rate is particularly problematic in regions where recent natural 

selection has reduced the effective population size6,15. In addition, care must be taken when 

applying LD-based approaches to recently admixed populations because these methods are 

based on population genetic models of populations at demographic equilibrium1,16.

To address the need for genome-wide recombination maps in admixed samples, we 

report here an ancestry-switch–based method for constructing high-resolution genome-wide 

recombination maps. We used this method to infer a recombination map from genotypes 

at >570,000 SNPs in 2,864 admixed African-American and African Caribbean individuals. 

Because of the levels of admixture in this sample, we observed approximately 90 ancestry 

switch points per individual, each of which indicates the location of a recombination event in 

the history of the sample; thus, our map is based on roughly 250,000 unique recombination 

events. With the inferred map, we investigated whether there is evidence for population 

differentiation in recombination rates and to what extent admixture has a global and local 

effect on recombination patterns.

RESULTS

Recently admixed individuals derive their ancestors from two or more diverged populations, 

and thus, their chromosomes are mosaics of segments with different origins (Fig. 1). 

Switch points in ancestry along a chromosome mark locations where a recombination 

event occurred between ancestral chromosomes of different origins. In principle, ancestry 

switch-point events will be a random sample of all recombination events, and by tallying the 

location of such events across a large number of individuals, we can infer relative rates of 

recombination across the genome.

Our approach for identifying the locations of ancestry switch points is based on a previously 

developed Hidden Markov model (HMM) for admixture that matches chromosomal 

segments of admixed individuals to reference haplotypes from the ancestral populations17. 

To account for uncertainty in the locations of ancestry switch points, we implemented an 

algorithm to compute the probability of an ancestry switch between two markers conditional 

on an individual’s genotype data, and we based our inferences on these probabilities (Online 

Methods). Moreover, to pool evidence for recombination across individuals, we developed 
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an empirical Bayes approach. Our method produced two estimators: (i) the individual-based 

estimator, cjk
(i), of the number of switches between positions j and k in individual i; and (ii) 

the sample-wide estimator, rjk, of the number of ancestry switch events in the history of the 

admixed sample between positions j and k.

Validation of the approach using simulations

To investigate the resolution of this ancestry-switch approach, we tested our methods using 

a series of simulations of a simple model of African-American admixture with identical 

sample sizes and marker density to those found in our study sample. An example of the 

inferred number of ancestry switches from a random simulated segment from one individual 

is shown in Figure 2a.

To assess specificity, we investigated 50,000 randomly chosen locations more than 1 Mb 

away from the nearest switch point (Fig. 2b, red line). For more than 95% of those 1-Mb 

windows, the value of cjk
(i) fell below 0.025, suggesting that the method produces little false 

evidence for ancestry switches where there are none. To assess sensitivity, we computed cjk
(i)

for symmetric intervals around isolated ancestry switch points (Fig. 2b, black line). If well 

calibrated, the method should find values of cjk
(i) equal to 1 for these intervals. For intervals of 

1 Mb around true switch points, we found the median cjk
(i) to be approximately 1, and when 

we investigated at what scale the median cjk
(i) = 0.85, we found it to be at roughly the 200-kb 

scale (Fig. 2b). These results suggest that our method resolves single switch points fairly 

well at the 200-kb scale and above.

For switch-points close to the ends of our simulated segments, we found a consistent bias 

downwards in the values of cjk
(i) (Supplementary Fig. 1). This bias was to be expected, as it is 

only through analysis of several consecutive markers that evidence for a switch point can be 

derived. We thus did not attempt to infer recombination rates within 5 Mb of chromosome 

ends or centromeres (Supplementary Note). Finally, as with other methods for inferring 

recombinations, we observed a ‘multiple hits’ problem, such that if more than one switch 

point occurred within a 1-Mb interval, cjk
(i) would typically be underestimated. For example, 

cjk
(i) often takes values close to zero when the actual value is two or takes values close to 

one when the actual value is three (Supplementary Fig. 2). This problem is not evident if 

two switch points are spaced more than 1 Mb apart (Supplementary Fig. 1), and thus should 

not be a major problem for analysis of African-American samples, as simulations indicate 

the fraction of switch points with spacing <1 Mb is small when admixture has been recent 

(Supplementary Fig. 2). Nonetheless, we developed a refined estimator of recombination, 

rjk, that corrects for the multiple hits problem and, more importantly, pools information 

across individuals in an empirical Bayes framework (Online Methods and Supplementary 

Fig. 3).

To assess how well the estimator rjk performs at inferring recombination, we estimated maps 

of relative recombination rates from our simulated datasets and compared them to the ‘true’ 
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maps we used to simulate the data. The correlation between the true and inferred rates was 

0.99 at a 1-Mb scale, 0.90 at the 100-kb scale, 0.86 at the 50-kb scale and 0.71 at the 

10-kb scale (Supplementary Fig. 3). Plots of the inferred versus true recombination rates 

(Fig. 2c) revealed that the map produces unbiased estimates of the rates at the 1-Mb and 

50-kb scales, whereas at the smaller 10-kb scale there is evidence of a downward bias in the 

map. Based on these results, we focused the presentation of our results on the 1-Mb–scale 

map to represent large-scale recombination patterns and on the 50-kb–scale map to represent 

finer scales. Visual inspection of randomly chosen examples at the 50-kb scale (such as that 

shown in Fig. 2a) shows that the inferred map captures most of the major recombinational 

features that are found in the simulated map.

One potential drawback of either approach we took is a possible overestimation of 

recombination if a large number of switch points across individuals descended from the 

same ancestral event (that is, if switch points are inherited in an identical-by-descent manner 

in the sample). Using simulations, we found that under reasonable assumptions about the 

population size of African Americans and African Caribbeans, it would be rare for a given 

ancestry switch to be observed twice in our study sample (Supplementary Fig. 4).

Application to an African-American and African-Caribbean sample

We applied our approach to a study sample consisting of 2,565 African-American and 

299 African-Caribbean individuals gathered from four studies (GeneSTAR18, GENOA19,20, 

GRAAD21-23 and SARP and CAG-CSGA24; Supplementary Table 1). This sample has 

a mean African-ancestry coefficient of ~0.81 with a 95% quantile range of 0.54–0.96 

(Supplementary Fig. 5), a broad range that is consistent with previous studies of African

American and African-Caribbean samples25-28. We used as reference panels for the ancestral 

populations the HapMap YRI and HapMap CEU panels. Although neither of these panels is 

an exact representation of the ancestral populations of the admixed individuals in the sample 

used here, previous studies17,25 and our own principal component analyses (Supplementary 

Fig. 6) suggest these two panels are reasonable proxies for the source populations.

We denote the map we generated as the ‘AfAdm’ map, and we compared this map to 

the recently published deCODE map based on Icelandic pedigrees as well as published 

LD-based maps for the HapMap CEU and YRI samples (labeled deCODE, HapMapYRI and 

HapMapCEU, respectively). When comparing the AfAdm map to the HapMap-based maps, 

there is the potential to overestimate the similarity between the maps because the HapMap 

samples served as the reference panels for our method. We investigated the potential 

magnitude of this effect through simulations and determined that by using a trimmed 

Pearson correlation coefficient, any possible bias as a result of shared data was minimized 

(Online Methods, Supplementary Note and Supplementary Fig. 7). Unless otherwise noted, 

all the correlations reported for scales <1 Mb are trimmed Pearson correlations.

At the 1-Mb scale, we found a strong visual concordance and correlations greater than 0.9 

among all the maps (Fig. 3a, Table 1 and see Supplementary Table 2 for additional scales). 

This degree of correlation suggests broad-scale similarity of the recombination maps across 

human populations, and that all three methods have the power to infer recombination maps 

well at this scale.
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At scales finer than 1 Mb, there was a more coarse correspondence between recombination 

maps (Fig. 3b, Table 1 and Supplementary Table 2). For example, at the 50-kb scale, the 

correlation of the AfAdm map with the HapMapCEU map is 0.611 and is 0.697 with the 

HapMapYRI map. The observed decay of correlation at smaller observation scales more 

likely reflects the impact of sampling error than drastic underlying recombination rate 

differences across samples. As evidence, we note the correlation between the deCODE and 

HapMapCEU maps is 0.789 at a 50-kb scale (Table 1) even though both maps are based on 

populations of northern European descent.

Investigation of what proportion of the genome contains the highest recombination rates 

provided further evidence for the general similarities between the maps. In the AfAdm 

map, we found that recombinations concentrate in a fraction of the sequence (recombination 

hotspots); for instance, at the 50-kb scale, 10% of the total recombinations accumulate in 

about 1.2% of the genomic sequence (Fig. 3c). This level of enrichment in the AfAdm 

map is similar to the level found in the HapMapCEU and the deCODE maps and is only 

slightly higher than in the HapMapYRI map (Fig. 3c). We note that because the inferred 

hottest fraction of the genome likely contains regions whose recombination rates have been 

overestimated by chance, the observed level of enrichment may be upwardly biased for each 

map in ways that depend on the sampling error specific to each map’s estimates.

Despite the general similarity of all maps, there is evidence of subtle increases in similarity 

between recombination maps from more closely related populations. For example, the 

deCODE pedigree map correlates more strongly with the HapMapCEU map than the 

HapMapYRI map, whereas the AfAdm map correlates more strongly with the HapMapYRI 

map (Fig. 4a,b). We also observed this pattern when investigating recombination hotspot 

sharing (Fig. 4c,d). The overlap between AfAdm and HapMapYRI hotspots is significantly 

higher than the AfAdm overlap with HapMapCEU hotspots (0.32 compared to 0.23, P = 2 

× 10−5 for hotspots defined as the 50-kb intervals with the top 1% largest rates). In contrast, 

deCODE hotspots overlap better with HapMapCEU hotspots (0.35 compared 0.32, P = 

0.0297 on the same scale as used in the previous comparison).

Further, the genome-wide European ancestry proportion of an individual in our sample is 

positively correlated with the fraction of switch points in that individual inferred to be in 

HapMapCEU hotspots (r = 0.102, P < 10−8) and negatively correlated with the fraction 

inferred to be in HapMapYRI hotspots (r = −0.122, P < 10−10). These results corroborate 

arguments that fine-scale recombination rate modifiers differ across populations and suggest 

that, because the ancestry in AfAdm individuals is predominantly African, our sample has 

recombination patterns that are more like the HapMapYRI population. Given these results, 

we attempted an admixture mapping approach to identify loci that would explain the usage 

of HapMapYRI as opposed to HapMapCEU hotspots. We did not identify any significant 

associations between hotspot usage and local ancestry (Supplementary Note), but this is 

likely due to a lack of power because of limited sample size and because of the limitation 

that the ancestry switches we observed took place across several generations on varied 

genotypic backgrounds.
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Using a regression-based approach, we estimated what proportional weight would lead 

to the observed AfAdm rates if the rates are a weighted average of HapMapYRI and 

HapMapCEU rates. We estimated proportional weights of 0.79 at 50-kb, 0.75 at 100-kb and 

0.68 at 1-Mb scales (Supplementary Fig. 8). For completely identical maps, the estimated 

proportional weight would be an equal weighting of each map, so the trending toward 

0.5 observed here may be caused by the global similarity of the maps at larger scales 

(Supplementary Fig. 8). We note that this regression-based approach may be biased toward 

the map with the smaller sampling error. Given that the two HapMap maps were inferred 

with the same approach from samples of similar size, we did not expect large differences 

in sampling error between the maps. The results thus suggest that the AfAdm map can 

be coarsely approximated as an 80%:20% weighted average of the HapMapYRI and 

HapMapCEU maps. This weighting would be expected from the average ancestry coefficient 

in the sample (~80%:20% African:European ancestry).

We next sought to identify intervals where the recombination rate differs from an 80%:20% 

average of the HapMapYRI and HapMapCEU maps. The region where the AfAdm map 

showed the strongest deficit in recombination when compared to the other maps lies at 

the centromeric end of a common inversion in 8p23.1 (at ~12 Mb on chromosome 8; 

Fig. 5a)29,30. The same segment has been found, using coarser-scale microsatellite-based 

maps11,12, to be the site of the largest map differences in the genome between Europeans 

and both Asians and African Americans. This inversion region is also characterized by 

several duplications and deletions29-31, which may contribute to the complexity of the 

region, and we note that all three methods (pedigree, LD-based and admixture-based 

methods) gave differing estimates of recombination rates at the telomeric end of the 

inversion (at ~8 Mb on chromosome 8). This is not the only region with structural variation 

that appears to differ among the maps. Indeed, four out of the top five regions where the 

AfAdm map showed strong deficits in recombination contained large inversions (Table 2). 

An example of this is the region just outside the centromere on chromosome 9 (Fig. 5b), 

which harbors both a small inversion32 and large copy number variations (CNVs)33. Large 

inversions do not, however, always affect rate estimates in the AfAdm map. For example, the 

17q21.31 region harbors a large 900-kb inversion with a 20% frequency in Europeans that is 

rarely found in African samples34, but the rate estimates in this region do not differ between 

the maps (Fig. 5c).

Among the regions with the greatest elevation in recombination rates relative to an 80%:20% 

average of the HapMapYRI and HapMapCEU maps, the pattern observed here is more 

ambiguous; only 11 of the 27 such regions that we investigated harbor structural variations 

(Table 2 and Supplementary Table 3). We found the most strikingly elevated recombination 

rates in the major histocompatibility complex region (Supplementary Fig. 9), which is 

known to have high levels of genetic diversity and population differentiation35. Using 

quartet families in a subset of the data, we found that this elevation in inferred ancestry 

switches is not concordant with family-based recombination rates (see the Discussion 

section, Supplementary Note and Supplementary Fig. 9). We also note two regions with 

large CNVs on chromosome 2 (Supplementary Fig. 10) and 14 (Fig. 5d), each consisting of 

two closely spaced peaks of elevated recombination rates flanking regions with an elevated 

level of European ancestry across individuals. In seven regions, the excess in recombination 
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is caused by a particularly low rate in the HapMapYRI map (Supplementary Table 3). A 

possible explanation for such regions is selection specific to the Yoruban population, which 

can bias LD-based estimates of recombination downwards6,15.

DISCUSSION

We have introduced a method for inferring recombination rates based on ancestry switch 

points. Simulations suggest that this method performs well for the sample size and SNP 

density of the data that we analyzed here. We obtained further support for the method 

by using it to infer a recombination map for African-American and African-Caribbean 

individuals (the AfAdm map); this map corresponds well to published maps from other 

populations while also permitting for the investigation of fine-scale recombination patterns 

in admixed populations. This ancestry-switch approach should be much less sensitive than 

LD-based methods to local distortions of LD caused by natural selection (for example, in 

selective sweep regions). In an ancestry-switch approach, such distortions would arise only 

when unusually strong selection has occurred in the typically brief period since admixture 

between ancestral populations. The approach also has an inherent efficiency in that the 

number of switch points observed per genotyped individual is relatively large. For example, 

in the African Americans and African Caribbeans sampled here, we observed roughly 90 

switch points (recombination events) per genotyped individual (Supplementary Note) as 

opposed to the ~30 such events that are expected from genotyping multiple individuals in a 

pedigree to observe an informative meiosis.

A disadvantage of the ancestry-switch approach is that, like LD-based methods, it does 

not readily allow one to infer absolute recombination rates or to identify recombination 

events unique to individual parents. Hence, it is not an optimal approach for investigation of 

variation in recombination between individuals or sexes. Additionally, with the SNP markers 

considered here, the ancestry-switch method resolves events within individuals less precisely 

(roughly a 200-kb scale) than does direct investigation of dense SNP markers in pedigrees. 

The resolution of the ancestry-switch approach will improve by using variants that differ in 

frequency between the populations ancestral to admixed groups (Supplementary Fig. 11), 

and large-scale sequencing efforts are expected to identify more of such loci36. With the 

current level of resolution, sampling error is clearly contributing to the observed differences 

and similarities between the maps we investigated. For example, we showed that the 

AfAdm map is more like the HapmapYRI map than the HapMapCEU map (Fig. 4), but 

we also found that the HapMapYRI map (and HapMapCEU map) correlated better with the 

deCODE map than the AfAdm map at the 1-Mb and 50-kb scales (Table 1). This pattern 

would be expected if recombination rates are fairly similar across populations and if the 

AfAdm map has a higher sampling error than the deCODE map, both of which are likely 

true. The AfAdm map is based on ~250,000 events resolved at a scale of roughly 200 kb 

each, whereas the deCODE map is based on ~600,000 events resolved to a scale of ~10 kb 

each. To circumvent this issue, we used comparisons of the HapMapYRI and HapMapCEU 

maps to the AfAdm map alone (Fig. 4a) and the deCODE map alone (Fig. 4b) to investigate 

population differences in recombination rates.
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By comparing the AfAdm map to existing maps, we were able to make several observations: 

(i) there is evidence for subtle population differences in recombination rates between 

African and European populations, (ii) African-European admixed individuals appear to 

have recombination rates that are, on average, intermediate between the African and 

European rates, and (iii) the degree to which the rates are intermediate is predictable from 

the average ancestry coefficient (~80% African and ~20% European) in our sample. Further, 

in admixed individuals, recombinations appear to be concentrated at hotspots in a manner 

correlated with ancestry: individuals with more African ancestry have recombinations at 

hotspots found in the HapMapYRI map, and individuals with more European ancestry 

have recombinations at hotspots found in the HapMapCEU map. These observations are 

consistent with the differentiation between populations for fine-scale recombination rates1-5 

and with the European-African differentiation at PRDM9, the only known major locus 

affecting fine-scale recombination rates37.

Because admixed individuals will often be heterozygous at recombination modifier loci 

for alleles from different ancestral populations, the mode of genetic action of modifier 

alleles that are differentiated between populations should mediate observed recombination 

patterns. For example, among known modifier loci, inversions suppress recombination in 

an underdominant fashion, and PRDM9 alleles may act additively37. It is still unknown 

whether hotspot motifs that interact with PRDM9 are recessive or dominant, although its 

clear there are epistatic interactions between hotspot motif loci and PRDM9 (refs. 37,38). In 

our analysis, the AfAdm map appears as one would expect if the recombination phenotype 

were determined predominantly by additive factors: the AfAdm map has rates that, on 

average, are intermediate between the HapMapCEU and HapMapYRI rates and which are 

biased toward HapMapYRI rates in a proportion consistent with the average proportion of 

African ancestry in our sample. We speculate that the approximately additive behavior of 

small-scale recombination rates observed here is largely caused by the influence of PRDM9 
acting additively37 on hotspot motifs that may themselves have largely additive effects.

Many of the departures from additive expectations that we found fell near other regions 

known to be exceptional in the genome for containing large structural variations. In 

particular, most regions that showed strong deficits in recombination contain inversions. 

This observation suggests the capacity of polymorphic structural variation to disrupt 

local recombination rates may be enhanced in admixed individuals, perhaps by elevated 

heterozygosity. A caveat to these results is that SNP genotypes in regions of structural 

variation are less reliable and may confound rates estimated by recombination inference 

methods. In addition, rates may be biased in regions with long-range LD and/or high levels 

of diversity because HMMs are overly simplified models of such regions39,40. We suspect 

rates in high-diversity regions will more likely be overestimates, as we confirmed in the 

major histocompatibility complex region (Supplementary Note and Supplementary Fig. 9).

For future applications, we note that the ancestry-switch method is extendible to three-way 

admixtures and thus can be applied to infer recombination maps in other settings, such as 

for admixed Latino individuals, who in some cases combine descent from Native-American, 

European and African ancestral populations. Admixture maps might be compared to LD

based maps to detect selective sweeps, much like how pedigree-based maps have recently 
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been used15. Finally, given that the power of the ancestry-switch method is improved by 

sampling additional admixed individuals and that the density of available SNP markers 

is increasing, we speculate that an ancestry-switch approach will become an increasingly 

powerful, scalable tool for fine-scaled recombination analysis.

ONLINE METHODS

Samples and genotyping.

We inferred relative recombination rates from African-descendant admixed samples 

(predominantly African Americans) gathered from four independent projects: GeneSTAR18, 

GENOA19,20, GRAAD21-23, and SARP and CAG-CSGA24. A detailed description of each 

sample is provided in the Supplementary Note. For the recombination rate inference, 

we excluded pedigree-related individuals and obtained a total of 2,864 unrelated African

American samples. GRAAD is unique in having 938 individuals sampled from the United 

States (from Baltimore, Maryland and Washington, DC), which we refer to as the GRAADi 

sample, and 299 individuals sampled from Barbados, which we refer to as the GRAADii 

sample. When we repeated this inference after excluding all GRAADii samples, the rate 

estimates were largely unchanged (the correlation between estimates without and without 

GRAADii samples were well above 99%, independent of scale; Supplementary Note and 

Supplementary Fig. 12).

The samples were typed on the Illumina Human1M-Duo (SARP and CAG-CSGA), 

Illumina Human 1Mv1C (GeneSTAR), Illumina Human650Y (GRAAD) and Affymetrix 

6.0 (GENOA) platforms. Because they differ in the set of available SNPs and there are 

concerns about merging data, we took several steps to make sure to conservatively merge 

the data, in particular attempting to avoid allele strand flip issues (Supplementary Note and 

Supplementary Fig. 13).

Reference panels.

In line with previous reports25, we found in exploratory principal component analysis 

plots that our admixed sample stratifies between the African (YRI) and European (CEU) 

populations from HapMap3 (Supplementary Fig. 6). In our analysis, we thus used 234 and 

230 phased haplotypes from the CEU and YRI samples, respectively, available from the 

HapMap project (Supplementary Note).

Simulations for validation.

We generated a total of 120 Mb of data, consisting of 6-Mb segments randomly chosen 

from each of the chromosomes 1 through 20. For each of those segments, we simulated a 

model widely used in the population genetic literature for African Americans (for example, 

see refs. 48-50): a diploid, randomly mating population of 20,000 individuals followed 

forward in time for seven non-overlapping generations, where the first generation was 

80% African and 20% European individuals. Recombination events were placed along 

the segments following a 50%:50% average of the HapMapCEU and HapMapYRI maps. 

Founder haplotypes were generated using MACS51 and assumed a demographic model 

previously proposed52, with recombination following the same map as used above. The 
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resulting SNPs were sub-sampled to match the corresponding SNP densities among our 

samples and the frequency spectra of the CEU and YRI HapMap samples. We also 

selected 230 and 234 phased haplotypes randomly from the African and European samples, 

respectively, to serve as reference panels. For investigating reference panel bias, we inferred 

recombination maps from the pattern of LD present in the reference panels using LDhat16. 

See the Supplementary Note for more information.

Inference of ancestry switch points and relative recombination rates.

Our initial approach was based on summing the posterior mean number of ancestry switch 

events across individuals. For an interval on the chromosome between SNP markers j 

and k, define cjk
(i) as a variable that takes on the values 0, 1 or 2 depending on whether 

there is an ancestry switch on neither, one or both chromosomes between markers j and 

k. Given genotype data for individual i (D(i)), a set of reference haplotypes from two 

source populations (H) and admixture parameters (θ, for example, time since admixture), 

the posterior mean of cjk
(i), (that is, E[cjk

(i) ∣ D(i), H, θ], which we denote cjk
(i)) can be 

computed under probabilistic models of admixture. Here we developed algorithms for 

computing cjk
(i) using the HMM-based models for admixture introduced in a previous study17 

(Supplementary Note). Our first estimator of a relative recombination rate between markers j 
and k then is:

cjk = ∑
i = 1

N
cjk
(i)

where N is the number of sampled individuals.

Although straightforward, this approach computes cjk
(i) based only on information on that 

single individual, and as in many statistical inference problems, power can be gained by 

pooling information across individuals. In addition, this approach does not account for 

‘multiple hits’. For example, if an even number of ancestry switch events takes place 

between markers j and k on both chromosomes, cjk
(i) will be 0, despite the unobserved 

ancestry switch events. By simulation, we found that both of these factors hinder this 

method from accurate inference in regions of high recombination.

To improve upon this method, we developed a post-processing step that reframes the 

inference in an empirical Bayes framework and corrects for the multiple hits problem. 

Define sjk
(i) as the number of switch events between markers j and k (which takes values 

in {0,1,2,3,…}). Because cjk
(i) is a highly informative summary statistic of an individual’s 

genotype data, we can perform inference on sjk
(i) based on cjk

(i) rather than the original data D. 

Specifically, we use Bayes Theorem to compute E[sjk
(i) ∣ cjk

(i)] as
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E(sjk
(i) ∣ cjk

(i)) =
∑d = 0

∞ d ⋅ p(cjk
(i) ∣ sjk

(i) = d) ⋅ p(sjk
(i) = d)

∑d = 0
∞ p(cjk

(i) ∣ sjk
(i) = d) ⋅ p(sjk

(i) = d)
. (1)

The likelihood p(cjk
(i) ∣ sjk

(i) = d) is difficult to obtain analytically, and so we approximated 

its value using simulations (Supplementary Note). Pooling of information across individuals 

enters by an empirical Bayes approach in which we set the prior p(sjk
(i) = d) according to an 

initial estimator based on the same data. In this case, we set p(sjk
(i) = d) ∝ cjk (Supplementary 

Note). The posterior expectation on the total number of switch points across all N 
individuals (Sjk) is then given by

rjk = E[Sjk ∣ cjk
(1), …, cjk

(N)] = ∑
i = 1

N
E[sjk

(i) ∣ cjk
(i)] . (2)

Although this approach does not detect recombination events between chromosomal 

segments of similar ancestry, the number of ancestry switch events is expected to be 

proportional to the recombination rate in the region, and so we use rjk as a relative rate 

estimator of recombination.

Simulations show our empirical Bayes method results in substantially improved estimates of 

relative recombination rates (Supplementary Fig. 3), and hence, we present results only for 

the empirical Bayes approach.

The computations giving rise to the inferred rjk require assumptions about several 

parameters of the HMM, such as the time since admixture and the population miscopying 

rate (Supplementary Note). The results shown are for a set of parameters previously 

suggested17 for African-American samples (Supplementary Table 4). We also investigated 

whether alternative parameters would result in improved performance, but found that 

the suggested parameters worked as well as or better than reasonable alternatives 

(Supplementary Note and Supplementary Fig. 14).

Accommodating disparate marker intervals and construction of recombination maps.

In the above presentation, we ignored that not all individuals have markers genotyped on the 

same intervals. To address this, if we are estimating recombination in an interval between 

markers at physical coordinates e and f, we take the convention of replacing cjk
(i) with

cef
(i) = ∑

j = 1

L − 1
αef, j ⋅ cj(j + 1)

(i) , (3)

where the sum runs over all L markers typed in individual i, and αef,j is the proportional 

overlap between the interval [e, f] and the interval defined by markers j and j + 1 (that is, 

αef,j ∈ [0, 1]). This adjustment to cjk
(i) is a form of linear interpolation.
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We generated maps with constant interval sizes of 10 kb, 15 kb, 20 kb, 33 kb, 50 kb, 75 

kb, 100 kb, 150 kb, 200 kb, 250 kb, 333 kb, 500 kb, 750 kb, 1 Mb and 3 Mb. Whereas 

we used non-overlapping intervals to compute all reported metrics (such as correlations), we 

used maps where the midpoints of the intervals were always shifted by 5% of the interval 

size to find intervals with largest differences between maps and for plotting. In addition, for 

plotting, we scaled the map so that the total length of our map corresponded to a rate of 

1.04 cM/Mb (in line with the total length of the sex-averaged map from ref. 8). The inferred 

recombination maps are available on the Novembre group webpage (see URLs).

Comparison to existing recombination maps.

We compared the recombination map inferred from the African-American and African

Caribbean dataset to four existing, fine-scaled recombination maps. The HapMapCEU 

and HapMapYRI maps, two widely used maps based on patterns of LD in HapMap 

populations, were obtained from the IMPUTE website53 (see URLs). We also downloaded 

the pedigree-based deCODE map8 (see URLs). For all these maps, we recomputed maps of 

various interval sizes matching those maps generated from our African-American samples 

by interpolation. Further, we discarded the first 5 Mb on each telomeric end of every 

chromosome and all centromeric locations (Supplementary Note). Intervals overlapping 

unsequenced regions of the human reference genome were discarded following previous 

studies8. Note that the intervals of our non-overlapping 10-kb map precisely match those 

of the deCODE map. Correlation figures between maps are based on Pearson’s correlation 

coefficients. To avoid bias when comparing published maps at scales below 1 Mb, we 

trimmed the 20% intervals with lowest estimated rates because we found the estimation 

errors of the LD maps and the switch-point–based map to be correlated at small scales 

(Supplementary Note and Supplementary Fig. 7).

Analsyis of AfAdm maps as a weighted average of the HapmapYRI and HapMapCEU maps.

Let A, Y and C represent the AfAdm, HapMapYRI and HapMapCEU rates within an 

interval. We fit a model in which A is a convex linear combination of the Y and C maps: A = 

aY + (1 − a)C. To estimate a, note that we can subtract C from both sides to obtain (A − C) 

= a(Y − C) and, hence, use a linear regression of (A − C) on (Y − C) to estimate a. For the 

regression approach to compare the AfAdm map with the HapMapCEU and HapMapYRI 

maps, we computed robust regressions with the rlm function in the MASS package in R.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sketch of the haplotype-copying Hidden Markov model used to detect ancestry switch 

points. (a) Yellow and blue represent the chromosomal segments of different ancestry and 

the shades of each color represent different haplotypes from each ancestry. Recombination 

creates a mosaic of haplotypes regardless of origin but recombination events between 

haplotypes of different ancestries leave signatures that can be detected in descendant, 

admixed individuals. (b) The genotypes observed for such an individual form observed 

states of a Hidden Markov model in which underlying states are based on which haplotypes 

from a reference population each allele of the genotype is copied.
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Figure 2. 

Sensitivity and specificity of inference. (a) Estimated number of switches (cjk
(i)) between 

neighboring SNPs obtained for a simulated individual with two ancestry switches (vertical 

dashed lines). Below, the comparison at the 50-kb scale of the estimated rates (rjk) and 

the underlying recombination map used to perform the simulations for this segment. Both 

maps are normalized to the same total rate. (b) The inferred number of switch points (cjk
(i)) 

as function of the size of the interval between locations j and k. The black line represents 

the median for symmetric intervals around a single, isolated switch point. The red line 

represents the median for intervals with zero simulated switch points and which are located 

at least 1 Mb away from the closest switch point. Dashed lines mark the 2.5% and 97.5% 

quantiles. (c) Comparison of the inferred rates (rjk) with the true rates across all segments 

at 10-kb (blue), 50-kb (orange) and 1-Mb (red) scales. The 2.5% and 97.5% quantiles 

are shown with dashed lines. All maps have been normalized to the same total rate for 

comparison.
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Figure 3. 
Comparison of the African admixture-based map to existing maps. (a) Example of 1-Mb–

scale map from 50 Mb of chromosome 1. (b) Example of 50-kb–scale map from the 

2.5-Mb section of chromosome 1 indicated by the gray box in a. (c) Proportion of the total 

recombination in various proportions of sequence intervals at the 50-kb scale.
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Figure 4. 
Population differences in recombination patterns. (a–d) Independent of scale, the AfAdm 

map correlates better (a) and shares more hotspots (c) with the HapMapYRI than the 

HapMapCEU map. In contrast, the deCODE map correlates better (b) and shares more 

hotspots (d) with the HapMapCEU than the HapMapYRI map. Hotspots are defined as the 

50-kb intervals with the top 1% largest rates.
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Figure 5. 
Recombination rates in notable genomic locations. (a) The region with the largest deficit of 

the AfAdm map just outside the known inversion on chromosome 8p23.1–8p22 (gray). (b) 

The region with a large deficit of the AfAdm map on chromosome 9 near the boundary of 

multiple known polymorphic inversions. (c) The inversion on chromosome 17q21.31 (gray). 

(d) A region on chromosome 14 with an elevated average European-ancestry proportion 

(gray) framed by local peaks of recombination.
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Table 1

Correlations between recombination maps

HapMap
CEU

HapMap
YRI

HapMap
80%:20% deCODE AfAdm

HapMap CEU 1.000 0.922 0.951 0.939 0.900

HapMap YRI 0.738 1.000 0.997 0.934 0.922

HapMap 80%:20% 0.844 0.985 1.000 0.948 0.929

Decode 0.789 0.734 0.788 1.000 0.924

AfAdm 0.611 0.697 0.712 0.666 1.000

We report Pearson correlations at the 1-Mb (above diagonal) and 50-kb (below diagonal) scales. See Supplementary Table 2 for additional scales.
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Table 2

Regions for which the AfAdm map differs most from a 80%:20% average of the HapMapYRI and 

HapMapCEU maps. Regions where the AfAdm map has lower rate estimates are shown at top, followed 

by regions where the AfAdm map has higher rates.

Chr. Position
a

Difference
b Structural variations

8 11.4–13.3 −1.93 4.7-Mb inversion29,30

9 37.6–39.5 −1.04 36-kb inversion32/8-Mb CNV33

10 124.9–126.8 −1.00

16 21.7–23.5 −0.89 1.1-Mb inversion39

7 5.1–6.4 −0.87 1-Mb inversion39,41

22 24.5–26.9  1.42 500-kb CNV33,42,43

8 133.8–135.6  1.30

16 81.1–83.0  1.23 1-kb inversion41

22 34.8–36.5  1.23

14 45.9–47.6  1.20 1-Mb CNV42

8 7.2–9.1  1.10 4.7-Mb inversion29,30

18 22.1–23.7  1.04

3 51.4–54.3  1.03 45-kb inversion32,44

14 93.3–95.1  1.03 1-kb inversion45

14 43.2–44.9  1.03 1-Mb CNV46

2 59.8–63.3  1.03 2.9-Mb CNV33

15 67.6–68.9  0.99

5 30.6–32.2  0.99

14 50.9–52.1  0.97

16 64.0–65.4  0.97

6 16.1–18.4  0.96

10 72.5–74.0  0.94 36-kb inversion32/1.2-Mb CNV47

9 6.8–8.1  0.91

8 23.1–24.4  0.88 2.5-Mb CNV33

7 102.7–104.1  0.84

To identify the regions, we identified the top 1% of the intervals with the greatest difference between the AfAdm map and the HapMapYRI and 
HapMapCEU maps computed on 1-Mb intervals spaced every 50 kb. We joined intervals whose endpoints were not more than 1-Mb apart from 
each other, and we examined and present here only regions supported by at least five intervals. We omitted seven regions where visual inspection 
revealed that the difference was not caused by the AfAdm rate but rather by the HapMapYRi rate (Supplementary Table 3). The reported structural 
variations were observed in surveys of structural variations in random samples of European or African individuals and were not further than 1-Mb 
away from the focus regions. in addition, CNVs had to be at least 500 kb in length to be included, and we only report here the largest CNV in the 
region. The intervals before collapsing the data are shown in Supplementary Figure 10.

a
Position in Mb.

b
Largest difference per region, given in cM. Negative values imply lower rates in the AfAdm map. Chr., chromosome; CNV, copy number 

variation.

Nat Genet. Author manuscript; available in PMC 2021 November 11.


	Abstract
	RESULTS
	Validation of the approach using simulations
	Application to an African-American and African-Caribbean sample

	DISCUSSION
	ONLINE METHODS
	Samples and genotyping.
	Reference panels.
	Simulations for validation.
	Inference of ancestry switch points and relative recombination rates.
	Accommodating disparate marker intervals and construction of recombination maps.
	Comparison to existing recombination maps.
	Analsyis of AfAdm maps as a weighted average of the HapmapYRI and HapMapCEU maps.

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2

