Skip to main content
. 2021 Oct 21;22(21):11387. doi: 10.3390/ijms222111387

Figure 4.

Figure 4

Transposable elements (TEs) are suppressed by DNA and histone methylations. (A) TE methylation is most commonly found in the CG context. The de novo DNA methylation is performed by DNA methyltransferases DNMT3A and 3B; the pattern of DNA methylation is maintained by DNMT1 by adding a methyl group to the newly synthesized DNA strand (a complementary strand of the hemi-methylated DNA strand), thus ensuring that the epigenetic modifications are inherited by the daughter cell. (B) Nucleosomes are made up of DNA and eight histone proteins. These proteins can be modified in several ways for chromatin accessibility, thereby either activating or inactivating gene expression (gene imprinting). TRIM28, a silencing complex, recognizes KRAB-ZNFs (Kruppel-associated box zinc-finger proteins), which contain a TE-binding domain and deposits H3K9me3 on TE (euchromatin region), thus causing TE repression and heterochromatin formation. The illustration was adapted and redrawn from Jönsson et al. [43], with copyright permission from the Licensor Elsevier (Trends in Genetics: Cell Press publisher) and Copyright Clearance Center (https://www.copyright.com) (Supplementary File S1).