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Abstract: A recent strong trend toward green and sustainable chemistry has promoted the intensive
use of renewable carbon sources for the production of polymers, biofuels, chemicals, monomers and
other valuable products. The Diels-Alder reaction is of great importance in the chemistry of renewable
resources and provides an atom-economic pathway for fine chemical synthesis and for the production
of materials. The biobased furans furfural and 5-(hydroxymethyl)furfural, which can be easily
obtained from the carbohydrate part of plant biomass, were recognized as “platform chemicals” that
will help to replace the existing oil-based refining to biorefining. Diels-Alder cycloaddition of furanic
dienes with various dienophiles represents the ideal example of a “green” process characterized by a
100% atom economy and a reasonable E-factor. In this review, we first summarize the literature data
on the regio- and diastereoselectivity of intermolecular Diels-Alder reactions of furfural derivatives
with alkenes with the aim of establishing the current progress in the efficient production of practically
important low-molecular-weight products. The information provided here will be useful and relevant
to scientists in many fields, including medical and pharmaceutical research, polymer development
and materials science.

Keywords: biobased furans; renewable building blocks; plant biomass; Diels-Alder cycloaddition;
selectivity; sustainable chemistry; biorefining

1. Introduction

To date, the development of efficient technologies for catalytic or biocatalytic conver-
sion of renewable plant biomass into viable targeted products remains one of the most
important and challenging tasks for modern chemical science [1–5]. The primary advan-
tage of biorefining based on renewable carbon sources over traditional refining using
exhaustible resources is the realization of a carbon-neutral cycle, leading to zero total
carbon emissions into the environment during chemical production and consumption.
Biobased furans—furfural (FF) and 5-(hydroxymethyl)furfural (HMF)—can be obtained by
acid-catalyzed dehydration of carbohydrates and are recognized as “platform chemicals”.
As expected, the key role of biobased technologies is to replace the key existing prod-
ucts of oil-based refinement with renewables [4,6,7]. The tremendous synthetic potential
explains the unprecedented scale of research in the fields of synthesis and application
of furanic platform chemicals for the production of biofuels, chemicals, polymers and
other industrially important products, which was evidenced by the increasing number of
relevant publications (partially since 2010, Figure 1) and was highlighted in many recent
reviews [7–20].
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Figure 1. Number of publications mentioning biobased furans per year. Source: Scopus.
Keyword: “furfural”.

One of the focused reactions of furan chemistry is the [4+2]-cycloaddition, well known
as the Diels-Alder (DA) reaction, in the classic mechanism based on the interaction of the
highest occupied molecular orbital of furanic diene (HOMOdiene) and the lowest unoc-
cupied molecular orbital of dienophile (LUMOdienophile). The DA reaction may proceed
with high efficiency under solvent-free and/or noncatalytic conditions, representing the
ideal example of a “green” process characterized by a 100% atom economy and a low to
moderate E-factor [21,22]. Intermolecular furan/alkene DA reactions have a high potential
for application in fine organic synthesis, biomedical areas, materials sciences, polymers
and bio-organic chemistry (Figure 2) [23–30].
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Figure 2. Diels-Alder cycloaddition with biobased furans as an approach towards practically impor-
tant products. Summarizing and analyzing scientific data about the regio- and diastereoselectivity of
intermolecular Diels-Alder cycloadditions between furfural derivatives and alkenes was a general
aim of this review.

The direct Diels-Alder reaction of FF or HMF with common alkenes is thermodynami-
cally unfavorable [31–33], but this type of cycloaddition can be performed after decreasing
the HOMO–LUMO gap through reduction of the aldehyde group into more donor func-
tionality. Another approach is redox-neutral chemical activation through modification of
aldehyde into acetal or hydrazone with the possibility of aldehyde deprotection. In general,
the nature of the substituent at the C2 position in the furan ring strongly affects reactivity
in DA cycloadditions; furans with electron-donating groups are well-suited as substrates,
while electron-poor furans display low reactivity [34,35].
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In the case of highly active dienophiles, DA adducts may be formed under noncat-
alytic conditions; for other substrates, catalysis by Lewis acids is usually needed. Reactions
of furans with alkene dienophiles are often characterized by facile retro-DA (rDA) reactions
due to the low reactivity of furan as a diene that leads to low diastereo- and regioselectivity
of the cycloaddition (Scheme 1). The orbital HOMOdiene and LUMOdienophile energy differ-
ence seems to control the diastereomer distribution [32,36]. Charge interactions between
diene and dienophile favor orthoselectivity, while steric hindrance promotes metaselectivity
but without strong kinetic or thermodynamic preference for a single regioisomer [32,37].
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with mono-substituted alkenes.

Information about the selectivity of DA reactions is helpful to scientists in many fields,
including medical and pharmaceutical research, polymer development and materials sci-
ence. The regio- and diastereoselectivity of DA cycloaddition are important parameters for
the high-yielding synthesis of chemically pure products, especially in the development of
drugs, because diastereomers may exhibit different biological activities [38]. The endo- and
exo-DA adducts have different steric properties and convert to furan and alkene compo-
nents at different temperatures, which may be important in the development of various
dynamic systems [39,40]. Moreover, the stereo structure of cyclic alkenes may influence the
reactivity in ring-opening metathesis polymerization used for the synthesis of stereoregular
polymers [41]. This difference for furan-derived oxanorbornanes was clearly demonstrated
by Kilbinger and coworkers. They showed in several examples that furan/maleimide DA
adducts react quickly and selectively with the G3 catalyst, resulting in the formation of
monomolecular carbene complexes that display low reactivity with the second molecule of
oxanorbornane (both endo or exo) due to unfavorable steric factors (Scheme 2a). In contrast,
exo-oxanorbornane counterparts undergo efficient homopolymerization under the same
reaction conditions (Scheme 2b) [41].

Several approaches may be used to increase the regio- and diastereoselectivity of DA
reactions: fine-tuning of steric and electronic properties of dienes or dienophiles; variation
of reaction conditions such as temperature, time, type of solvent and pressure; and catalysis
by Lewis acids. Generally, for furan/alkene cycloadditions, exo isomers are more stable
and form under thermodynamic control of the reaction (at high temperature), while endo
isomers are kinetically preferred [36,42–44].
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In this review, we summarized the recent literature about the regio-, stereo- and di-
astereoselectivity of intermolecular Diels-Alder (IMDA) cycloadditions of simple furfural
derivatives with alkenes used for the synthesis of cyclic aliphatic or aromatic products.
Some aspects, such as the influence of a catalyst or solvent, the type of diene and dienophile
and, in some cases, comparison with other furanic substrates, were highlighted. Several
reviews have covered the synthetic potential of biobased furans for the production of
biofuels, chemicals and materials [10,11,15,18,30,45–59], as well as the mechanisms and se-
lectivity of DA cycloadditions [60–64]. These discussions will not be repeated here. Instead,
a dedicated survey of the literature focused on the selectivity of IMDA cycloadditions of FF
derivatives with alkenes (which has not been previously reported) will be provided here.

2. Selectivity of Diels-Alder Cycloaddition with Furfural Derivatives as Substrates
2.1. 2-Methylfuran

2-Methylfuran (2-MF) is the simplest 2-substituted furan produced by the reduction of
the aldehyde group in FF. The selectivity of IMDA reactions of 2-MF with common cyclic
and acyclic alkenes is presented in Tables 1 and 2. Noncatalytic reactions of 2-MF with
maleic or citraconic anhydride led to cycloadducts with exo configurations even at room
temperature (Table 1, entries 1–3). The current literature provides scarce information about
the selectivity of reactions of 2-MF with maleimides under kinetic conditions. In the case of
maleimides reacting with 2-MF at room temperature, the formation of >20% endo isomer
was observed (entry 4), while at temperatures more than 60 ◦C, exclusive formation of
the exo isomer was found for most maleimides (Table 1). However, in a water medium
for some N-substituted maleimides, the content of endo isomers was higher even under
high temperature (entries 8, 10). For N-carboxyethyl maleimide reacting with furan, 2-MF
or 2,5-dimethylfuran, the best exoselectivity was obtained in the case of furan, while 2,5-
dimethylfuran showed the best endoselectivity under kinetic conditions (entries 16–19) [65].
The cycloadduct of 2-MF with N-phenyl maleimide was isolated in a pure, optically active
form with 90% ee using dynamic enantioselective crystallization by continuous suspension
in heptane or hexane solution with glass beads at 80 ◦C in the presence of trifluoroacetic
acid (TFA) to accelerate the deracemization (entry 13) [44].
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An important possible application of 2-MF is the protection of double bonds in func-
tionalized alkenes against nucleophiles using the DA reaction. For example, modification
of the 2-MF/maleimide DA adduct by alkylation or a Mitsunobu reaction, followed by ther-
mal deprotection, was used for the synthesis of N-alkylated maleimides (Scheme 3) [69,70].
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Representative reactions of 2-MF with acyclic alkenes containing one or two electron-
withdrawing groups (EWGs) are covered in Table 2. High endoselectivity was obtained for
the HfCl4-catalyzed reaction of 2-MF with dimethyl maleate at low temperatures (Table 2,
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entries 1, 2). However, under the same conditions, benzyl acrylate showed exoselectivity
for cycloaddition (entries 7, 8). An adduct of 2-MF and trans-4,4,4-trifluorocrotonic acid
formed with high regio- and diastereoselectivity (entry 3). An enantioselective version
of DA reactions with some fluorinated alkene dienophiles was implemented using chiral
oxazaborolidine organocatalysts, which affords corresponding chiral oxabicyclic products
with high yields and selectivity (entries 4–6). In the case of acrylonitrile reacting with
2-MF, regio- and diastereoselectivity was poor even in the presence of Lewis acid catalysts
(entries 9, 10). Orthoadducts of 2-MF with 1-cyanovinyl acetate or 2-chloroacrylonitrile
that are favored over meta-isomers due to electronic reasons were obtained under kinetic
conditions with high regioselectivity (entries 11–15). A shift towards endo-products was
found for reactions of 2-MF with allenic esters in the presence of Eu(fod) as the catalyst
(entries 16–19).

Table 2. IMDA cycloadditions of 2-MF with acyclic alkenes.
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Table 2. Cont.

№ Dienophile Conditions Selectivity Yield of Adducts (%),
[Ref.]

9 Acrylonitrile ZnI2, neat, 50 ◦C N.d. 69, [80]

10 Acrylonitrile Neat, 60 ◦C Ortho 66 (endo/exo 61:39), meta 34
(endo/exo 56:44) 69, [31,32]

11 1-Cyanovinyl acetate ZnI2, neat, 0 ◦C, 8 days Ortho (endo/exo 1:1) 2 52, [81]
12 1-Cyanovinyl acetate ZnI2, neat, 20 ◦C, 26 h Ortho endo2 17, [81]
13 1-Cyanovinyl acetate ZnI2, neat, RT, 24 h Ortho (endo/exo 3:1) 2 30, [82]
14 1-Cyanovinyl acetate MgI2, neat, RT, 24 h Ortho (endo/exo 4:1) 2 57, [82]
15 2-Chloroacrylonitrile ZnI2, neat, 0 ◦C Ortho/meta 10:1 (mixture of endo/exo) 91 1, [83]
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2.2. Furanic Acetals

With rare exceptions, furfural does not react with dienophiles, but the introduction
of aldehyde groups by DA reaction may be performed using an acetalization strategy
that reduces the electron-withdrawing character of the carbonyl group. Table 3 highlights
the results of reactions of furanic acetals with cyclic and linear alkenes. Literature data
about the stereoselectivity of reactions of furanic acetals with cyclic alkenes are scarce.
Predominant formation of endoadducts under kinetic conditions was detected by NMR
when N-methyl maleimide was used as a dienophile (entry 1). For reactions of furfural
acetals with mono-substituted acyclic alkenes, regioselectivity significantly depended on
the type of substrates and reaction conditions. For dioxolane acetal reacting with methyl
vinyl ketone, methyl acrylate or acrolein at 60 ◦C, a mixture of regio- and stereoisomers was
obtained with predominant meta- and endoselectivity. In the case of acrylonitrile reacting
with furanic acetals, the selectivity of cycloadditions was poor even in the presence of
Lewis acid catalysts (entries 5–9). For the ZnCl2-catalyzed reaction of ethylthioacetal with
acrylonitrile at 30 ◦C, 91% orthoselectivity and moderate endoselectivity were observed
(entry 10). According to DFT calculations, the regioselectivity of reactions of furanic acetals
with alkenes is a result of two opposite factors: charge interactions between the furan and
alkene favor orthoselectivity, while steric factors promote metaselectivity [32].
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2.3. Functionalized Furfural Derivatives

Mild reduction of the aldehyde group in FF is a path to important furanic building
blocks furfuryl alcohol (FA) and furfuryl amine (FAM), which are widely used for the
development of functional or dynamic molecular and biomolecular systems. Examples of
possible areas of applications include but are not limited to the synthesis of biologically
active compounds [87–90], oxanorbornane-based amphiphiles [91–94], supramolecular
systems [95], self-assemblies [96], self-healing polymers and other dynamic systems [28].

The diastereoselectivity of DA reactions of FA, FAM and some common derivatives
with cyclic and acyclic alkenes is shown in Tables 4–6. Preferable formation of exoadducts
was observed for reactions of maleic and citraconic anhydrides with selected furanic
substrates even at low temperatures (Tables 5 and 6), except for the vinylated derivative of
FA, which showed preferable endoselectivity (Table 5, entries 5–10).

Table 4. IMDA cycloadditions of FA with alkenes.
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1 2,5-bis(Hydroxymethyl)furan (BHMF) as a substrate. 2 2,5-bis(Acetoxymethyl)furan (BAMF) as a substrate. 3 Slowly transformed to the
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The diastereoselectivity of the reactions with N-alkyl- and N-benzyl-substituted
maleimides was in accordance with typical kinetic profiles demonstrating a shift to-
wards endo- and exo-products under kinetic or thermodynamic conditions, respectively
(Tables 4–6). However, this relationship was disrupted for some N-aryl maleimides react-
ing with various furanic substrates under both kinetic and thermodynamic conditions.
For example, the diastereoselectivity of the cycloaddition of vinyl-substituted FA and
N-Ph-maleimide shifted from a 1:2.8 endo/exo ratio under kinetic conditions to Et2O to a
4:1 endo/exo ratio in toluene at 80 ◦C (Table 5, entries 11, 12).

Table 5. IMDA cycloadditions of FA derivatives with cyclic alkenes.
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Table 5. Cont.

№ R Dienophile Conditions Selectivity Yield of Adducts
(%), [Ref.]

24 2 Bz Maleic anhydride Et2O, 24 ◦C, 24 h Endo 84, [106]
25 Bz N-Me-maleimide CH2Cl2, 23 ◦C Endo/exo 70:30 N.d., [86]
26 Bz N-Dodecylmaleimide THF, 23 ◦C Endo/exo 63:37 N.d., [86]
27 COiBu N-Pr-maleimide CHCl3, 55 ◦C Endo/exo 60:40 N.d., [107]
28 COiBu N-iBu-maleimide CHCl3, 55 ◦C Endo/exo 45:55 N.d., [107]
29 COiBu N-tBu-maleimide CHCl3, 55 ◦C Endo/exo 51:49 N.d., [107]
30 COiBu N-Bn-maleimide CHCl3, 55 ◦C Endo/exo 44:56 N.d., [107]

31 COiBu
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CHCl3, 55 ◦C Endo/exo 26:74 N.d., [107]

32 COiBu N-(2-Methylphenyl)-maleimide CHCl3, 55 ◦C Endo/exo 67:33 N.d., [107]
33 COiBu BMI CHCl3, 55 ◦C Endo/exo 19:81 N.d., [107]
34 COtBu N-Me-maleimide CH2Cl2, 23 ◦C Endo/exo 71:29 N.d., [86]
35 COtBu N-Dodecylmaleimide THF, 23 ◦C Endo/exo 62:38 N.d., [86]

1 Yield of DA adduct after hydrogenation. 2 BHMF dibenzoate as a substrate. N.d.—not determined.

Information about the regio- and diastereoselectivity of functional FF derivatives with
acyclic alkenes is scarce. A mixture of regio- and diastereoisomers with approximately
equal distribution was detected after the noncatalytic reaction of FA with acrylonitrile
(Table 4, entry 14). A mixture of regio- and diastereomers with ortho (endo:exo)/meta
(endo:exo) 2:1/8:6 ratio was formed from itaconic anhydride reacting with FA acetate
(Scheme 5) [85]. However, unfavorable thermodynamic parameters of cycloaddition with
this dienophile were overcome using FA as a substrate, where proximal (ortho) DA adducts
undergo further intramolecular cyclization, shifting the reaction equilibrium towards
metastable lactone 5, which was isolated in 94% yield (Scheme 5) [85].
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Overall, the diastereoselectivity of DA reactions of alkenes with FF derivatives con-
taining donor substituents at the C2 position is not always predictable, because it strongly
depends on the structure of both the diene and dienophile. More predictable diastere-
oselective construction of functionalized oxabicyclic structures may be performed using
HMF-derived 2,5-disubstituted furans that predominantly react with cyclic alkenes with
high endoselectivity (Table 4, entries 1–2; Table 5, entry 24) [33,43,106,108].
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Table 6. IMDA cycloadditions of FAM derivatives with cyclic alkenes.
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1 tert-Butyloxycarbonyl.

Examples of DA reactions of furfural derivatives containing acceptor-type substituents
with alkenes are rare. After the reaction of 2-furoic acid with β-alanine-substituted
maleimide, only a small amount of one isomer was detected at 40 ◦C after 128 h [26].
Interestingly, a very low equilibrium constant for this reaction was observed in DMF media,
while the equilibrium constant in water was at least two orders of magnitude greater. This
difference was explained by the statement that water has a significant effect on the entropy
of the reaction. The model reaction of methyl furoate with 1,6-bis(N-maleimido)hexane
was investigated by NMR. Only approximately 20% conversion was detected after 4 days
at 70 ◦C in a DMSO-d6 medium [35]. However, despite the low reactivity of furans with
acceptor substituents, dynamic materials containing furanic ester-[35] or oxime-[114] func-
tionalized polymers and maleimide functionalities showed moderate self-healing efficiency
based on the DA reaction.

Bruijnincx and coworkers reported a new strategy for the direct introduction of furans
containing aldehyde groups into DA cycloaddition [34]. Reactions of furanic aldehydes
with water-soluble maleimides at 60 ◦C in a water medium led to the formation of DA
adducts with good selectivity (Table 7). In the case of furfural, good exoselectivity of cy-
cloaddition was achieved, while for some HMF derivatives, endoselectivity was preferable.
In-water formation of the DA adduct was also detected for 2-acetylfuran, which reacts with
N-methylmaleimide with the formation of only the exoadduct (entry 9). DFT calculations
showed that the formation of furan/maleimide DA adducts through hydration of the
aldehyde group is thermodynamically possible if hydration occurs both prior to (which
increases the rate of the forward DA reaction) or after the cyclization step (which decreases
the rate of the retro-DA reaction) [34].
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№ Furanic Substrate R1 Products, Selectivity 1

1 R = H Me 6a (endo/exo 18:40), 7a (endo/exo 1:3)
2 R = H H 6b (endo/exo 8:30), 7b (endo/exo 0:0)
3 R = H Et 6c (endo/exo 8:28, 7c (endo/exo 1:6)
4 R = H nPr 6d (endo/exo 1:7), 7d (endo/exo 1:11)
5 R = H Ph 6e (endo/exo 0:1), 7e (endo/exo 1:5)
6 R = Me Me 6f (endo/exo 3:8), 7f (endo/exo 0:3)
7 R = CH2OH Me 6g (endo/exo 37:13), 7g (endo/exo 0:0)
8 R = CH2OMe Me 6h (endo/exo 7:5), 7h (endo/exo 3:3)
9 2-Acetylfuran Me 7i (endo/exo traces:32)

Reaction conditions: H2O, 60 ◦C, 16 h. 1 Determined by 1H NMR (data were obtained from reference [34]).

3. Regioselectivity in the Synthesis of Aromatics Using the IMDA Reaction of
Furfural Derivatives with Alkenes

The dehydration of furan/alkene adducts is an important sustainable approach to
accessing renewable aromatic chemicals (Scheme 6) [7,30,37,115–117]. Utilization of HMF-
derived C6 renewable furans (especially 2,5-dimethylfuran or 2,5-furandicarboxylic acid)
provides access to para-substituted aromatics (as a route towards “green” polymers) and
various polysubstituted aromatic products (Scheme 6) [116]. The presence of only one
substituent in furfural increases the diversity of possible aromatic products to ortho- and
meta-xylylene derivatives as well as various 1,2,3-trisubstituted compounds (Scheme 6).
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Several approaches were used for the construction of aromatic rings using furan/alkene
DA reactions starting from furanic, oxanorbornene or oxanorbornane furfural-derived
compounds. For some furanic and alkene substrates, dehydration occurs spontaneously



Int. J. Mol. Sci. 2021, 22, 11856 14 of 22

following the DA reaction stage. The tandem Diels-Alder cycloaddition/dehydration reac-
tion of 2-MF with ethylene is an important approach to renewable toluene (Table 8). This
type of DA cycloaddition is thermodynamically difficult and therefore requires the use of a
catalyst, high temperature and pressure. Heterogeneous Brønsted-acidic catalysts, mainly
zeolites or MOFs, are beneficial for these reactions [118]. Significant problems include
side reactions such as the formation of furanic dimers (benzofurans), larger oligomers,
products of furan hydrolysis and other reactions [115,118–120]. The introduction of acrylic
acid instead of ethylene in reactions with 2-MF over zeolites or using ionic liquid catalysts
showed good efficiency in the formation of aromatics [121]. Fast pyrolysis of a mixture
of 2-MF and propylene using various zeolites under continuous flow conditions gives a
mixture of monocyclic and polycyclic aromatic hydrocarbons with low selectivity [122].

Table 8. Synthesis of toluene by DA reaction of 2-MF with alkenes.
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1 H H-BEA zeolite, heptane, 62 bar, 250 ◦C Toluene (46%), [119]
2 H H-Beta-22 zeolite, 300 ◦C, 20 h Toluene (50%), [123]
3 COOH Bi-BTC, 160 ◦C, 24 h Toluene (65%), 2-methyl benzoic acid (23%), [121]

4 COOH [Emim]NTf2, Sc(OTf)3, 15 ◦C, 0.5 h Toluene (12%), 2-methyl benzoic acid (2%), 3-methyl
benzoic acid (9%), [124]

5 COOH [BSO3HMIm]HSO4, 100 ◦C, 2h Toluene (12%), 2-methyl benzoic acid (30%),
3-methyl benzoic acid (3%), [125]

Furfural dimethyl hydrazone reacts with active dienophiles such as maleic anhydride
or maleimides, yielding corresponding arene derivatives through noncatalytic in situ DA
cycloaddition followed by spontaneous dehydration (Table 9) [126–128]. One-pot synthesis
of arenes starting from furfural using a hydrazine strategy was carried out with good yields
in water (entries 7–11) [129].

Table 9. Preparation of phthalimides from furfural using a hydrazine strategy.
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№ Substrates Conditions Yield of Aromatic Product,
[Ref.]

5 2-Furaldehyde dimethylhydrazone,
maleic anhydride CHCl3, RT 94, [126]

6 2-Furaldehyde dimethylhydrazone,
N-Et-maleimide CHCl3, RT 90, [126]

7 2-Furaldehyde, N,N-dimethylhydrazine, N-Et-maleimide H2O, 50 ◦C 97, [129]
8 2-Furaldehyde, N,N-dimethylhydrazine, maleimide H2O, 50 ◦C 86, [129]

9 2-Furaldehyde, N,N-dimethylhydrazine,
N-cyclopropylmaleimide H2O, 50 ◦C 80, [129]

10 2-Furaldehyde, N,N-dimethylhydrazine, N-Ph-maleimide H2O, 50 ◦C 73, [129]

11 2-Furaldehyde, N,N-dimethylhydrazine,
N-(4-Methylbenzyl)maleimide H2O, 50 ◦C 68, [129]

Acid-catalyzed dehydration of furan-derived oxanorbornenes to aromatic products
requires strong reaction conditions and therefore may be used only for a narrow range
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of substrates. Renewable 3-methylphthalic anhydride (MPA) was obtained using acid-
catalyzed dehydration of the corresponding 2-MF-derived DA adduct 8 with only 48%
maximum yield (Scheme 7) [130]. An important problem in this synthetic approach is the
facile retro-DA reaction, which is forced to carry out these transformations at industrially
non-practical temperatures (−30 ◦C and lower) [124,125]. A novel approach to MPA synthe-
sis that overcomes the problem of the rDA reaction is the introduction of oxanorbornane 9
(which is unable to recycle) instead of 8 into the aromatization stage (Scheme 7) [67,131,132].
Aromatization of 9 by solid acid catalysts led to MPA with 67% maximum yield. Some
important byproducts, such as 2-methyl benzoic acid and 3-methyl benzoic acid, were also
formed during this reaction, and their ratio depended on the catalyst used [67,131]. Higher
selectivity of aromatization was achieved by oxidative dehydrogenation of 9 into phthalate
10 using a silicomolybdic acid catalyst in diethyl carbonate (Scheme 7) [132].
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The deprotonation of DA adducts formed from 2-(furan-2-yl)-1,3-dioxolane and acry-
lonitrile by CH3ONa/DMSO superbase affords aromatic products at 30 ◦C with high total
yield and a good ortho/meta ratio (Table 10, entries 1, 2) [31]. The study of kinetic features of
the aromatization stage showed that the meta-adduct is more reactive than the ortho-isomer,
which made it possible to isolate pure meta-adducts from the reaction mixture at 50% con-
version, with subsequent regeneration of the ortho-isomer. Aromatization of DA adducts by
tBuONa/DMSO superbase was also efficient for 2-MF and methyl group-protected FA but
showed a low yield of aromatics in the case of unprotected FA (Table 10, entries 3–5) [31].

Table 10. Preparation of aromatics by base-catalyzed dehydration of acrylonitrile-derived oxanorbornenes.
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№ Oxanorbornene Yield of DA Adducts 1 Yield of Aromatic Products 1

1 R = dioxolane acetal 76 (ortho/meta ~1:1) 2 84 (ortho/meta ~1:1.5)
2 R = dioxolane acetal 76 (ortho/meta ~1:1) 86 (ortho/meta ~1:1.8) 3

3 R = Me 53 (ortho), 13 (meta) 97 (ortho), 62 (meta) 4

4 R = CH2OEt 36 (ortho), 18 (meta) 94 (ortho), 100 (meta) 4

5 R = CH2OH 47 (ortho), 26 (meta) 21 (ortho), 42 (meta) 4

1 Data were obtained from reference [31]. 2 After 120 h of the reaction. 3 CH3ONa as a base. 4 Relative to the corresponding ortho- or
meta-DA cycloadduct.

Recently, a new dynamic kinetic trapping strategy was developed for the construction
of “drop-in” phthalide systems using tandem IMDA/lactonization and then aromatization
reactions (Scheme 8) [37]. The first stage of this process is the reversible formation of
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unstable adducts (mixture of regio- and stereoisomers) of FA (11a–c) or BAMF (14) with
acrylates substituted by EWGs (HFIP, TFE or 4NP) at an oxygen atom. The role of EWG
in the dienophile was the activation of both double bonds for the IMDA reaction and
the carbonyl group towards diastereoselective intramolecular cyclization and into a more
thermodynamically stable exo-lactone (the next step). The last aromatization stage was
performed using an Ac2O/strong acid mixture yielding phthalides 13 or 16 with maximum
98% and 60% yields, respectively.
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HFIP = 1,1,1,3,3,3-hexafluoroisopropyl. TFE = 2,2,2-trifluoroethyl. 4NP = 4-nitrophenyl.

4. Conclusions

The IMDA reactions of biobased furans with alkene dienophiles are an important
strategy for accessing practically important products, such as fundamental building blocks,
fine chemicals, biologically active compounds or various organic and hybrid dynamic
systems. Based on the literature highlighted in this review, we can assume that the problem
of low regio- and stereoselectivity, which significantly reduces the synthetic potential of
furan/alkene DA cycloaddition in fine organic synthesis and materials development, is still
not solved for many functional furfural derivatives and alkene substrates. The reactivity of
furfural-derived acceptor furans towards common alkenes, as well as the synthesis and
aromatization of DA adducts of functional furfural derivatives with acyclic alkenes, are
very poorly represented in the current literature. However, these types of reactions are
important sustainable approaches towards functional aliphatic or aromatic products and
therefore require further scientific investigations.

Rapid progress in this area can be anticipated, taking into account emerging trends in
sustainable development towards the incorporation of bioderived chemicals and materials
into the chemical industry. The focus of this review clearly shows that selectivity issues
are far from solved and do not match current requirements. More studies are needed
to develop practical and easy-to-use procedures to achieve high selectivity in reactions
involving simple bioderived furanic starting materials.
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Abbreviations

2-MF 2-methylfuran
Ac acetate
BAMF 2,5-bis(acetoxymethyl)furan
BHMF 2,5-bis(hydroxymethyl)furan
BMI 4,4’-bis(maleimido)diphenylmethane
BOC tert-butyloxycarbonyl
Bn benzyl
Bz benzoyl
DA Diels–Alder
DFT density functional theory
DMF dimethylformamide
DMSO dimethyl sulfoxide
Emim 1-ethyl-3-methylimidazolium
EWG electron-withdrawing group
FAM furfuryl amine
FF furfural
HMF 5-(hydroxymethyl)furfural
HOMO highest occupied molecular orbital
IMDA intermolecular Diels–Alder
LUMO lowest unoccupied molecular orbital
MOF metal organic framework
MPA 3-methylphthalic anhydride
N.d. not determined
NMR nuclear magnetic resonance
PEG polyethylene glycol
rDA retro-Diels–Alder
RT room temperature
Tf triflate
TFA trifluoroacetic acid
THF tetrahydrofuran
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