Table 4.
Types of Scaffolds | Antimicrobial agents | Carriers | Achievements | Study type/ assayed model | References |
---|---|---|---|---|---|
Metal implants | Gentamicin | Titanium implant | High prophylaxis against implant-related osteomyelitis | In-vivo/Rats | (Diefenbeck et al., 2016) |
Vancomycin | Zeolitic imidazolate nanocrystals |
|
In-vitro | (Karakeçili et al., 2019) | |
3D printed Titanium implant |
|
In-vivo/ Rabbits | (Zhang et al., 2020) | ||
Clindamycin | 3D printed coatings on titanium and stainless steel implant |
|
In-vitro | (Maver et al., 2021) | |
Bioceramics | Vancomycin | Hydroxyapatite/ Calcium phosphate | Successful management of diabetic foot infection. | Clinical/ Patients | (Karr, 2011) |
Hydroxyapatite/ Calcium phosphate | Controlled antibiotic release pattern over a 12-day period. | In-vitro | (Thanyaphoo & Kaewsrichan, 2012) | ||
Hydroxyapatite/ Poly amino acid |
|
In-vivo/Rabbits | (Cao et al., 2016) | ||
Hydroxyapatite |
|
In-vitro | (Hess et al., 2016) | ||
Hydroxyapatite |
|
In-vitro | (Parent et al., 2016) | ||
Calcium polyphosphate | Sustained release of the antibiotic. | In-vitro | (Comeau & Filiaggi, 2017) | ||
Calcium phosphate/ calcium sulfate |
|
Clinical/ Patients | (Zhao et al., 2020) | ||
Gentamicin | Calcium sulfate | Significant bactericidal activity of the scaffold. | In-vitro | (Thein et al., 2013) | |
Hydroxyapatite/ Calcium phosphate | Clinical cure of the heel ulcers in diabetic foot patients after 16 weeks without need of amputation. | Clinical/ Patients | (Drampalos et al., 2018) | ||
Vancomycin/gentamicin | Calcium sulfate | Full recovery in 4 months in a patient with diabetic foot infection. | Clinical/ Patients | (Morley et al., 2016) | |
Calcium sulfate/ hydroxyapatite | Prevention of biofilm formation | In-vitro | (Bidossi et al., 2020) | ||
Ceftriaxone/sulbactam | Bioactive glass |
|
In-vivo/Rabbits | (Kundu et al., 2011) | |
Gatifloxacin/ fluconazole | Bioactive glass | Sustained antibiotic release for up to 6 weeks. | In-vitro | (Soundrapandian et al., 2011) | |
Vancomycin/ rhBMP-2 | Calcium sulfate |
|
In-vivo/Rabbits | (Wang et al., 2011) | |
Ceftriaxone/sulbactam | Hydroxyapatite | New bone formation
|
In-vivo/Rabbits Clinical/ Patients |
(Bhattacharya et al., 2013) | |
Linezolid | Calcium deficient apatite (CDA) | Enhanced efficacy of treatment with IV treatment. | In-vivo/Rabbits | (Gaudin et al., 2013) | |
Amphotericin B/ voriconazole | Hydroxyapatite/ Calcium sulfate | Maintained effective antifungal concentrations over 96 hours. | In-vitro | (Karr & Lauretta, 2015) | |
Levofloxacin | Bioactive glass/ HA nanoparticles | Sustained with pH-dependent release of drug at the infection site. | In-vitro | (Cicuéndez et al., 2018) | |
Sitafloxacin/ rifampin | Calcium phosphate | Decreased bacterial colonization
|
In-vivo/ Mice | (Trombetta et al., 2019) | |
Rifampicin | Nanohydroxyapatite /calcium sulfate |
|
In-vivo/Rats | (Qayoom et al., 2020) | |
Polymeric | Gentamicin | PMMA | Effective treatment of patients with infected nonunioun of the long bones. | Clinical/ Patients | (Selhi et al., 2012) |
Gentamicin/silver ion | Silk fibrin |
|
In-vivo/Rats | (Zhang et al., 2019b) | |
Vancomycin/rifampin | Polydioxanone | Inhibition of biofilm formation. | In-vitro | (Waeiss et al., 2014) | |
Vancomycin/cefuroxime | PMMA | Successful treatment of the infection in 7 cases with chronic osteomyelitis. | Clinical/ Patients | (Bharti et al., 2016) | |
Gentamicin,vancomycin, amikacin, ceftriaxone | PMMA | Effective inhibition of MRSA growth for 42 days | In-vitro | (Noor et al., 2016) | |
Vancomycin | PMMA | Prolonged release of the antibiotic from the bone cement over 6 weeks in femoral osteomyelitis model. | In-vivo/Rats | (Oh et al., 2016) | |
Chitosan |
|
In-vivo/Rabbits | (Tao et al., 2020) | ||
Fosfomycin | Chitosan |
|
In-vitro | (Tucker et al., 2021) | |
Linezolid/daptomycin /vancomycin | PMMA/ PLGA microparticles | Synergistic effect of the antibiotics
|
In-vitro | (Parra-Ruíz et al., 2017) | |
Vancomycin/amikacin | Chitosan sponge | Prevention and clearance of polymicrobial implant associated-biofilm. | In-vivo/ Mice | (Boles et al., 2018) | |
Ciprofloxacin | Poly (hydroxyethyl methacrylate) |
|
In-vitro | (Sreeja et al., 2020) | |
Rifampicin | PCL | Sustained antibiotic release for 14 days | In-vitro | (Lee et al., 2020) | |
Composite | Vancomycin | PLLA/ β TCP |
|
In-vivo/Rats | (Kankilic et al., 2014) |
Hydroxyapatite/ collagen |
|
In-vitro | (Coelho et al., 2015) | ||
Calcium sulfate / PMMA |
|
Clinical/ Patients | (Luo et al., 2016) | ||
Gelatin/ β TCP |
|
In-vivo/Rabbits | (Zhou et al., 2018) | ||
PLA/ nanohydroxyapatite |
|
In-vitro | (Zhao et al., 2019) | ||
Nano- hydroxyapatite / Gelatin / PLA |
|
In-vivo/Rats | (Krishnan et al., 2020) | ||
Heparinized nanohydroxyapatite/collagen |
|
In-vitro | (Padrão et al., 2021) | ||
Polyurethane/ hydroxyapatite |
|
In-vivo/Rabbits | (Beenken et al., 2021) | ||
Hydroxyapatite/ Sodium alginate/ chitosan |
|
In-vitro | (Liu et al., 2021) | ||
Gentamicin | Hydroxyapatite/ collagen |
|
In-vitro | (Oshima et al., 2020) | |
Ceftriaxone | Hydroxyapatite/ β TCP /chitosan | Prolonged release pattern for more than 5 weeks. | In-vitro | (Kundu et al., 2010) | |
Moxifloxacin | Chitosan/ calcium phosphate |
|
In-vivo/Rabbits | (Radwan et al., 2020) | |
Poly-lactide-co-ε-caprolactone/calcium phosphate |
|
In-vivo/Rabbits | (Radwan et al., 2021) | ||
Gatifloxacine | β TCP/ PLGA | Osteoconductive scaffolds with efficacy in local treatment of osteomyelitis. | In-vivo/Rabbits | (Tamazawa et al., 2011) | |
Rifampicin/ ciprofloxacin | PCL/ β TCP |
|
In-vitro | (Ahola et al., 2012) | |
Gentamicin/ vancomycin | PMMA/ β TCP | Eradication of infection through custom made devices in femoral osteomyelitis model. | In-vivo/Rabbits | (Giavaresi et al., 2012) | |
Daptomycin | Calcium phosphate / chitosan |
|
In-vivo/Rabbits | (Beenken et al., 2014) | |
Ciprofloxacin | Gelatin/ hydroxyapatite |
|
In-vitro | (Krishnan et al., 2015) | |
Hydroxyapatite/ PCL | Controlled the release of antibiotic in implant. | In-vitro | (Nithya & Sundaram, 2015) | ||
Rifapentine | Hydroxyapatite/ Poly amino acid |
|
In-vivo/Rabbits | (Yan et al., 2015) | |
Tobramycin | PCL/ PEG/ Calcium phosphate/ Hydroxyapatite | Osteoconductivity and resorbtion with sustained antibiotic release. | In-vivo/Rabbits | (Jones et al., 2016) | |
Doxycycline | Bioactive glass/ mesoporous silica |
|
In-vitro | (Szewczyk et al., 2021) | |
Silver ion | Nano- hydroxyapatite / polyurethane |
|
In-vivo/Rabbits | (Zhang et al., 2019a) |