Skip to main content
. 2021 Nov 4;13(21):5546. doi: 10.3390/cancers13215546

Table 4.

State-of-the-art CAD systems for lung cancer diagnosis.

Methods Task Performed Dataset Evaluation Matrix (%) Year Ref.
SVM algorithm Segmentation Private Acc = 89.5 2016 [100]
3D CNN trained on weakly labeled data Nodule Detection SPIE-LUNGx SN = 80 2016 [101]
DCNN Lung cancer detection Kaggle, LUNA16 Acc = 0.75, SN = 0.77, SP = 0.74 2017 [102]
Deep residual networks Nodule classification LIDC/IDRI Acc = 89.9, SN = 91, SP = 88.6 2017 [103]
3D-CNN Detection and Classification Bowl 2017 Acc = 86.6 2017 [104]
Polygon approximation with SVM Nodule detection LIDC Acc = 98.8, SN = 97.7, SP = 96.2 2018 [90]
Deep residual networks Nodule classification LIDC-IDRI Acc = 0.89, SN = 0.91, SP = 0.88 2017 [103]
Deep learning Nodule detection LIDC-IDRI Acc = 0.96, SN = 0.95, SP = 0.97 2020 [105]
Deep reinforcement learning Nodule detection LIDC-IDRI Acc = 0.64, SN = 0.58, SP = 0.55 2018 [106]
3D nodule candidate Nodule detection LIDC Acc = 0.99, SN = 0.98, SP = 0.98 2019 [107]
Optimized Random Forest Automatic detection LIDC-IDRI Acc = 93.1, SN = 94.8, SP = 91.3, FP = 0.086 2020 [91]
CNN Segments nodules LIDC Acc = 89.8, SN = 85.2, SP = 90.6 2020 [108]
2D DCNN Nodule detection LUNA16 SN = 86.42, FP = 73.4 2019 [98]
Generative adversarial networks with DCNN Nodule classification Private SN = 93.9, SP = 77.8 2020 [109]
Patch-Based CNN Nodule detection LIDC-IDRI SN = 92.8 2019 [110]
SVM Detection and segmentation Private SN = 90.6, SP = 73.6 2021 [111]
VGG-16 based CNN Classifcation Massachusetts General Hospital (MGH) Acc = 68.6, SN = 37.5, SP = 82.9, AUC = 0.70 2021 [112]