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Simple Summary: The role of non-coding RNA, and particularly of circular RNA, in the DNA
damage response and repair network is underappreciated. Given the vital role of this network in
preserving the genomic integrity and consequently cellular homeostasis, the constantly increasing
numbers of discovered circular RNAs and the increasing implication of these molecules in the
function of this network unravel a new important field that may open new therapeutic opportunities,
but also require detailed investigation.

Abstract: Circular RNAs (circRNA) comprise a distinct class of non-coding RNAs that are abun-
dantly expressed in the cell. CircRNAs have the capacity to regulate gene expression by interacting
with regulatory proteins and/or other classes of RNAs. While a vast number of circRNAs have
been discovered, the majority still remains poorly characterized. Particularly, there is no detailed
information on the identity and functional role of circRNAs that are transcribed from genes encoding
components of the DNA damage response and repair (DDRR) network. In this article, we not only
review the available published information on DDRR-related circRNAs, but also conduct a bioinfor-
matic analysis on data obtained from public repositories to uncover deposited, yet uncharacterized
circRNAs derived from components of the DDRR network. Finally, we interrogate for potential
targets that are regulated by this class of molecules and look into potential functional implications.

Keywords: circRNA; double-strand breaks (DSB); DNA damage response and repair (DDRR);
tumorigenesis

1. Introduction

Chromosomal rearrangements following incorrect repair of DNA double-strand
breaks (DSB) constitute one of the primary causes of tumorigenesis, setting the grounds
for genomic instability [1]. Several factors can lead to DNA damage, including ionizing
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and UV radiation, oncogene activation, exposure to chemical carcinogens and viral infec-
tions [1,2]. DSB formation is more frequently observed in the proximity of DNA:RNA
hybrids known as R-loops [3,4]. R-loops can form in the process of transcription or during
the interaction of DNA with regulatory RNAs resulting in DNA double strand separation,
which renders DNA more vulnerable to genotoxic stress [5,6]. To safeguard the integrity of
the genome, cells have developed DNA damage response and repair (DDRR) pathways,
whose role is to respond to genotoxic insults [1,2]. DDRR circuits comprise the subject of
intense ongoing research, as alteration of their function results in accumulation of genomic
instability leading to oncogenic transformation [1,2].

An increasing body of evidence has demonstrated that several types of RNA species
hold critical roles in various nuclear processes, such as DNA replication and repair, chro-
mosome structure regulation, telomere elongation and chromatin organization [4,7-9]. A
large number of eukaryotic protein-coding genes have been found capable of generating
exonic circular RNAs (circRNAs), which may exist at higher levels than their respective linear
mRNAs [10], as the circRNAs have an increased life due to resistance to RNA degradation via
exonucleases and can thus accumulate to levels that can even exceed the life of their cognate
linear mRNAs [11]. CircRNAs are generally classified as non-coding RNAs (ncRNAs), which
unlike linear RNA, are covalently closed RNA loops acting as mammalian gene regulators
(Figure 1) [12,13]. Nevertheless, recent data have challenged this view by demonstrating that
certain circRNAs can support translation to produce functional peptides [14]. Although circR-
NAs were originally regarded as splicing errors of low abundance, they have been recently
shown to be highly abundant and evolutionarily conserved in eukaryotes, where they are
expressed in a tissue-specific fashion [12,13,15,16]. CircRNAs are produced by exons or lariat
introns by a process called back-splicing, whereby the 3’ and 5’ ends normally encountered
in an RNA molecule are covalently joined together in a circular structure (Figure 1) [12,13].
Through their cis and trans functions, circRNAs have been found to regulate important onco-
genes and tumor suppressors, including major players of the DDRR network [10]. Several
methodologies have been reported for the identification of circRNAs, demonstrating that their
aberrant expression pertains to a variety of pathological conditions, including cancer [10].

Herein, we focus on the various mechanisms through which circRNAs regulate the
function of important genes of the DDRR network, thus exerting a direct impact on genomic
stability and cancer progression. Moreover, we conducted a bioinformatic analysis to reveal
potential circRNA isoforms that derive from the linear RNAs of key components of the
DDRR network and explore their possible role in cell fate regulation.

2. Biogenesis, Function and Role of circRNAs in Cancer

CircRNAs, together with microRNAs (miRNAs) and other ncRNAs, comprise about
95% of total RNA in eukaryotes, and an emerging body of evidence suggests their active
involvement in gene regulation [12]. CircRNAs derive from the back-splicing of exons, in-
trons or both, leading to their classification as exonic, intronic and exonic-intronic circRNAs,
respectively (Figure 1) [15]. CircRNA transcripts were first discovered over three decades
ago, but their role was undermined as they were originally thought to represent RNA
splicing errors [12]. The identification of circRNAs in cancerous and non-cancerous cell
line models and Acute Lymphoblastic Leukemia (ALL) patients [17] led to an increasing
interest in circRNA biology. Recent research in the circRNA field has, thus, resulted in the
discovery of a large number of circRNAs which are considerably more stable and abundant
than their linear counterparts in mammalian cells [18].

Exonic circRNAs may be generated from single or multiple exons, and are the product
of pre-mRNA splicing, where a 3’ splice donor is attached to a 5’ splice acceptor yielding a
circular structure (Figure 1) [15,18]. In cases where the intron between exons is maintained,
the derivative structure is referred to as exonic-intronic circRNA, while intronic circRNAs
are generated from intron lariats which have not been degraded by de-branching enzymes
(Figure 1A) [12,19]. In metazoans, it has been found that the process of back-splicing is likely
carried out by the spliceosome [13,20-23]. Inhibition of the spliceosome via the pre-mRNA
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splicing inhibitor isoginkgetin decreases circRNA levels, indicating that the spliceosome may
indeed hold an important role in circRNA generation [22]. As circRNA levels do not always
correlate with the levels of the respective linear transcripts, it has been inferred that circRNA
expression is under strict control, while the spliceosome is able to discriminate between
canonical linear splicing and back-splicing [24]. Particularly, the frequency of back-splicing
events compared to canonical splicing has been reported to be low and less efficient [25].
Moreover, it has been shown that approximately only 20% of the protein coding genes in the
brain produce circRNAs [25]. Nevertheless, it has been demonstrated that several hundreds of
circRNAs in the brain are expressed more than their canonical linear isoform [26]. In addition,
different regions of the brain were shown to have different types of circRNAs increased.

A. CircRNA generation
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Figure 1. Mechanisms that lead to back-splicing events and circRNA functions. (A). (1) The first
mechanism involves RN A-binding proteins (RBPs); binding to the flanking intron creates a closed
loop that brings the complementary splice donor and acceptor sites close. As a result, an exoniccir-
cRNA is generated. (Ex: exon) (2) The second form of back-splicing has to do with complementary
introns within ALU repeats that bring the exons closer, resulting in the formation of either exonic
circRNAs initiated by the 3’ end exon splice donor site joined to the 5 end of an upstream exon or
the 3/ end exon splice donor site joined to the 5’ end of an upstream exon with a retained intron. The
latter can also be formed via the binding of RBPs at the flaking intron position between exon 2 and
3. Consequently, exonic circRNAs or exonic-intronic circRNAs are generated. (3) The third type of
back-splicing results only from intron pairing, where splicing is prompted by reverse complementary
sequences within ALU repeats (located in the upstream and downstream introns). This process
results in intronic circRNA production. Inset: The circular RNA formation can be degraded via
ADART1, whose binding at double stranded regions, such in the case of base-pairing introns within
ALU repeats, can break-down the circular formation [27]. (B). CircRNAs function as: (1) sponges that
bind proteins or other nucleic acids, (2) can be translated, and (3) are secreted via exosomes.
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Of note, highly expressed circRNAs have been shown to be produced from exons,
particularly from those located closer to the transcription start of the host gene [26]. More-
over, as demonstrated, the introns flanking conserved circRNAs often contain reverse
complementary matches (RCMs), and in the brain, these introns are often more than 10 kb
in length. Quite interestingly, introns in the 5'UTRs are, on average, longer than introns in
the CDSs and 3'UTRs [28], which could reflect that more RCMs or regulatory sequence do-
mains recruit different spliceosomal machinery leading to the production of back-splicing
events. Furthermore, circRNAs are resistant to exonuclease digestion, which results in an
RNA half-life of ~18 h-27 h [11], which makes them by far a very stable RNA molecule as
the average half-life of an RNA is ~4 h-7 h.

A recent body of evidence has suggested that circRNAs may be implicated in the
initiation and progression of tumorigenesis [29,30]. Over 27,000 circRNAs were recently
collectively identified in non-cancerous and cancerous human tissues [31]. Importantly,
circRNAs have been found to be downregulated in some tumor lesions in comparison
to healthy tissue, which has been attributed to the presence of back-splice machinery
errors in tumor lesions, miRNA-mediated degradation of circRNAs and reduction due
to accelerated cellular proliferation in tumor cells [12,32]. In support of that, it has been
shown that circRNAs are more likely downregulated in colorectal cancer cell lines carrying
mutant KRAS, in comparison to wild-type counterparts [33].

The role of circRNAs in cancer has been the object of recent research efforts showing a
relationship between circRNAs produced by established oncogenes and oncogenic outcome.
For example, cir-ITCH, which functions as an miRINA sponge to increase ITCH expression
levels, is found downregulated in colorectal cancer tissues compared to control [34]. This is
in line with an identified role for ITCH as an inhibitor of the Wnt signaling pathway which
holds a prominent role in colorectal cancer development and progression [34]. Along the
same lines, circ-BMI1 was also recently found deregulated in esophageal cancer [35]. BMI1
is an important Notch signaling target, involved in neuroprotection [36,37]. Circ-BMI1
induction resulted in reduced proliferation and migration of tumor cells, implying its
potential implementation in esophageal cancer diagnosis and treatment [35]. Moreover,
treatment of LNCaP prostate cancer cells with the proliferation inhibitor dinaciclib resulted
in a marked increase of circRNA levels regardless of changes in the expression of parent
genes, corroborating the notion that circRNAs may be reduced by cell division [10,38].

Interestingly, it has been suggested that circRNAs may control the biological activity
of a network of competing endogenous RNAs (ceRNAs) [39]. According to the ceRNA
hypothesis, a variety of RNA species regulate genomic expression post-transcriptionally,
implying that mRNAs, pseudogene transcripts, IncRNAs and circRNAs may affect the
half-life or translation of target RNAs via competition for binding to the same miRNA [39].
It has been shown that circRNAs act as ceRNAs to regulate GDNF family receptor alpha-1
(GFRA1) expression via modulating miR-34a levels, thus exerting anti-apoptotic functions
in triple-negative breast cancer [40]. An emerging body of evidence suggests that circRNAs
may act as ceRNAs to regulate important biological properties related to tumorigenesis,
such as proliferation, angiogenesis and apoptosis [39].

It is, thus, becoming clear that circRNAs are associated with cancer patient clinical
outcomes, by exerting important functions in cancer cells [41-43]. CircRNAs may also have
opposite roles from their linear counterparts, as is the case with a circRNA encoded by the
mouse and human Zbtb7a gene which has a proto-oncogenic role in mesenchymal tumors,
while the respective linear RNA acts as a tumor suppressor [44]. Other circRNAs, such as
the one derived from the mouse or human Foxo3 gene, induce apoptosis, thereby restricting
tumor growth [45,46]. Additionally, as circRNAs have been identified in exosomes and
body fluids, they hold great promise as novel disease biomarkers [43,47,48].

3. Capturing circRNA-Protein and -miRNA Interactions

To enrich for circRNAs, ribonucleases can be used to remove rRNA, tRNA, poly(A)+
RNAs, and then preserve the circular forms with RNAse R treatment, which will degrade
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only the linear RNAs. To identify a putative site for RBP binding, RPA assays can be used
using RNAse-H, which will digest the unprotected unbound-RNA site [49]. To investigate
putative circRNA-interactions, DNA oligo probes conjugated with streptavidin-coated
magnetic beads can also be used to capture and pull-down the circRNA and the proteins
bound as demonstrated in [45]. Another strategy that can be employed is the use of glycerol
gradient centrifugation to capture circRNA-protein complexes of distinct sizes which can
be followed by RT-PCR to determine abundant circRNAs [50]. Fluorescently labeled
antibodies can be used to target and isolate protein-circRNA complexes. Furthermore,
RNA pull-down assays with luciferase reporters can be used [51], to investigate potential
RNA-RNA interactions between circRNA, miRNA and mRNAs.

Experimental evidence of translation has been previously shown [52], where Circ-
ZNF609 was found to be associated with heavy polysomes, in a cap-independent manner.
Subsequently, the authors generated an expression vector that was able to produce circular
transcripts [53]. A construct containing a 3xFLAG coding sequence upsteam of a stop
codon was produced only upon formation of a circular RNA, which led the authors
to demonstrate that circ-ZNF609 can be translated. In another report [54], the authors
demonstrated that the m®A-driven translation of circRNAs along with IRES elements is
widespread. To achieve this, a minigene reporter containing split GFP and a viral IRES that
could be efficiently translated was generated.

4. Towards a Unified Nomenclature for Circular RNAs

As new biochemical /NGS protocols are emerging together with novel bioinformatic
approaches, more evidence will be provided towards the distinction and classification of
circRNAs, thus posing the need for a standard nomenclature, as circRNAs become essential
biomarkers of disease. The current nomenclature derives from circBase, which includes
the species and a numeric code, while circBank and circAtlas use the gene symbol of the
transcript that results in the generation of a circRNA annotation based on the genomic
coordinates from UCSC (https://genome.ucsc.edu/, accessed on 8 September 2021). CIR-
Cpedia uses a different nomenclature which includes the species and a number derived
internally as an identifier for circBase. Furthermore, as previously demonstrated [55], there
has been a recent effort to provide a unique nomenclature, likewise with miRNAs, such
that the species are represented by the first letters, followed by the gene name and the
exons involving the circularization: eg hsa-circ-gene_name-(exons7-8).

5. DNA Damage Response and Repair (DDRR) Pathways

Genomic integrity is crucial not only for cellular growth, but also for transmission of
intact genetic information to daughter cells upon cellular division [56]. However, there
are various types of internal and external genotoxic insults which challenge the integrity
of the genome, leading to the activation of compensatory signaling pathways in order to
rectify DNA damage and restrict genomic instability [1,2]. DNA damage sensors constitute
the first DDRR pathway components to identify DNA damage sites and subsequently
activate signal transduction routes depending on the type of damage, by directly recruiting
DDRR proteins at those sites [56,57]. DNA damage sensors frequently coexist with signal
transduction molecules; therefore, their distinction is often difficult [56].

Two main types of genetic aberrations are encountered in the genome: changes at the
nucleotide level and single/double strand breaks (SSBs/DSBs) [1,58]. DSB formation is the
most deleterious type of damage as DSBs become lethal upon insufficient repair, whereas,
if they are incorrectly repaired, they constitute a source of genomic instability setting the
grounds for disease, including tumorigenesis [1,58]. Among the consequences of defective
DSB repair is the occurrence of genomic rearrangements, with a considerable impact on
the genome integrity, often culminating in oncogene activation [1,58,59].

Upon DSB formation, two primary repair pathways are triggered, the Non-Homologous
End Joining (NHE]) and the Homologous Recombination (HR) pathway [1,60,61]. One of
the most important DNA damage sensors in the DDRR process is H2AX, a variant of the
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H2A histone, which upon DSB formation is phosphorylated and forms yH2AX loci [62].
The NHE] pathway is activated through the Ku70/Ku80 heterodimer (simply referred to as
Ku), which selectively identifies DSBs [63]. Clinically, it was shown that, in B cell chronic
lymphocytic leukemia patients, a subset of B cells were resistant to radiation-mediated
apoptosis, which was accompanied by an increased DNA binding ability of Ku [64]. Briefly,
binding of the Ku70/Ku80 heterodimers to a DSB leads to the formation of the DNA-PK
complex, which together with the Artemis nuclease are implicated in processing DNA
ends [1]. Finally, the XLF-XRCC4-DNA ligase IV complex completes the NHE] process,
which is by nature an error-prone mechanism as the DNA ends are joined directly [1].

The HR pathway occurs during the S and G2/M phases of the cell cycle and engages
the MRN complex (MRE11-RAD50-NSB1), which functions as an intermediate link between
DSB formation and cell cycle checkpoint activation [65]. It was shown that the MRN com-
plex acts as a sensor of DNA damage and facilitates the recruitment of Ataxia-Telangiectasia
Mutated (ATM) to DNA damage sites [66]. Following DSB recognition, DNA end resection
is carried out by CtIP and EXO I, resulting in RPA coating of the derivative single-stranded
3’ overhangs, which enables RAD51 loading [1]. The RAD51 nucleoprotein filament is then
extended along the homologous chromatid DNA by DNA polymerase [1]. Given that sister
chromatid DNA is used as the repair template, the HR pathway is generally regarded as
an error-free process.

BRCA1 C-Terminal (BRCT) domains are important modules mediating protein—protein
interactions in DDRR pathways [56]. BRCT domains have been identified in important
DDRR network components, including NBS1, 53BP1 and BRCA1 [56]. 53BP1 is an im-
portant player in DDRR, whose H4K20me2/H2AK15ub-mediated recruitment to DNA
damage sites results in 53BP1-H2AX-pS139 binding, which is required for pATM accumu-
lation at the site of damage [67].

The hereditary breast and ovarian cancer biomarkers BRCA1 and BRCA2 are also
pivotal in DSB repair in the HR pathway [68]. Following radiation exposure, BRCA1 forms
a complex with RAP80-Abraxas to associate with ubiquitinated histones [69]. Additionally,
BRCAT1 can interact with the SWI2 family member CSB as well as the MRN complex to
facilitate DNA end resection [70,71]. Because of their so far identified functions, BRCA1/2
have become valuable biomarkers in predicting radiotherapy outcomes [56].

6. circRNAs and DDRR
6.1. circRNAs as Regulators of DDRR Network Components and Genotoxic Stress in Cancer

The expression profile of circRNAs in colorectal cancer tissues compared to their
normal counterparts showed that hsa-circ-101555 was markedly elevated in tumor samples,
correlating with patient prognosis [72]. Hsa-circ-101555 was produced via back-splicing of
the CSNK1G1 gene and demonstrated higher stability than the respective linear RNA [72].
Interestingly, Hsa-circ-101555 silencing was found to suppress proliferation, activate apop-
tosis, and impair the DDRR in vitro and in vivo [72]. Mechanistically, hsa-circ-101555
was identified as a “sponge” of miR-597-5p whose target is the cell cycle regulator CDK6,
indicating that hsa-circ-101555 may act as a competitor of miR-595-5p in upregulating
CDKG6 expression in colorectal cancer [72].

The involvement of circRNAs in the p53 pathway was examined in the HCT116,
RKO and SW48 colorectal cancer lines, which were either left untreated or treated with
a DNA-damaging agent [73]. Interestingly, in contrast to the high amount of mRNAs
produced upon DNA damage in response to p53 activation, only a few circRNAs were
found upregulated such as circ-MDM2 (hsa_circ_001371), which is produced from the
MDM?2 gene [73]. MDM2 is a p53 transcriptional target, also negatively regulating p53
stability and activity [74,75]. Circ-MDM2 (hsa_circ_001371) knockdown resulted in p53
upregulation and was accompanied by growth defects in vivo and in vitro [73]. In line
with those results, several p53 targets were found increased, while retinoblastoma (Rb)
phosphorylation was reduced and G1/S transition was deregulated upon circ-MDM2 loss,
implying that circ-MDM?2 may be a p53 and cell cycle progression regulator [73].
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In a study investigating the link between circRNAs and tumor grade in bladder
cancer patients, a fraction of circRNAs (157 of a total of 4571 circRNAs) were differentially
expressed among various tumor grades compared to the respective linear transcripts [76].
The study implied that circRNAs with target sites for miR-204-5p/211-5p may affect DDRR
pathways, as the duo of miR-204-5p/211-5p targets many genes, including the DNA
damage response players CDC42 and MDM2 [76].

Another study demonstrated that, contrary to the SMARCAS gene, circ-SMARCAS
(hsa_circ_0001445) is downregulated in clinical breast cancer samples compared to normal
control tissues [77]. SMARCAD is an established chromatin remodeler, with an active
role in DDRR as it is rapidly activated in response to DSBs [78,79]. Ectopic expression of
circ-SMARCADS (hsa_circ_0001445) was sufficient to render breast cancer cell lines sensitive
to drugs, both in vitro and in vivo. Additionally, it was shown that circ-SMARCAS forms
an R-loop from binding to its parental gene locus, leading to transcriptional pausing [77].
The study concluded that circ-SMARCAS increases sensitivity to cytotoxic drugs, as its
expression caused SMARCAS5 downregulation [77].

RecQ-mediated genome stability protein 1 (RMI1) plays an important role in genome
stability maintenance as part of the BLM-Topo Illa-RMI1-RMI2 complex [80]. RMI1 knock-
down was found to increase radiosensitivity and apoptosis [81]. RNA sequencing analyses
in human embryonic kidney 293T cells demonstrated a number of differentially expressed
circRNAs upon RMI1 knockdown, which were implicated in histone H3K36 methylation
and the mismatch repair pathway, among other biological processes [81]. Those data indi-
cated that, apart from the critical role of RMI1 in inducing ionizing radiation (IR) sensitivity,
circRNAs exert a regulatory function over the IR response process [81]. Along the same
lines, He et al. attempted to investigate the differential circRNA expression between irra-
diated and non-irradiated HEK 293 cells, and found downregulation of hsa_circ_0000734
post irradiation leading to RNF168 reduction [82]. As low RNF168 levels impair the DDRR
process resulting in increased tumor incidence [83], the study provided additional insight
into the role of circRNAs in IR response.

A recent study in glioblastoma cells showed that low-dose radiation triggered the
secretion of exosomes containing high levels of circ-METRN, which in turn led to increased
YH2AX [84]. This suggested the presence of an efficient DDRR process in glioblastoma cells.
Circ-METRN was found to be responsible for tumor progression and resistance to treatment,
hence exhibiting an oncogenic function through deregulation of the DDRR [84]. Another
study on exosomes investigated the biology of exosomal circ-DB (circ-deubiquitination,
hsa_circ_0025129), which is reciprocally related to miR-34 and negatively associated with
the DNA repair player USP7 in hepatocellular carcinoma patients [85]. The study showed
that adipose-derived exosomes may function as circ-DB carriers, promoting cancer growth
and inhibiting DNA damage by binding miR-34a and triggering the USP7/CyclinA2
pathway in vivo and in vitro [85].

A number of studies have shed light on the role of miRNAs, IncRNAs and circRNAs in
regulating genotoxic responses triggered by various environmental or internal stimuli. An
interactive network among circRNA, IncRNA and miRNA has been identified in response
to lead-induced neurotoxicity [86,87]. MiR-671, which is a target of IncRpa and circ-Rarl,
is a negative apoptosis regulator as it targets apoptosis-related mRNAs, such as Akt2
and caspase 8 [87]. Caspase 8 is inhibited by Plasminogen Activator Inhibitor-1 (PAI-1)
in cancer [88-90], implying a potentially clinically significant connection between miR-
671/circ-Rarl and PAI-1. In a mouse model of lead-induced neurotoxicity, IncRpa and
circ-Rarl levels are increased in the hippocampus downregulating miR-671 expression,
which leads to apoptosis [87]. Moreover, miR-671 is part of a feedback loop negatively
regulating circ-Rarl [87]. Although those findings mostly pertain to neurotoxicity, the
identified mechanism could be extrapolated to tumorigenesis as it is activated in response
to DNA damaging genotoxic insults.
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Figure 2. Potential circRNAs derived from the NBS1, MRE11, RAD50 gene loci. Predicted circRNAs
at the NBS1 (a), MRE11 (b), RAD50 (c) gene loci, based on next generation sequencing (NGS) data,
as deposited at circBase and CIRCpedia, are shown over the corresponding loci, based on human
genome GRCh37/hg19. Cell lines in which NGS was performed to obtain the depicted circRNAs
are also shown and were retrieved from circBase. The expression values for the estimated circRNAs
were derived from the junction reads form of circBase and CIRCpedia from Ribo zero RNA-seq. The
strength of the back-splicing event is demonstrated using a dashed line, where differentscores are
shown for the expressed back-spliced events. Furthermore, we indicate from miCLiP experiments [91]
a consensus of m6A sites and editing sites as derived from RNA editing events using the Jacussa
pipeline [92] as well as from ADAR1 CliP binding sites.

6.2. Identification of Novel DDRR-Derived circRNAs from Bioinformatics Analyses

Currently and to the best of our knowledge, it is unknown if circRNAs are generated
during the transcription of components of the DDRR network. Moreover, if such DDRR-
derived circRNAs are produced, important unmet issues are if and how they affect the
expression of the genes they originate from and/or of other genes as well as their overall
impact on a cell’s fate.

To identify whether circRNAs can be produced from gene loci encoding DDRR com-
ponents, we interrogated the circBase database (http://www.circbase.org/, accessed on
8 September 2021). This database encompasses public circRNA datasets obtained from
NGS of transcriptome from various tissues and mainly cell lines, which were processed for
the potential presence of circular RNAs derived from back-splicing events from the genes
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of interest. Given that the DDRR network is vast, consisting of many components [2], we
focused mainly on the following core components; NBS1, MRE11 and RAD50 that form the
MRN adaptor complex; TP53BP1, a factor involved in tipping the balance between HR and
NHE] DNA repair routes; the apical ATM, ATR and downstream CHK1/CHK2 kinases,
and finally TP53, a key downstream DDRR effector [2] (Figures 2—6 and Supplementary
Figure S1). Several isoforms were found for each genomic locus depending on the cell
line, while the scores that identify the most reliable back-splicing events are depicted in
Supplementary Figures S1-59.

Of note, the information deposited in circBase for these circRNAs has been obtained
mostly from human cancer cell lines. This raises the question of whether DDRR-derived
circRNAs produced in a disease-free physiological context, like in normal tissues and
cells, may differ qualitatively and/or quantitatively. In other words, are the same and/or
isoforms expressed in all normal cells and at what levels?

6.3. Potential Targets and Products of the DDRR-Derived circRNAs

Given that circRNAs can interact and “sponge” other molecules, like proteins and
miRNAs, we next proceeded to identify all potential RNA binding proteins (RBPs) and
miRNA binding sites that are present within the sequences of the circRNAs originating
from the above DDRR hallmark genes (https://circinteractome.nia.nih.gov/, https://
dorina.mdc-berlin.de/, accessed on 8 September 2021) [93] (Supplementary Figures S1-59,
Supplementary Table S1). Notably, all RBPs and miRNAs found to be potential binding
targets for the circRNAs of the above DDRR genes were bioinformatically examined for
the possibility to cluster within common gene ontology functions. While no clear signature
was found across all RBPs, at a single circRNA level, a wide spectrum of such factors were
found with potential to bind and with varying frequency (Supplementary Figures 51-59,
Supplementary Table S1B). Nevertheless, experimental verification is needed to confirm
which of these interactions occur in vivo. On the other hand, the analysis of the miRNAs
regarding their potential targets and end cellular effect revealed that many of them are
involved in network(s) related to cancer development (Supplementary Table S1D). This
finding, although not experimentally validated, raises an intriguing question; given that
the DDRR network through its protein components safeguards the genome integrity from
the deleterious effects of DNA double strand breaks and other genotoxic insults, what is
the impact from these circRNAs on the regulation of cellular homeostasis and particularly
malignant transformation? Specifically, it would be interesting to define whether these
circRNAs add or not to the antitumor activity exerted by the protein counterparts encoded
by the DDRR genes [1], through their “sponging” activity towards oncogenic factors and /or
possibly DDRR suppressors in addition to if and how these circRNAs are deregulated
in various malignancies and what would be the impact in such cases. To address this
issue, we retrieved single nucleotide mutational profiles (SNPs) from various sources,
such as the Circvar (http://soft.bioinfo-minzhao.org/circvar/, accessed on 8 September
2021) and the Cosmic (https://cancer.sanger.ac.uk/cosmic, accessed on 8 September 2021)
databases that have been reported in various malignancies, and examined their overlap
with the circular RNA transcripts derived from the investigated DDRR coding genes.
Interestingly, we noted a significant overlap of reported SNPs within the sequences of the
DDRR-related circRNA (Supplementary Figures S1-59C), suggesting that their binding
ability is altered in tumors, signifying a potential deregulation of their function (Figure 1B).
Of note, in the current manuscript, we explored bioinformatically only a small fraction of
components of the DDRR network. Interrogating a wider spectrum of DDRR genes for
circRNA expression, their corresponding functions and alterations that accumulate will
provide a more thorough picture on the role of the DDRR and hopefully provide targets
for treatment and/or prediction options.
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Figure 3. Potential circRNAs derived from the TB53BP1 gene locus. (a) Predicted circRNAs at the TB53BP1gene locus,
based on NGS data, as deposited at circBase and CIRCpedia are shown over the corresponding loci, based on human
genome GRCh37/hg19. Cell lines in which NGS was performed to obtain the depicted circRNAs are also shown and were
retrieved from circBase. (b) The expression values for the estimated circRNAs were derived from the junction reads, the
form of circBase and CIRCpedia from Ribo zero RNA-seq. The strength of the back-splicing event is demonstrated using
a dashed line, where different scores are shown for the expressed back-spliced events. Furthermore, we indicate from
miCLiP experiments [91] a consensus of m6A sites and editing sites as derived from RNA editing events using the Jacussa

pipeline [92] as well as from ADAR1 CliP binding sites.
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Figure 4. Potential circRNAs derived from the ATM gene locus. Predicted circRNAs at the ATMgene locus, based on
NGS data, as deposited at circBase and CIRCpedia are shown over the corresponding loci, based on human genome
GRCh37/hg19. Cell lines in which NGS was performed to obtain the depicted circRNAs are also shown and were retrieved
from circBase. For more details, see Supplementary Figures. Furthermore, we indicate from miCLiP experiments [91] a

consensus of m6A sites and editing sites as derived from RNA editing events using the Jacussa pipeline [92] as well as from
ADARLI CIiP binding sites.
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Figure 5. Potential circRNAs derived from the ATR gene locus. Predicted circRNAs at the ATRgene locus, based on NGS data,
as deposited at circBase and CIRCpedia are shown over the corresponding loci, based on human genome GRCh37/hg19.
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Cell lines in which NGS was performed to obtain the depicted circRNAs are also shown and were retrieved from circBase.
For more details, see Supplementary Figures. Furthermore, we indicate from miCLiP experiments [91] a consensus of m6A
sites and editing sites as derived from RNA editing events using the Jacussa pipeline [92], as well as from ADARI1 CliP
binding sites.
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Figure 6. Potential circRNAs derived from the TP53 gene locus. Predicted circRNAs at the TP53gene locus, based on
NGS data, as deposited at circBase and CIRCpedia, are shown over the corresponding loci, based on human genome
GRCh37/hg19. Cell lines in which NGS was performed to obtain the depicted circRNAs are also shown and were retrieved
from circBase. The expression values for the estimated circRNAs were derived from the junction reads form of circBase and
CIRCpedia from Ribo zero RNA-seq. The strength of the back-splicing event is demonstrated using a dashed line, where
different scores are shown for the expressed back-spliced events. Furthermore, we indicate from miCLiP experiments [91] a
consensus of m6A sites and editing sites as derived from RNA editing events using the Jacussa pipeline [92] as well as from
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ADARLI CIiP binding sites.

Finally, to investigate the potential presence of Internal Ribosome Entry Site (IRES)
elements, and therefore the possibility that the generated circRNAs are translated, we first
used the circRNAfasta files from circBase, next extracted the secondary RNA structure with
Vienna (http:/ /rna.tbi.univie.ac.at/, accessed on 8 September 2021) and finally searched
for candidate IRES elements that can promote translation using the IRESite tool (http://
iresite.org/IRESite_web.php?page=search, accessed on 8 September 2021) (Supplementary
Figure S1 and Supplementary Table S1). Although IRES elements could not be found
for these core components, this warrants experimental validation, employing methods
described in Section 3.

7. Implementation of New Models in circRNAResearch against Cancer

To investigate the role of circRNAs in cellular (patho)physiology, 2D and 3D cellular
systems are being employed as adequate investigation platforms. In the case of 2D cellular
systems, inducible systems overexpressing DDRR-related genes, like the human bronchial
epithelial cells with Tet-ON inducible expression of the CDC6 replication licensing factor
(HBEC-CDC6 TET-ON) [94], are excellent models to monitor circRNA expression and alter-
ations during cancer development as this system faithfully recapitulates cancer evolution.
Moreover, the impact of the potential qualitative/quantitative alterations of circRNAs on
other factors, like RBPs and miRNAs, can also be experimentally monitored and provide
critical answers on the pathways and processes affected by circRNA entities.

Similarly, 3D cellular systems have already been implemented in circRNA research,
such as iPSC-derived brain organoids [95]. In those organoid cultures, 56% of the identi-
fied circRNAs overlapped with circRNAs of the postmortem brain [95]. Patient-derived
organoids which are unique in their capacity to faithfully recapitulate the tissue of ori-
gin [96-98] have also been already employed to explore the role of circRNAs in certain
types of cancer such as gastric cancer [99,100].
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Other systems enabling the study of circRNAs are comprised by animal models in
which loci encoding these molecules can be manipulated. Specifically, mice with a knockout
of the CdrlascircRNA locus that massively binds miR-7 and miR-671, displayed impaired
sensorimotor gating, causing neuropsychiatric disorders from the inability of these animals
to filter out unnecessary information [101]. Another study used shRNAs to target specific
circRNA- back-splice junctions to specifically downregulate five highly expressed circRNAs
in Droshophila [102]. Of note, downregulation of circ-Ctrip in this setting resulted in de-
velopmental lethality. These examples highlight the significance of such tools and provide
important information on the functional significance and role of circRNAs.

8. Conclusions and Future Perspectives

CircRNAs represent an abundant and highly expressed group of regulatory RNAs,
as depicted in several normal adult and fetal human tissues [103]. Moreover, they appear
to have many functional implications, but most of them remain poorly characterized.
A further issue that signifies their importance is their increasing prognostic/diagnostic
role in various pathological conditions, including cancer. In the cancer field, DDRR-
derived circRNAs are just starting to emerge as potentially valuable clinical tools, whose
functionality and interplay with other players of the DDRR network is required to be
thoroughly addressed. In this context, already available and newly established model
systems like oncogene inducible cell systems, organoids or in vivo models may become
useful platforms for validation experiments [94,96-102]. The thorough investigation of
both the normal and cancer circRNA biology in various types of tissues is imperative as it
may uncover unprecedented roles of the DDRR network and possibly new avenues for
druggable therapeutic approaches, at a personalized level.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ cancers13215352/s1, Figure S1: Potential circRNAs derived from the NBS1 locus and potential
“sponging” abilities, Figure S2: Potential circRNNAs derived from the MRE11 locus and potential
“sponging” abilities, Figure S3: Potential circRNAs derived from the RAD50 locus and potential
“sponging” abilities, Figure S4: Potential circRNAs derived from the TP53BP1 locus and potential
“sponging” abilities, Figure S5: Potential circRNAs derived from the CHK1 (CHEK1) locus and
potential “sponging” abilities, Figure S6: Potential circRNAs derived from the CHK2 (CHEK2)
locus and potential “sponging” abilities, Figure S7: Potential circRNAs derived from the ATM
locus and potential “sponging” abilities, Figure S8: Potential circRNAs derived from the ATR locus
and potential “sponging” abilities, Figure S9: Potential circRNAs derived from the TP53 locus and
potential “sponging” abilities, Table S1: miRNAs and RBPs bound by DDRR-derived circDNAs-
impact on cellular pathways.
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