Skip to main content
. 2021 Oct 28;18(21):11302. doi: 10.3390/ijerph182111302

Table 4.

Deep learning models for atrial fibrillation detection.

Authors, Year Number of Subjects Leads Classes Database Method Performance (%)
Spec. Sen. Acc.
Acharya et al., 2017 [30] 21,709 2 s ECG segments
8683 5 s ECG segments
Lead II SR, AF, AFL and VF MIT-BIH DB,
MIT-BIH AFDB,
CU VTDB
11-layer CNN 93.13
81.44
98.09
99.13
92.50
94.90
Xia et al., 2018 [40] 162,536 5 s ECG segments 2 Lead AF and non-AF MIT-BIH AFDB STFT (RGB) + CNN
STFT (grayscale) + CNN
SWT + CNN
98.24
97.17
97.87
98.34
98.60
98.79
98.29
97.74
98.63
Faust et al., 2018 [41] CV: 20 subjects
BV: 3 subjects
- SR and AF MIT-BIH AFDB HRV + bidirectional LSTM 98.67
99.61
98.32
99.87
98.51
99.77
Fan et al., 2018 [45] 5154 SR recordings
7713 AF recordings
Single Lead SR and AF,
AF and O
PhysioNet/CinC 2017 MS-CNN 98.77
98.84
93.77
80.26
98.13
97.19
Andersen et al., 2019 [19] 23 long-term recordings
48 short-term recordings
18 long-term recordings
Single Lead SR and AF MIT-BIH AFDB,
MIT-BIH DB,
MIT-BIH SRDB
CNN + LSTM 96.95
86.04
95.01
98.98
98.96
-
97.80
87.40
-
Fujita et al., 2019 [56] 25,287 2 s ECG segments Single Lead SR, AF, AFL and VF MIT-BIH DB,
MIT-BIH AFDB,
MIT-BIH VFDB
8-layer CNN 96.07 99.43 98.61
Attia et al., 2019 [47] 649,931 10 s ECG recordings 12 Lead SR and AF (includes AFL) Mayo Clinic ECG Laboratory CNN 83.4 82.3 83.3
Baalman et al., 2020 [48] 1499 10 s ECG recordings Lead II,
8 Lead
SR and AF AFACT R-centered SC-ECG + RNN
R-to-R-wave SC-ECG + RNN
- - 94.00
96.00
Cai et al., 2020 [43] 16,557 10 s ECG recordings 12 Lead SR and AF
AF and non-AF
SR, AF and O
Chinese PLA General Hospital
Wearable 12-Lead,
The China Physiological Signal 2018
DDNN 99.19
97.04
95.85
99.44
98.63
98.38
99.35
98.21
97.74
Lai et al., 2020 [46] 510,472 10 s ECG recordings Multi Lead AF and non-AF Hexin Patch Lead II,
MIT-BIH DB
8-layer CNN 93.4 93.1 93.1
Jin et al., 2020 [59] 150,060 5 s ECG recordings - AF and non-AF MIT-BIH AFDB Multi-domain feature + TAC-LSTM 98.76 98.14 98.51
Wang et al., 2020 [60] 22,174 ECG segments
1265 ECG segments
Single Lead SR, AF and AFL MIT-BIH AFDB,
MIT-BIH DB
CNN + MLP
CNN + ENN
CNN + IENN
99.3
99.6
97.1
99.3
98.3
99.4
Nurmaini et al., 2020 [61] 6114 samples (9 s) Single Lead SR and AF
SR, AF and non-AF
PhysioNet AFDB,
MIT-BIH AFDB,
MIT-BIH Malignant Ventricular Entropy,
An Indonesian Hospital
13-layer one-dimensional CNN 99.91
99.17
99.91
98.90
99.98
99.17
Mousavi et al., 2020 [42] 167,422 5 s ECG recordings
8528 ECG recordings
Single Lead AF and non-AF
SR and AF
MIT-BIH AFDB,
PhysioNet/CinC 2017
BiRNN (HAN-ECG) 98.54 99.08 98.81
Chen et al., 2021 [54] - 2 Lead
12 Lead
SR and AF MIT-BIH DB,
AHA DB, QT DB, CSE DB
Multiple feature extraction + CNN - - 98.92
Petmezas et al., 2021 [52] 970,009 beats 2 Lead SR, AF, AFL and J MIT-BIH AFDB CNN + LSTM + FL 99.29 97.87 -
Jo et al., 2021 [49] - 12 lead,
6 Lead,
Single Lead
AF and non-AF Sejong ECG DB, PTB-XL ECG DB, Charman et al. ECG DB, PhysioNet DB CNN 99.5 99.9 99.6
Zhang et al., 2021 [55] 80,000 ECG segments
83,464 ECG segments
19,220 ECG segments
Lead I AF and non-AF Wearable Lead I-II,
MIT-BIH AFDB,
PhysioNet/CinC 2017
LSTM + CNN 95.19
94.49
96.66
97.73
96.46
92.09
95.44
95.28
96.23

Acc, accuracy; AF, atrial fibrillation; AFL, atrial flutter; BiRNN, bidirectional RNN; BV, blindfold validation; CNN, convolutional neural network; CV, cross-validation; DDNN, deep densely connected neural network; ENN, Elman neural network; FL, focal loss; FRM-CNN, CNN-based AF screening framework; HAN, hierarchical attention network; HRV, heart rate variability; IENN, improved Elman neural network; J, junctional rhythm; LSTM, long short-term memory; MLP, multilayer perceptron; MS-CNN, multi-scaled fusion of deep CNN; N, noisy; O, others; RNN, recurrent neural network; SC, single-cycle; Sen, Sensitivity; Spec, Specificity; SR, sinus rhythm; STFT, short-time Fourier transform; SWT, stationary wavelet transform; TAC-LSTM, twin-attentional convolutional LSTM; VF, ventricular fibrillation.