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Abstract

Nonlinear inter-modality registration is often challenging due to the lack of objective functions 

that are good proxies for alignment. Here we propose a synthesis-by-registration method to 

convert this problem into an easier intra-modality task. We introduce a registration loss for weakly 

supervised image translation between domains that does not require perfectly aligned training 

data. This loss capitalises on a registration U-Net with frozen weights, to drive a synthesis CNN 

towards the desired translation. We complement this loss with a structure preserving constraint 

based on contrastive learning, which prevents blurring and content shifts due to overfitting. We 

apply this method to the registration of histological sections to MRI slices, a key step in 3D 

histology reconstruction. Results on two public datasets show improvements over registration 

based on mutual information (13% reduction in landmark error) and synthesis-based algorithms 

such as CycleGAN (11% reduction), and are comparable to registration with label supervision. 

Code and data are publicly available at https://github.com/acasamitjana/SynthByReg.
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1 Introduction

Image registration is a crucial step to spatially relate information from different medical 

images. Unpaired registration aligns images of different subjects into a common space to 

perform subsequent analysis (e.g., population studies [13], voxel-based morphometry [4], 

or multi-atlas segmentation [30,18]). On the other hand, paired registration aligns different 

images from the same anatomy and finds application in image guided intervention (e.g., 
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MR-CT in the prostate [15]); patient follow-up (e.g., pre- and post-operative scans [20]); or 

longitudinal [29] and multimodal studies (e.g., 3D histology reconstruction with MRI [27]).

Registration is often cast as an optimisation problem where a source image is deformed 

towards a target image such that it maximises a similarity metric of choice. Classical 

registration methods solve this problem independently for every pair of images with standard 

iterative optimisers [32]. Modern learning approaches predict a deformation directly from a 

pair of images using a convolutional neural network (CNN). Supervised learning methods 

use ground truth deformation fields in training, either synthetic [31] or derived from manual 

segmentations [7]. These have been superseded by unsupervised methods, in which CNNs 

are trained to optimise metrics like those used in classical registration, e.g., sum of squared 

differences (SSD) or local normalised cross-correlation (LNCC) [6,34], without wasting 

capacity in regions without salient features.

Widespread similarity functions like SSD or LNCC are well suited for intra-modality 

registration problems. However, the difficulty of designing accurate similarity functions 

across modalities hampers inter-modality registration. Mutual information (MI) is often used 

[21] but with unsatisfactory results in the nonlinear case, due to the excessive flexibility 

of the model [17]. Other metrics used in inter-modality registration are the Modality

Independent Neighbourhood Descriptor (MIND, [14], based on local patch similarities) or 

adversarial losses measuring whether two images are well aligned or not [12]. MIND is 

sensitive to initial alignment, bias field or rotations depending on the neighbourhood size, 

while adversarial losses are prone to missing local correspondences.

An alternative to inter-modality registrationis to convert the problem into an intra-modality 

task using a registration-by-synthesis framework: image-to-image (I2I) translation is first 

used to synthesise new source images with the target contrast, and then intra-modality 

registration (which is more accurate) is performed in the target domain. With accurate image 

synthesis, the errors introduced by the translation are outweighed by the improvement in 

registration [17]. In unsupervised synthesis, cycle-consistent generative adversarial networks 

(CycleGAN) can be used [33,36], but they lack structural consistency across views and 

may generate artefacts due to overfitting (e.g., flip contrast or even deform images). To 

mitigate this issue, additional losses between the original and synthetic images have been 

proposed, e.g., segmentation losses [16] or inter-modality similarities between the original 

and synthetic scans (e.g., MIND [37] or MI [35]).

Beyond CycleGAN, other approaches have attempted to enforce geometry consistency 

between the original and synthetic images via specific architectures or training schemes. 

An I2I translation model that explicitly learns to disentangle domain-invariant (i.e., 

content) from domain specific features (i.e., appearance) was proposed in [28]; the latent 

content features can then be used to train a registration network. More recently, a novel 

training scheme that forces the translation and registration steps to be commutative (thus 

discouraging deformation at synthesis) has been presented [2]. Nonetheless, GAN-based 

approaches are challenging to train, with well-known problems (e.g., vanishing gradients, 

instability [3]) and an increasing number of losses and hyperparameters. In this work, we 

turn the registration-by-synthesis framework around into a synthesis-by-registration (SbR) 
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approach, where a registration network trained on the target domain (and frozen weights) is 

used in the loss for training an I2I network. This allows us to greatly simplify the objective 

function and avoid potentially unstable adversarial training. Moreover, we use contrastive 

learning at the patch level to ensure geometric consistency. The SbR model outputs both the 

translated image and the deformation field. The contribution of this work is threefold: (i) 
we develop a novel registration loss for paired I2I translation; (ii) we adapt the contrastive 

PatchNCE loss [26] for image registration as a geometry-preserving constraint; and (iii) 
we combine (i) and (ii) into an unsupervised SbR framework for inter-modality registration 

that does not require multiple encoders / decoders and therefore has low GPU memory 

requirements.

2 Methods

2.1 Overview

Let us consider two misaligned 2D images of the same anatomy (e.g., a histological section 

and a corresponding MRI plane): the source S(x) and target T(x); x represents spatial 

location. We further assume the availability of an intra-modality registration CNN ℛ with 

weights θℛ, which predicts a deformation field Φ from two images of the target modality: 

Φ = ℛ T , T ′; θℛ , such that T(x) ≈ T′(Φ(x)). We also define an I2I translation CNN G (with 

weights θG) from contrast S to T that regresses the image intensities: ST = G S; θG , such 

that ST resembles the anatomy in S, had it been acquired with modality T. The crucial 

observation is that, if ST is well synthesised, and Φ = ℛ T , ST ; θℛ , then T(x) ≈ ST (Φ(x)). 

Specifically, we propose the following loss (Figure 1):

ℒ θG = ℒreg S, T ; θG, θℛ + λgeoℒgeo S, T ; θG, θℛ , (1)

where ℒreg is a “registration loss” measuring the similarity of T and (the deformed) ST, 

ℒgeo is a geometric consistency loss that ensures that the contents of S and ST are aligned, 

and λgeo is a relative weight. A key implicit assumption of this framework is that, because 

the images are paired, there exists a spatial transform Φ that aligns S and T well, such 

that the synthesis does not need to shift or blur boundaries to minimise the error; the 

geometric consistency loss further discourages such mistakes. Crucially, the loss in Eq. 

1 does not depend on θℛ: the registration CNN is trained on the target domain and its 

weights are frozen, such that gradients will backpropagate through these layers to improve 

the synthesis. This asymmetric scheme enables us to avoid using a distribution matching loss 

(e.g., CycleGAN) that may produce hallucination artefacts [9].

2.2 Intra-modality registration network

One of the key points in SbR is the differentiable registration method used to train the 

image synthesis model. We use a U-Net [8] model (as in [10]) that learns a diffeomorphic 

mapping between images from the same modality. The model is trained on pairs of images 

from the target domain and outputs a stationary velocity field (SVF), ψ, at half the 

input resolution. Then, a scaling and squaring approach is used to integrate ψ into a half

resolution deformation field, which is linearly upsampled to obtain the final deformation 
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Φ(x). Training uses LNCC as image similarity term, and the norm of the gradient of the SVF 

as regulariser:

ℒℛ T , T ′; θℛ = 1
Ω ∑

x ∈ Ω
LNCC T (x), T ′ Φ x; θℛ + 2λℛ ∇ψ x; θℛ 2, (2)

where Ω is the discrete image domain, and λℛ is a relative weight. Since the goal is to 

learn registration of images with approximately the same anatomy, we train the CNN with 

pairs of images that are similar to each other – specifically, within 3 neighbours in the 

image stack. In order to prevent overfitting, which may be problematic due to the relatively 

limited number of combinations of pairs, we use random spatial transformations for data 

augmentation at each iteration in the source and target images, including small random 

similarity transforms and smooth nonlinear deformations. Once this CNN has been trained, 

its weights θℛ are frozen during training of the rest of layers in our framework.

2.3 Image-to-Image translation using a registration loss

The modality translation is performed by a generator network, G, with a similar architecture 

to [26] and trained using a combination of two losses: ℒreg and ℒgeo. The first component 

ℒreg is the registration loss between the target and the translated, deformed source. In 

section 2.2 above, we used the LNCC metric, which is known to work well in learning

based, intra-modality registration registration of most modalities, and can handle bias field 

in MRI [6]. However, in I2I we need to explicitly penalise absolute intensity differences, 

since encouraging local correlation is not enough to optimise the synthesis. For this purpose, 

we use the ℓ1-norm, which has been widely used in the synthesis literature, and which is 

more robust than ℓ2 against violations of the assumption that the anatomy is perfectly paired 

in the source and target images. The registration loss is:

ℒreg S, T ; θG, θℛ = 1
Ω ∑

x ∈ Ω
T (x) − ST Φ x; θℛ ; θG 1 . (3)

The second component of the loss ℒgeo seeks to enforce geometric consistency in the 

synthesis and is based on noise contrastive estimation (PatchNCE [26]). The idea behind 

PatchNCE is to maximise a lower bound on the MI between the pre- and post-synthesis 

images at the patch level. For this purpose, we define a “query” image q (e.g., ST) and 

a “reference” image r (e.g., S), from which we extract patch descriptors from the stack 

of features computed by the encoding branch of the I2I CNN, G. These descriptors 

are the output of L layers of interest, including: the input image, the downsampling 

convolutional layers and the first and last ResNet blocks. Specifically, we extract sets of 

features fl at the layers of interest l = 1, …, L and N random locations xl,n per layer, i.e., 

{fl(xl,n)}l=1, …, L;n=1, …, N (in practice, a tissue mask is used when drawing xl,n in order not 

to sample the background). Each of these fl encodes different image features (with different 

number of channels), from different neighbourhoods (patches), and at different resolution 

levels.
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Given these descriptors, the contrastive loss builds on the principle that fl
q xl, n  (for the 

query) and fl
r xl, n′  (for the reference) should be similar for n = n′ and dissimilar for n 

≠ n′. Rather than using the descriptors f directly, we follow in [26] and run them through 

two-layer perceptrons (which are different for the descriptors in every layer l, since they 

have different resolutions), followed by unit-norm normalisation layers. This yields a new 

representation {zl,n}l=1, …, L;n=1, …, N, with:

zl, n = Ql fl xl, n ; θz , (4)

where θz groups the parameters of these representation layers. Given z, the contrastive 

PatchNCE loss is given by a softmax function of cosine similarities:

ℒPatchNCE  q, r; θz, τ = − 1
N ∑

n = 1

N
∑
l = 1

L
log

exp zl, n
q ⋅ zl, n

r /τ
∑n′ = 1

N exp zl, n
q ⋅ zl, n′

r /τ
, (5)

where τ is a temperature parameter and (·) is the dot product. It can be shown that the lower 

bound on the MI becomes tighter with increasing N [25].

In practice, we use two PatchNCE losses: one between the source and translated images; and 

another between the registered and target images:

ℒgeo  S, T ; θG, θℛ, θz, τ = ℒPatchNCE  ST x; θG , S(x); θz, τ

+ℒPatchNCE  ST Φ x; θℛ ; θG , T (x); θz, τ .
(6)

Combining the registration and geometric consistency losses in Equations 3 and 7 yields the 

final loss for our meta-architecture:

ℒ θG, θz = 1
Ω ∑

x ∈ Ω
T (x) − ST Φ x; θℛ ; θG 1

+λgeoℒPatchNCE ST x; θG , S(x); θz, τ

+λgeoℒPatchNCE ST Φ x; θℛ ; θG , T (x); θz, τ ,

(7)

which we optimise with respect to θG and θz – since τ is a fixed hyperparameter and θℛ is 

frozen, as explained above.

3 Experiments and results

3.1 Data

We validate the presented methodology in the context of 3D histology reconstruction 

via registration to a reference MRI volume. We use two publicly available datasets with 

histological sections and an ex vivo 3D MRI of the same subject. A 3D similarity transform 

between the stack of histological sections and the MRI volume was used to align images 

from both domains [24]. The MRI volume was then resampled into the space of histological 
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stack, which yields a set of paired images to register: histological sections and corresponding 

MRI resampled planes. The two datasets are:

• Allen Human Brain Atlas [11]: this dataset includes 93 sections with manual 

delineations of hundreds of brain structures, which we grouped into four coarse 

tissue classes: cerebral white matter (WM), cerebral grey matter (GM), cerebellar 

white matter (WMc), and cerebellar grey matter (GMc). An ex vivo MRI is 

available, which was segmented into the same four tissue classes with SPM [5]. 

In addition, J.E.I. manually annotated 13.8 ± 4.4 pairs of matching landmarks 

in the histological sections and corresponding resampled MRI planes, uniformly 

distributed across all spatial locations.

• BigBrain Initiative [1]: we considered one every 20 sections, i.e., one section 

every 0.4 mm (344 sections in total). As in the previous dataset, an ex vivo 
MRI is available and J.E.I. manually annotated 11.6 ± 1.7 landmark pairs in 

the histological sections and corresponding MRI planes. No segmentations are 

available for this dataset.

3.2 Experimental setup

In our experiments, we register each histological section to the corresponding (resampled) 

MRI slice. For quantitative evaluation, we report the average root-mean-squared landmark 

error (both datasets) and the Dice score on brain tissue classes (only for the Allen dataset).

Our proposed method, SbR, was trained with the following hyper-parameters: λgeo = 0.02, 

τ = 0.05 and λℛ = 1, which were set from a subset of the Allen dataset and used elsewhere. 

We also tested three other configurations of our method: an ablated version without the 

structure preserving constraint, i.e., λgeo = 0 (SbR-N); fine-tuning the result of SbR by 

unfreezing the registration parameters (SbR-R); and an extension (SbR-G) that includes an 

LSGAN loss [22] with a PatchGAN discriminator [19] to discriminate between synthesised 

and target images (ST and T). SbR-G enables us to assess the potential benefits of adding a 

distribution matching loss in training.

In addition, we compare our method against a number of other methods, to test differences 

against: standard registration metrics, other synthesis-based approaches without specific 

geometric constraints, and supervision with labels and Dice scores. Specifically, the 

competing methods are: (i) Linear, the initial affine registration with NiftyReg [24]; (ii) 
NMI, unsupervised training using normalised mutual information (NMI) with 20 bins on 

the image intensities; (iii) NMIw, weakly supervised training using NMI and an additional 

Dice loss [23] on the segmentations; (iv) cGAN, a CycleGAN [38] approach combined 

with our registration loss; and (v) RoT, the state-of-the-art method presented in [2] that 

consists of alternating the registration and translation steps. All learning-based methods 

above (including ours) use the same architecture for registration, and also the same 

nonlinear spatial augmentation scheme (sampling 9 × 9 × 2 from zero-mean Gaussians 

and upsampling to full resolution)
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3.3 Results

The quantitative results are summarised in Figure 2. The landmark errors show that our 

proposed method (SbR) outperforms all baseline approaches: 11%, 9 % and 7% error 

reduction with respect cGAN, RoT and NMIw in the Allen dataset and 23% and 33 % 

with respect cGAN and RoT in the BigBrain dataset; all improvements are statistically 

significant (p < 0.001) using a Wilcoxon signed-rank test. Interestingly, SbR is able to align 

tissue masks as well as NMIw, even though segmentations were not used in the training 

phase. The naive approach (SbR-N) suffers from synthetic artefacts in the generator, which 

degrades the results - thus highlighting the importance of including structure preserving 

constraints in the model. The other two extensions of the model, SbR-G and SbR-R, achieve 

similar performance to the initial configuration, without yielding any statistically significant 

additional benefits.

In Figure 3, we show an example of the synthesised and registered images using SbR for 

each dataset. The method displays robustness against common artefacts, such as: cracks, 

missing tissue and inhomogeneous staining (in histology), or intensity inhomogeneity (in 

MRI). Our method is able to accurately register convoluted structures such as the cortex, as 

seen in Figure 4

4 Discussion and conclusion

We have presented Synth-by-Reg, a synthesis-by-registration framework for inter-modality 

registration, which we have validated on a histology-to-MRI registration task. The method 

uses a single I2I translation network trained with a robust registration loss (based on the 

ℓ1-norm) and a geometric consistency term (based on contrastive learning). In histology-MRI 

registration, Synth-by-Reg enables us to avoid using a CycleGAN approach, which often 

falters in presence of histological artefacts – since it needs to learn to simulate them 

and subsequently recover from them. Future work will focus on adapting our method to 

the unpaired scenario, as well as to other imaging modalities. We believe that synthesis-by

registration can be a very useful alternative in difficult inter-modality registration problems 

when weakly paired data are available, e.g., MRI and histology.
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Fig. 1. 
Overview of proposed pipeline, using histology and MRI as source and target contrasts, 

respectively.

Casamitjana et al. Page 10

Simul Synth Med Imaging. Author manuscript; available in PMC 2022 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Landmark mean squared error on the Allen human brain atlas dataset (a) and the BigBrain 

dataset (b). Dice score coefficient for the Allen dataset is shown in (c).
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Fig. 3. 
Image examples from (a) the Allen human brain atlas, and (b) the BigBrain project, with the 

deformed and rectangular grid overlaid on the source and target spaces, respectively.
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Fig. 4. 
Section 170 from BigBrain, with cortical boundaries manually traced on the target domain 

(MRI) and overlaid on the histology, before and after registration.
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