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Abstract

We propose a hyperparameter learning framework that learns patient-specific hyperparameters for

optimization-based image reconstruction problems for x-ray CT applications. The framework

consists of two functional modules: (1) a hyperparameter learning module parameterized by a

convolutional neural network, (2) an image reconstruction module that takes as inputs both the

noisy sinogram and the hyperparameters from (1) and generates the reconstructed images. As a

proof-of-concept study, in this work we focus on a subclass of optimization-based image

reconstruction problems with exactly computable solutions so that the whole network can be

trained end-to-end in an efficient manner. Unlike existing hyperparameter learning methods, our

proposed framework generates patient-specific hyperparameters from the sinogram of the same

patient. Numerical studies demonstrate the effectiveness of our proposed approach compared to bi-

level optimization.
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1. Introduction

Model-based image reconstruction (MBIR) problems are often formulated as an

optimization problem, where an objective function consisting of a data fitting term and a

regularizer is to be minimized, and the minimizer is the image to be reconstructed. The

effectiveness of MBIR methods, to a certain extent, depends on a judicious choice of the

hyperparameters in the objective function and/or the regularizer. Manual sweeping (grid

search) of hyperparameters is sometimes employed when there are a small number (2 or 3)

of them. On the other hand, the hyperparameters can be fully spatially variant. Specifying

such a large number of hyperparameters by grid search is infeasible. A more automatic and

efficient hyperparameter learning framework is needed.

One approach to hyperparameter learning is bi-level optimization [1,2], where a lower level

optimization (e.g., MBIR) finds the minimizer for any candidate set of hyperparameters;
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while an upper level optimization tries to determine the optimal hyperparameter by

comparing the minimizers with the training labels. The output of bi-level optimization is one

set of optimized hyperparameters to be used for all test cases. The effectiveness of bi-level

optimization highly depends on the similarity between the training data and the test data.

Leveraging the feature representation power of deep neural networks (DNN) and

convolutional neural networks (CNN), in this work we propose a CNN-based

hyperparameter learning framework that learns a parameterization map between the

sinogram, i.e., CT projection data, and the desirable hyperparameters; at inference time the

learned parameterization map can generate patient-specific hyperparameters from an

individual patient’s sinogram in an efficient manner.

Our learning framework consists of two functional modules (Fig. 1). The CNN (Module 1)

tries to capture the intrinsic relationship between the sinogram and the hyperparameters for

high quality image reconstruction; image reconstruction itself is performed by Module 2.

Only Module 1 contains trainable parameters, which are trained in an end-to-end, supervised

manner using ground truth labels such as noise-free or full dose images. At inference time,

the two modules can be detached and work separately: Module 1 generates case-specific

hyperparameters for each test case; the hyperparameters can be used by the reconstruction

algorithm that runs independently, i.e., outside of a deep learning (DL) library.

Deep learning with end-to-end training of an architecture like Fig. 1 requires

backpropagating the loss gradient through the image reconstruction module. As a first proof

of concept study, in the remainder of the paper we specialize Fig. 1 by focusing on a

subclass of optimization-based image reconstruction methods whose solution can be

computed exactly. This class of reconstruction methods proceeds in two steps: (1)

optimization-based sinogram smoothing, and (2) filtered-backprojection (FBP)

reconstruction using the smoothed sinogram. The main purpose for this specialization is to

demonstrate the working principle of the proposed learning framework. Effective end-to-end

training of the fully general architecture (Fig. 1) is discussed in Section 5.

2. Method

Sinogram smoothing [3, 4] is often used as a preprocessing step to reduce noise in a CT

sinogram before image reconstruction. Similar to MBIR problems, optimization-based

sinogram smoothing employs an objective function consisting of a data-fitting term and a

regularizer that incorporates a priori information. The regularizer has hyperparameters that

need to be specified or learned.

For sinogram smoothing problems, Module 2 of Fig. 1 specializes to the two submodules of

Fig. 2: a sinogram smoothing module and an FBP module. The overall learning framework

remains the same. Once the network is trained, Module 1 generates the desirable

hyperparameters using a patient’s own sinogram. The hyperparameters are then passed to

the sinogram smoothing module to generate the smoothed sinogram, which is then

reconstructed.
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To enable end-to-end training, the loss gradient will need to be backpropagated through (a)

the FBP module, (b) the sinogram smoothing module, (c) the CNN module, in order to

update the weights in the CNN. In this work, we focus on view-by-view based sinogram

smoothing problems that can be solved exactly using dynamic programming (DP); doing

this using a DL library’s constructs allows gradient backpropagation with the DL’s

automatic differentiation capability,† and the entire network can be trained in an efficient,

end-to-end manner. Below we discuss in more detail each of three modules in Fig. 2 and the

supervised training strategy.

Notation. We denote by ys, xs , s = 1, ⋯, N, a training set of N samples with paired noisy

sinograms ys and the ground truth xs images. Each sinogram ys ∈ Rm,n consists of m view

angles and n detector bins. We sometimes omit the sample index and use y = {yv,i} ∈ Rm,n to

denote a sample sinogram, with view index v, and detector bin index i.

2.1. Module 1: CNNθ(y)

Our CNN module works on one projection view at a time. This is also the only module that

contains trainable parameters (θ) in our architecture. One view of the sinogram yv is a 1-D

vector of n measurements (typically n = 600 − 1000). As shown in Fig. 3, we use a 1-D

variant of the convolutional DenseNet [5] with dense connections for the mapping between a

projection view yv and the desirable hyperparameters γv.

2.2. Module 2a: SinoSmooth(yv, γv)

The sinogram smoothing module takes as input one noisy projection view Rn ∋ yv ≡ y = {yi}

i = 1,· · · , n, and the hyperparameters γv ≡ γ from the CNN and generates a smoothed

version yv = y according to:†

y = argmin
z

{1
2 ∑

i = 1

n
wi yi − zi

2 + f (z, γ)}, (1)

where wi > 0, i = 1, · · · , n, are the known statistical weights of the sinogram that models the

uncertainty in the data; the regularizer f is given by:

f (z, γ) = ∑
i = 1

n − 1 γi
2 zi + 1 − zi

2, γ ≜ γ1, ⋯, γn − 1 (2)

As specified in (2), the hyperparameter γ is detector dependent, which drastically enhances

the modeling power of the quadratic regularizer. For example, when γi → 1/|zi+1−zi| for all

i, the quadratic penalty f(z, γ) in (2) may emulate 1-D total variation. In this work, the

hyperparameter γ is driven by the CNN module (1).

Problem (1) with the regularizer (2) is a quadratic optimization problem, whose solution is

linear in the data y. One way to derive the solution is to sequentially apply completion of

†We employ TensorFlow in this work; other deep learning libraries, e.g., PyTorch, are equally capable.
†All views are processed in the same manner; here in this section we omit the view index v to avoid notational clutter.
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squares, for i = 1, · · · , n, to the objective function (1), each time expressing yi in terms of

the “future” yi + 1, and repeat the process to the last data point i = n. This procedure will

generate the following forward-backward recursions known in dynamic programming (DP):

qi =
qi − 1 + wi γi

qi − 1 + wi + γi
, (3a)

ci =
qi − 1ci − 1 + wiyi

qi − 1 + wi
, (3b)

for i = 1, · · · , n as the forward recursion, and

yi =
qi − 1ci − 1 + wiyi + γiyi + 1

qi − 1 + wi + γi
, (4)

for i = n,· · ·, 1 as the backward recursion. The initial conditions for (3) and (4) are

q0 = 0, c0 = 0, yn + 1 = 0

We implemented (3) and (4) as a custom “SinoSmooth” layer in TensorFlow (TF). Since all

operations are differentiable, TF’s automatic differentiation capability can backpropagate the

gradient information from the output y to the hyperparameters γ to enable end-to-end

training.

2.3. Module 2b: FBP(y)

The view-by-view smoothed sinogram yv is assembled as input to the FBP reconstruction

module, which then generates the reconstructed image. We implemented the fanbeam FBP

algorithm (cosine-weighting, filter, weighted-backprojection) as a second custom layer in

TF. We reconstructed randomly positioned region-of-interests (ROI) of size 200 × 200 pixels

within the FOV of 50 cm.† The randomly positioned ROIs may be viewed as a data

augmentation mechanism similar to the (randomly extracted) patches in CNN image

denoising.

2.4. Supervised training

Training is carried out in a supervised manner using paired noisy sinograms ys as input and

noise-free images xs as training labels. More precisely, the loss function for training can be

written as minθ
1
N ∑i xs − xs 2

, where xs is the sth noise-free image (label), and xs is the

network output calculated as the following:

†The limited memory of our GPU card makes it impossible to do a full reconstruction of size 512 × 512. To improve memory
efficiency, it may be necessary to provide the custom gradient for the backprojection operation in FBP, similar to [6].
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Module(1)γv
s = CNNθ yv

s

Module (2a) yv
s = SinoSmooth yv

s, γv
s

Module (2b) xs = FBP y v
s

where s = 1,· · · , N v = 1, · · · , m. Both Module (1) and Module (2a) treat a m-view

sinogram as 1-D signals of a batch size m. That is, the view dimension is taken as the batch

dimension, and all views necessary for image reconstruction are processed in parallel.

3. Numerical studies

3.1. Data generation

We used the pancreas-CT dataset (total 18135 slices from 82 control patients) from the

Cancer Imaging Archive [7] for data generation. The 2D CT images were first upsampled to

double the matrix size (5122 → 10242), then forward projected with a distance-driven

projector [8] to generate noise-free fanbeam data using a Siemens scanner (Sensation 64)

geometry (2π acquisition of size m = 1160, n = 672). The noise-free sinograms were then

reconstructed using FBP algorithm without apodization to generate the training labels xs of

size 5122. Noisy sinograms ys = yv, i
s  were created by first converting the noise-free line

integrals yv, i
s  to transmissions Iie

−yv, i
s

, where Ii, the air-scan photon counts, was adjusted by a

body bowtie such that Ii varied from 2e5 near the central to 4e4 near the edge channels. The

noisy transmission data followed the Poisson distribution with mean Iie
−yv, i

s
, and was log-

converted to the noisy line integrals yv, i
s = ys. The noisy sinograms were used as input to

Module 1 and 2a of Fig. 2.

3.2. Network training

Of the 82 patients from the pancreas-CT datasets, 72 (˜15,500 slices) were used for network

training, and the rest (˜2,600 slices) was used for network testing.† A random sample of 10

test cases is shown in Fig. 4. It can be seen that there is a rich variation in patient size and

anatomy.

We implemented our network architecture in TensorFlow tf2.2 on an Nvidia Quadro P5000

GPU with 16 GB memory. For CNN training, the batch size for the 1-D DenseNet was 1160,

the same as the total view angles over 2π acquisition. More details of the CNN module are

†This work focuses on a feasibility study, not on choosing the best CNN model for hyperparameter generation. Therefore we
performed a 2-part train-test split, rather than the 3-part train-validation-test split which is common for model selection [9, page 222].
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provided in Table 1, together with a tabulation of the layer parameters. Note that the # of

parameters include both the convolution kernels, bias, and batch normalization. The large

number of channels in layers B and C is due to the dense connections.

The CNN parameters were initialized with random weights and estimated using the Adam

optimizer, with learning rate 1e-4 and learning rate decay following a polynomial schedule.

Loss curves for training and testing are shown in Fig. 5.

3.3. Methods for comparison

We compared the proposed approach with two alternatives: (1) FBP, and (2) bi-level

optimization. For FBP, we used the Hanning apodization and optimized the cutoff frequency

individually for each test case presented. Bi-level optimization generates one set of the

optimal hyperparameters from the training data, which is then applied to all test cases. Using

the diagram of Fig. 2, it is easy to see that we obtain bilevel optimization by removing the

CNN parameterization module. In this sense, our proposed approach amounts to a small but

fundamental change to the bi-level method to enable patient-specific hyperparameter

learning.

Our implementation of bi-level optimization is based on the same TF implementation of

Module 2a and 2b; the only difference is that the backpropagated gradient through 2a and 2b

was applied directly to the hyperparameters (not to the weights in CNN).

We used root mean squared error (RMSE) and structural similarity index (SSIM) to quantify

the performance of the different methods.

4. Numerical results

The RMSE and SSIM of the 10 test cases (Fig. 4) for the different methods are plotted in

Fig. 6. Among the three methods, bi-level optimization outperformed FBP in most cases,

while the proposed hyperparameter learning performed the best in terms of the two figure-

of-merits.

Fig. 7 shows our reconstruction results of two test case (case 4 and 1). The four images in

Fig. 7(a) are: (1) the ground truth image, (2) the cut-off optimized FBP image, (3) the bi-

level image, and (4) the reconstruction result using the proposed hyperparameter learning.

The error images with respect to the ground truth are shown in Fig. 7(b); (c) and (d) are

similar to (a) and (b) but for case 1. Overall, the errors of the proposed approach have the

lowest magnitude, which agrees with Fig. 6.

The relationship between the learned hyperparameters and the noise-free sinogram is shown

in Fig. 8. The 10 panels correspond to the 10 test cases of Fig 4, arranged in the same order.

Each panel is a 2-D histogram of the learned sinogram-domain hyperparameters γ (the

vertical axis) and the neighboring differences of the noise-free projection data (the

horizontal axis). For each test case and each neighboring difference, the centroid γ value is

shown as the thick black line that is overlaid on the histogram.
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We observe from Fig. 8 that the learned hyperparameters are patient specific. The overall γ
values are higher for the larger-sized patient (e.g., case 1, 5), and lower for the smaller

patients (e.g., case 2, 9). Among the 10 test cases, case 9 has the smallest body size and the

lung image of this patient is mostly air. Correspondingly, the sinogram of case 9 has the

lowest noise level (due to our simulation of a common exposure). The learned

hyperparameter values for this patient are also the smallest, as there is not much noise in the

data to begin with.

For each test case, the centroid values of the learned hyperparameters have a unimodal

shape: the hyperparameters are larger for smaller (noise-free) neighboring difference and

lower for larger neighboring difference.‡ This observation agrees with our intuition that if

we have the a priori knowledge of the underlying true sinogram, then we should apply

higher penalty to neighbors that are known to be similar, and apply lower penalty to

neighbors that are known to be different. This intuition has been used as an empirical guide

for setting hyperparameters if a higher quality image is available, see, e.g., [10]. Our learned

hyperparameters exhibit a similar trend, and apply penalties to where they are needed.

5. Discussion

The contribution of the paper is twofold. First and foremost, we proposed a conceptual

framework that exploits the synergy between DL and optimization-based reconstruction

methods to improve image quality, i.e., using DL to generate the hyperparameters for

optimization based image reconstruction. Second, as a way of demonstrating its practical

value, we applied the conceptual framework to generate hyperparameters for optimization-

based sinogram smoothing.

Concept-wise, DL-based hyperparameter tuning for iterative reconstruction algorithms has

been previously investigated, see, e.g., the parameter tuning policy network (PTPN) [11] and

the tuning-free plug-and-play (TFPP) [12]. These existing DL-based hyperparameter

learning methods [11, 12] learn a hyperparameter tuning strategy based on feedback from

intermediate image reconstruction results. They are not efficient at inference time as they

require either (1) running multiple iterations of an image reconstruction algorithm [12], or

(2) running multiple loops, each of which involves running an iterative algorithm till

convergence [11]. Our approach is different in that once the network is trained, the patient-

specific hyperparameters are generated in a feedforward manner, independent of the

particular MBIR algorithm to be used. The inference-time efficiency of our hyperparameter

generation is therefore much improved over the existing methods.

On the application side, we have shown that our DL-based patient-specific hyperparameter

learning approach outperformed bilevel learning, which is not patient specific. Alternatively,

DL can also be used to directly map a corrupted sinogram to an improved version as a way

of sinogram preprocessing. The application areas of the existing DL-based sinogram

preprocessing can be grouped as (1) sparse view CT [13,14] to improve sampling and reduce

sparse-view artifacts, (2) metal artifacts [15] reduction, and (3) sinogram smoothing [16].

‡Here the larger (smaller) differences refer to the differences measured in absolute value.
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The output sinogram of these approaches is directly used for image reconstruction. In our

case, we do not use DL to enhance the sinogram itself; we use the DL network to learn

hyperparameters that are subsequently used in a well-defined sinogram domain optimization

problem. We do not claim this approach is the best DL-based sinogram smoothing approach.

In fact, we believe low-dose sinogram smoothing would benefit from working directly with

the pre-log data [17], not the post-log data that we used in this paper.

Coming back to PTPN, we point out that PTPN is an image domain approach: the

hyperparameters reside in the image space, and the training objective is calculated using the

reconstructed images. On the other hand, our application example of hyperparameter

learning is a hybrid approach: the hyperparameters reside in the sinogram, but the training

objective is calculated using the reconstructed images. It is not possible to apply PTPN to

our setup without completely modifying it to a sinogram smoothing plus image

reconstruction setting. Such a modification is beyond the scope of the paper and precludes at

this stage a direct comparison.

In a broader context, this work, the two alternative hyperparameter tuning methods [11, 12]

and the recent papers [18, 19], can all be viewed as ways of seeking a synergistic

combination between DL and compressed sensing. As these works have evidently

demonstrated, such a synergy is important and beneficial to improve image reconstruction.

Future work may proceed in several directions. We focused on view-by-view sinogram

smoothing with a spatially variant quadratic penalty since the resulting quadratic problem

has an easy-to-implement DP solution that can be ported within a DL library. Indeed, the

objective function in (1) can accommodate other penalties, e.g., the 1-D total variation [20],

yet still allow efficient DP solutions. We previously developed a DP algorithm for solving

(1) with the Huber penalty function [21]. Unlike the quadratic or the TV penalty, the Huber

function itself contains a hyperparameter that should be learned from the data together with

the penalty weights. The framework of Fig. 2 can be applied to such joint learning tasks.

A practical issue for implementing the fully generic framework of Fig. 1 is how to

implement the module for optimization-based image reconstruction, i.e., MBIR, as such

problems usually do not have closed form solutions. One approach is to implement an

approximate solution by “unrolling” an iterative algorithm [22–24] for a fixed number of

iterations; porting such an unrolled solution within a DL library may allow end-to-end

training using Fig. 1. To maximize GPU memory efficiency for such unrolling type

implementations, it may be necessary to implement C++ based custom layers and gradient

layers [6] rather than relying on autodiff.

6. Conclusions

We presented a generic framework for hyperparameter learning in the context of

optimization-based CT image reconstruction. As a proof-of-concept study, in this work we

specialized the generic framework and focused on a special two-step reconstruction

problem, i.e., optimization-based sinogram smoothing plus FBP, where the sinogram

smoothing problem has exactly computable solutions. Our numerical experiments
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demonstrate improved performance, in terms of RMSE and SSIM, by using the proposed

hyperparameter learning framework compared to bi-level optimization.

The conceptual difference between the proposed approach and bi-level optimization is that

bi-level optimization learns a set of parameters from the training data, whereas the proposed

approach learns a parameterization map. The learned parameterization (or functional

mapping) between the sinogram and the hyperparameters can be used to generate patient-

specific hyperparameters in an efficient manner. The personalized hyperparameters are

expected to improve the performance of optimization-based image reconstruction for CT

applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1:
The proposed hyperparameter learning framework consists of two functional modules: (1)

the hyperparameter learning module, (2) optimization-based image reconstruction (e.g., an

MBIR module) that generates the reconstructed image. Only Module 1 contains trainable

parameters, which are trained end-to-end in a supervised manner.
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Figure 2:
The network training architecture for learning a parametric mapping between the sinogram

and the hyperparameters.
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Figure 3:
Module 1 architecture. In layers A, B, the symbol c/b/a stands for convolution, batch

normalization, and leaky ReLU activation. In layer C, c/+ stands for convolution and ReLU.

Leaky ReLU was used in layers A and B to allow gradient backpropagation for all values of

inputs to the activation, thereby avoiding the dying ReLU problem. ReLU was used in layer

C to ensure that hyperparameters are nonnegative. The arrows → indicate block copy in

dense connections. When the batch size is 1, the input is a 1-D vector of length n (detector

elements) representing one projection view; d is the number of 1-D convolution filters.
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Figure 4:
A random sample of 10 test cases from TCIA used for quantitative analysis. Display window

(C, W) = (1034, 400) HU.
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Figure 5:
Loss curves for training and testing.
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Figure 6:
(a) RMSE and (b) SSIM of the 10 test cases in Fig. 4. The FBP images are individually

optimized in terms of the cutoff frequencies. The proposed method outperformed FBP and

bi-level optimization.
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Figure 7:
Result of two test cases (case 1 and 4). (a) The four images are: (1) the ground truth, (2) cut-

off optimized FBP reconstruction, (3) bi-level optimization, (4) result using the proposed

CNN hyperparameter learning. (b) The difference images with respect to the noise-free

ground truth. (c) and (d) are similar to (a) and (b) but for test case 1. Display window: (C,

W) = (1170, 300) HU for (a), (c), (C, W) = (0, 300) HU for (b), (d).
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Figure 8:
Relatioship between the learned hyperparameter (γ) and the neighboring difference of the

noise-free line-integrals yi, shown as 2-D histograms. The thick black lines are the centroid

γi value calculated as a function of the neighboring differences yi + 1 − yi. The 10 panels

correspond to the 10 test cases, arranged in the same order as Fig. 4. All plots have the same

axis scale, given in the first (for the vertical axis) and the last (for the horizontal axis) panels.
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Table 1:

Parameters in CNN, module (1), with 1-D convolution kernel size 3, and d = 128. The shape of the input and

output follows the convention of batch size × width × channels.

layers input output # params

A 1160 × 672 × 1 1160 × 672 × 128 1024

B 1160 × 672 × 129 1160 × 672 × 128 49664

C 1160 × 672 × 257 1160 × 672 × 1 772
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