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Abstract: A mathematical model for evaluation of the temperature mode of the disc–pad system
during single braking is proposed. The model is based on the thermal problem of friction formulated
for two semi-infinite bodies, compressed with pressure increasing over time while reducing the
sliding velocity from the initial value to zero at the stop. The exact solution to this problem was
obtained by means of Duhamel’s theorem. Validation of the solution was performed by achieving
in special cases parameters of known solution to this problem with constant pressure and velocity
(under uniform sliding). The results of the numerical calculations are presented for a selected friction
pair, made of functionally graded materials with titanium alloy (disc) and aluminum alloy (pad) cores
coated with ceramics graded toward friction surfaces. For the established values of the parameters
such as the rise time in pressure and the FGM gradients, the ability to quickly obtain spatiotemporal
temperature distributions in the disc and pad was presented. The influence of the variability of these
parameters on the maximum temperature of the brake system was also investigated.

Keywords: functionally graded materials; braking; frictional heating; temperature

1. Introduction

Friction elements of braking systems are subjected to severe conditions such as high
temperature and intensive wear. During braking, performance of these components in
terms of efficiency, service life, and dissipation of heat from the contact surface depends
on the operating conditions and material properties. It has been shown that the operating
characteristics of the entire assembly of the braking system can be significantly improved
by introducing a smooth gradient in the microstructure of the friction materials [1]. Such
functionally graded materials (FGMs) are a class of heterogeneous materials with continu-
ous variation of properties over their volume. Generally, these materials are composites
formed by smooth gradation of two or more constituent phases along certain dimensions of
a structure. This gradation can be regulated by changing the volume fraction distribution
of component of material from one to another in a controlled manner [2]. As a result, the
thermophysical properties of material continuously vary as a function of position along a
certain direction. This allows designing a functionally graded material in order to obtain
optimized friction characteristics of a brake.

In general, statements of thermal problems of friction contain partial differential
equations with variable coefficients. Therefore, the application of analytical methods to
their solution is difficult or even impossible. Hence, numerical methods are often used
to consider such problems. An FGM disc subjected to thermal load due to frictional
heating while taking into account the inertial force due to the rotation of the disc was
studied by Afsar and Go [3]. A 2D finite element analysis (FEA) for a circular disc with
exponential variations in thermophysical properties in the radial direction was performed.
An axisymmetric FEA of a brake disc, with properties distributed according to the power-
law function of radial position, was executed by Shahzamanian et al. [4,5]. It was found that
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the gradation index of the disc material has a crucial influence on the thermomechanical
behavior of the entire braking system.

A finite element thermal contact analysis of a functionally graded disc under dry
friction was performed by Hosseini and Talebi [6]. The core part of the considered disc
was steel, and it gradually changed through the thickness of the disc, according to a power
law, approaching pure ceramic at the outer surface. It was shown that the temperature
and the corresponding thermal displacements in the FGM disc are much lower than in
the conventional steel disc. Furthermore, it was established that the use of an FGM brake
disc may eliminate thermal cracking and wear. In particular, functionally graded materials
composed of ceramic and metal perform very well in contact problems involving friction,
since they combine the advantages of both components [7]. These elements mostly have a
metal core in order to maintain strength and rigidity, whereas ceramic is present on the
outer surfaces to resist intensive wear and elevated temperature conditions.

Separately, the study of the phenomenon of thermoelastic instability (TEI) of brake
systems with FGM should be mentioned. The solution of a 2D thermal contact problem of
friction for a functionally graded cermet brake disc was obtained by means of FEA [8]. They
investigated TEI caused by the coupled interaction of the mechanical and thermal loads in
the sliding system. Generally, this leads to the establishment of localized high-temperature
zones on the contact surface, known as hot spots, which are directly attributable to the
premature failure of the friction system. This instability is often called the frictionally
excited TEI and occurs in tribosystems when the sliding velocity exceeds a certain critical
value. It was shown that the value of the critical velocity for a functionally graded brake disc
is higher than that for a conventional homogeneous disc. This conclusion was confirmed
by further research investigating TEI in an FGM strip sliding uniformly against two
homogeneous semi-spaces [9,10]. Assuming an exponential variation of the thermophysical
properties along the thickness of an FG strip permitted obtaining an exact solution using
the analytical perturbation method. Using the same methodology, the TEI of the brake
modeled as an FGM semi-infinite body sliding against a homogeneous semi-space under
uniform pressure taking into account the frictional heating and thermal contact resistance
was investigated by Mao et al. [11]. As a result, they determined the stability boundaries
of thermoelastic instability in the considered sliding system. The effect of the arbitrarily
varying thermoelastic properties of the FGM on the TEI was considered by Mao et al. [12].
To simulate the distribution of the FGM properties, a homogeneous multilayered model
was employed. This approach is a replacement of the continuous FGM material with a
package of homogeneous layers with constant properties. The gradient was simulated
by assigning different properties values to each sublayer. It was proven that the results
received for the FGM strip, divided into a sufficient number of layers, were close to the
results found using the corresponding exact solutions [13]. It should be noted that this
conclusion is dependent on the problem under consideration, and the differences between
the obtained results may be significant in some cases [14]. This is particularly true for FGM
with temperature-dependent properties. A multilayered model was used in [15] in order to
establish the coupled effect of the frictional heat and the thermal contact resistance. Since
the homogeneous multilayered model deals with the arbitrarily varying properties of FGM,
the power-law, exponential, sinusoidal, and cosinusoidal distributions of the brake disc
properties were considered. The perturbation and transfer matrix methods were used to
deduce the characteristic equation of the TEI problem, to obtain the relationship between
the critical sliding velocity and the critical heat flux [15]. The formulated conclusions
confirm that the application of ceramic-based FGM in a brake disc, consisting of ceramics
at the sliding interface and steel in the middle layer, reduces the susceptibility of braking
system toward TEI [9–11,15].

However, FGMs are increasingly finding applications in braking systems, in the fab-
rication of not only discs, but also brake pads. Experimental investigations revealed that
FGMs could successfully fulfill the demands for brake pads and improve their characteris-
tics [1,16]. The novel functionally graded ductile iron for brake pads was investigated in
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a well-controlled model sliding test and a disc-brake machine in [16]. The results of the
tribological tests revealed a positive effect of the functional gradient of properties on the
wear of the pads and the improved stability of the friction coefficient. Govindaraju et al. [1]
developed and investigated Fe-based material on brake pads with graded composition. The
FG specimens were subjected to a dry sliding test for studying their tribological behavior.
The results were compared with the conventional brake pad specimen. It was found that
the wear resistance of the functionally gradient specimen is much greater compared to the
conventional pad material [1].

We note that a more comprehensive review of the literature on thermoelastic contact
problems with frictional heating for functionally graded materials was provided in our
previous article [17]. This article is a continuation of the research cycle started in [17], in
which the case of the uniform sliding of an FGM tribosystem was considered. The present
article concerns the transient thermal problem of friction during braking, which takes
into account the time-dependent specific friction power due to the exponential increase in
contact pressure.

2. Statement to the Problem

The frictional heating in a brake disc system during a single braking process is consid-
ered. Frictional elements of the system are two identical pads, located symmetrically to the
brake disc. At the initial time moment t = 0, pads are pressed to the friction surfaces of the
disc with uniformly distributed on the contact area and time-dependent pressure [18].

p(t) = p0 p∗(t), p∗(t) = 1− e−t/ti , 0 ≤ t ≤ ts, (1)

where ti ≥ 0 is the rise time in contact pressure from zero to the nominal value p0, and ts is
the time of stop. Due to the interaction of friction forces, the linear velocity of vehicle V is
reduced from the initial value V0 ≡ V(0) to zero at the stop time moment t = ts according
to the following law [19,20]:

V(t) = V0V∗(t), V∗(t) = 1− t
t0
s
+

ti

t0
s

p∗(t), t0
s =

W0

f p0 AaV0
, 0 ≤ t ≤ ts, (2)

where W0 is the initial kinetic energy of the system, f is the friction coefficient, Aa is the
nominal contact area between the pad and disc, and t0

s is the braking time with constant
deceleration ( ti → 0). The braking time, taking into account the temporal profile of the
velocity (Equation (2)), is determined from the stop condition V∗(ts) = 0. For 0 < ti ≤ 0.3t0

s
it was established [19] that ts ∼= t0

s + 0.99ti.
The sliding velocity reduction during braking is accompanied by the generation

of frictional heat on the contact surface of the friction pair. In order to determine the
temperature field generated in this way, the corresponding thermal problem of friction is
formulated on the basis of the following assumptions:

1. The materials of the pads and the disc are functionally graded with an exponential
decrease in thermal conductivity along their thickness, with invariant specific heat
and density;

2. The initial temperature of all elements is the same and equal to the ambient tempera-
ture Ta;

3. The whole work of friction goes to heating the bodies, while the wear of the friction
surfaces is neglected;

4. The free surfaces of the pads and the disc are adiabatic;
5. The thermal and mechanical properties and coefficient of friction are independent of

the temperature T;
6. Only the change in the temperature gradient in the direction perpendicular to the

friction surface is taken into account;
7. The thermal contact of friction between the pads and the disc is perfect; the tem-

peratures of their friction surfaces during braking are the same, and the sum of the
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intensity of the heat fluxes directed to both elements along the normal to the contact
surface is equal to the specific friction power:

q(t) = q0q∗(t), q0 = f p0V0, q∗(t) = p∗(t)V∗(t), 0 ≤ t ≤ ts, (3)

where the temporal profiles of pressure p∗(t) and velocity V∗(t) have the forms
expressed in Equations (1) and (2), respectively;

8. Due to the symmetry with respect to the center plane of the disc, to establish the
temperature of the braking system, it is sufficient to consider the contact scheme of
one pad with a disc of half of its thickness.

With such assumptions, a contact scheme of two sliding semi-infinite bodies (semi-
spaces) related to the Cartesian system 0xyz (Figure 1) was adopted to describe the process
of frictional heating in the disc–pad system.
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Figure 1. Scheme of the frictional heating in the disc–pad system.

The temperature rise Θ = T − Ta was determined from solution to the following
one-dimensional boundary value problem of heat conduction taking into account the
generation of heat due to friction:

∂

∂z

[
K1(z)

∂Θ(z, t)
∂z

]
= c1ρ1

∂Θ(z, t)
∂t

, z > 0, 0 < t ≤ ts, (4)

∂

∂z

[
K2(z)

∂Θ(z, t)
∂z

]
= c2ρ2

∂Θ(z, t)
∂t

, z < 0, 0 < t ≤ ts, (5)

K2(z)
∂Θ(z, t)

∂z

∣∣∣∣
z=0−

− K1(z)
∂Θ(z, t)

∂z

∣∣∣∣
z=0+

= q(t), 0 < t ≤ ts, (6)

Θ(0−, t) = Θ(0+, t), 0 < t ≤ ts, (7)

Θ(z, t)→ 0 , |z| → ∞ , 0 < t ≤ ts, (8)

Θ(z, 0) = 0, |z| < ∞, (9)

where
Kl(z) = Kl,0eγl |z|, |z| < ∞, Kl,0 ≡ Kl(0), γl ≥ 0, l = 1, 2, (10)

and function q(t) has the form expressed in Equation (3). Here and further, the subscript l
indicates the parameters and quantities related to the certain element—l = 1 for the disc,
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and l = 2 for the pad. Taking into account the relations in Equation (10), the problem in
Equations (6)–(9) was written in the following form:

∂2Θ(z, t)
∂z2 + γ1

∂Θ(z, t)
∂z

=
e−γ1z

k1,0

∂Θ(z, t)
∂t

, z > 0, 0 < t ≤ ts, (11)

∂2Θ(z, t)
∂z2 − γ2

∂Θ(z, t)
∂z

=
eγ2z

k2,0

∂Θ(z, t)
∂t

, z < 0, 0 < t ≤ ts, (12)

K2,0
∂Θ(z, t)

∂z

∣∣∣∣
z=0−

− K1,0
∂Θ(z, t)

∂z

∣∣∣∣
z=0+

= q(t), 0 < t ≤ ts, (13)

Θ(0−, t) = Θ(0+, t), 0 < t ≤ ts, (14)

Θ(z, t)→ 0 , |z| → ∞ , 0 < t ≤ ts, (15)

Θ(z, 0) = 0, |z| < ∞, (16)

where
kl,0 =

Kl,0

clρl
, l = 1, 2 (17)

are the coefficients of thermal diffusivity of the materials on their contact surfaces; z = 0.

3. Solution to the Problem

In the case of a uniform slip with a constant specific power of friction q(t) = q0, t ≥ 0,
the solution to the problem in Equations (11)–(16) can be written in the following form [17]:

Θ̂(z, t) = Λe−γ1z/2

[
e−γ1z/2

(1 + γεKε)
+

4
γε

∞

∑
n=1

φ1(z, µn)

Ψ(µn)
e−pnt

]
, z ≥ 0, t ≥ 0, (18)

Θ̂(z, t) = Λeγ2z/2

[
eγ2z/2

(1 + γεKε)
+

4
γε

∞

∑
n=1

φ2,n(z, )
Ψ(µn)

e−pnt

]
, z ≤ 0, t ≥ 0, (19)

where

φ1(z, µn) = J1(µn)J1(γεµne−γ1z/2), φ2(z, µn) = J1(µn)J1(γεµneγ2z/2), (20)

Ψ(µn) = µ2
n[(1 + γεKε)J0(µn)J0(γεµn)− (γε + Kε)J1(µn)J1(γεµn)], (21)

Kε =
K∗0√

k∗0
, γε = γ∗

√
k∗0, K∗0 =

K1,0

K2,0
, k∗0 =

k1,0

k2,0
, γ∗ =

γ1

γ2
, Λ =

q0

γ2K2,0
, (22)

pn = 0.25k1,0γ2
1µ2

n, (23)

µn > 0, n = 1, 2, 3, . . ., are the real roots of the following functional equation:

J0(γεµ)J1(µ) + Kε J0(µ)J1(γεµ) = 0, (24)

where Jk(x) denotes the Bessel functions of the first kind of the k-th order [21].
The temperature rise Θ(z, t) corresponding to the specific friction power q(t) in

Equation (3) is searched on the basis of Duhamel’s formula [22].

Θ(z, t) =
∂

∂t

t∫
0

q∗(t− s)Θ̂(z, s)ds, 0 < t ≤ ts, (25)
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where Θ̂(z, t) is the temperature rise in Equations (18)–(24) for constant specific friction
power q(t) = q0. Taking into account the solutions to Equations (18) and (19) in Duhamel’s
integral (Equation (25)), it was achieved that

Θ(z, t) = Λe−γ1z/2

[
e−γ1z/2

(1 + γεKε)
q∗(t) +

4
γε

∞

∑
n=1

φ1(z, µn)

Ψ(µn)
G′n(t)

]
, z ≥ 0, 0 ≤ t ≤ ts, (26)

Θ(z, t) = Λeγ2z/2

[
eγ2z/2

(1 + γεKε)
q∗(t) +

4
γε

∞

∑
n=1

φ2(z, µn)

Ψ(µn)
G′n(t)

]
, z ≤ 0, 0 ≤ t ≤ ts, (27)

where G′n(t) is a derivative of the function Gn(t), which is determined as

Gn(t) =
t∫

0

q∗(t− s)e−pntdt, n = 1, 2, 3, . . . (28)

Substituting the temporal profile of the specific power of friction q∗(t) in Equation (3)
into Equation (28) yielded the following equation:

Gn(t) = Gn,1(t)−
1
t0
s

Gn,2(t) +
ti

t0
s

Gn,3(t), n = 1, 2, 3, . . . , (29)

where

Gn,1(t) =
t∫

0
p∗(t− s)e−pntdt, Gn,2(t) =

t∫
0
(t− s)p∗(t− s)e−pntdt,

Gn,3(t) =
t∫

0
[p∗(t− s)]2e−pntdt.

(30)

The calculations of integrals in Equation (30) taking into account the time profile of
contact pressure p∗(t) (1), give

Gn,1(t) = p−1
n (1− e−pnt) + a−1

n (e−pnt − e−t/ti ), (31)

Gn,2(t) = t(p−1
n − a−1

n e−t/ti )− p−2
n (1− e−pnt)− a−2

n (e−pnt − e−t/ti ), (32)

Gn,3(t) = p−1
n (1− e−pnt) + 2a−1

n (e−pnt − e−t/ti )− b−1
n (e−pnt − e−2t/ti ), (33)

where
an = pn − t−1

i 6= 0, bn = pn − 2t−1
i 6= 0n = 1, 2, 3, . . . (34)

If for any n = k, k = 1, 2, . . ., the equality pk = t−1
i (ak = 0, bk = −t−1

i ) is true, then
the integration of the Equation (30) gives

Gk,1(t) = ti(1− e−t/ti )− te−t/ti , (35)

Gk,2(t) = ti[t− ti(1− e−t/ti )]− 0.5t2e−t/ti , (36)

Gk,3(t) = ti(1− e−2t/ti )− 2te−t/ti . (37)

On the other hand, for pk = 2t−1
i (ak = t−1

i , bk = 0) it was obtained that

Gk,1(t) = 0.5ti(1− e−t/ti )
2
, (38)

Gk,2(t) = 0.5ti[t− 0.5ti(1− e−2t/ti )]− ti[t− ti(1− e−t/ti )]e−t/ti , (39)

Gk,3(t) = 0.5ti(1− e−2t/ti )− 2ti(1− e−t/ti )e−t/ti + te−2t/ti . (40)
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Substituting the function Gn,i(t), i = 1, 2, 3 in Equations (31)–(33) into the right side of
Equation (29) yields

Gn(t) =
(

1 + ti
t0
s
+ 1

t0
s pn

)
(1−e−pnt)

pn
−
(

1 + 2ti
t0
s
+ 1

t0
s an

)
(e−t/ti−e−pnt)

an
+

+ ti(e−2t/ti−e−pnt)

t0
s bn

− t
t0
s

(
1
pn
− e−t/ti

an

)
, 0 ≤ t ≤ ts, n = 1, 2, . . . .

(41)

The searched derivative of the function Gn(t) in Equation (41), meeting the conditions
in Equation (34), has the following form:

G′n(t) =
(

1 + ti
t0
s

)
e−pnt − (1−e−pnt)

t0
s pn

+
(

1 + 2ti
t0
s
+ 1

t0
s an

)
(t−1

i e−t/ti−pne−pnt)
an

+

+ 1
t0
s an

(
1− t

ti

)
e−t/ti − ti(2t−1

i e−2t/ti−pne−pnt)

t0
s bn

, 0 ≤ t ≤ ts, n = 1, 2, . . . .
(42)

Proceeding in a similar manner, from Equations (29) and (35)–(40), the derivative for
pk = t−1

i was found.

G′k(t) =
t
t0
s

(
3 +

t0
s

ti
− t

2ti

)
e−t/ti +

ti

t0
s

(
2e−2t/ti − e−t/ti − 1

)
, (43)

That for pk = 2t−1
i was also found.

G′k(t) =
(

1 + 4
ti

t0
s

)(
e−t/ti − e−2/ti

)
− ti

2t0
s

(
1− e−2t/ti

)
− t

t0
s

(
e−t/ti + 2e−2t/ti

)
. (44)

Approaching pn → 0 ( an → −t−1
i , bn → −2t−1

i ), the limit of Equation (42) was
found.

lim
pn→0

G′n(t) = 1 + ti
t0
s
− t

t0
s
−
(

1 + ti
t0
s

)
e−t/ti + ti

t0
s
e−2t/ti − ti

t0
s

(
1− t

ti

)
e−t/ti =

=
(

1− e−t/ti

)[
1− t

t0
s
+ ti

t0
s

(
1− e−t/ti

)]
= p∗(t)

[
1− t

t0
s
+ ti

t0
s

p∗(t)
]
= q∗(t),

0 ≤ t ≤ ts,

(45)

where p∗(t) and q∗(t) are the dimensionless temporal profiles of pressure (Equation (1))
and specific friction power (Equation (3)), respectively, where the function q∗(t) occurs
beyond the sign of the sum in the solutions in Equations (26)–(28).

It should be noted that, at the initial time moment, from Equation (3), it follows
q∗(0) = 0 and, from Equation (42), taking into account Equation (34), it was found that

G′n(0) = 1 + ti
t0
s
+
(

1 + 2ti
t0
s
+ 1

t0
s an

)
(t−1

i −pn)
an

− ti(2t−1
i −pn)
t0
s bn

+ 1
t0
s an

=

= 1 + ti
t0
s
− 1− 2ti

t0
s
− 1

t0
s an

+ ti
t0
s
+ 1

t0
s an

= 0, pn 6= t−1
i ∨ pn 6= 2t−1

i , n = 1, 2, . . . .
(46)

If pk = t−1
i or pk = 2t−1

i , then, from Equations (43) and (44), it follows that G′k(0) = 0.
In this way, it was shown that the solution in Equations (26) and (27) meets the initial
condition in Equation (16).

In the special case for ti → 0 , when the pressure p(t) in Equation (1) attains the
nominal value p0 immediately, and the velocity V(t) in Equation (2) reduces linearly
(braking with constant deceleration), the dimensionless temporal profile of the specific
friction power q∗(t) and function G′n(t) in Equation (42) takes the following form:

q∗(t) = 1− t
t0
s

, G′n(t) = e−pnt − (1− e−pnt)

t0
s pn

, 0 ≤ t ≤ t0
s . (47)
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From Equations (47) and (48), it follows that q∗(0) = 1, G′n(0) = 1. This means
that fulfillment of the initial condition in Equation (16) in this case is possible when the
following equality is satisfied:

∞

∑
n=1

φ1(z, µn)

Ψ(µn)
=

0.25γε

1 + γεKε
e−γ1z/2,z ≥ 0,

∞

∑
n=1

φ2(z, µn)

Ψ(µn)
=

0.25γε

1 + γεKε
eγ2z/2, z ≤ 0, (48)

where functions φl(z, µn), l = 1, 2, and Ψ(µn) have the form in Equations (20)–(22). The val-
idation of the summation of functional series in Equation (48) was performed numerically.

4. Dimensionless Form of Solution

The following denotes are introduced:

ζ = z
a , τ =

k1,0t
a2 , τs =

k1,0ts
a2 , τ0

s =
k1,0t0

s
a2 , τi =

k1,0ti
a2 , γl =

γ∗l
a , l = 1, 2,

Θ0 = q0a
K1,0

, Θ∗ = Θ
Θ0

,
(49)

where a = max{a1, a2}, al , and l = 1, 2 is the thickness of the friction pair element, which
actively participates in the absorption of heat. This is the distance from the friction surface,
on which the temperature is 5% of maximum values achieved on this surface [23].

al =
√

3kl,0ts, l = 1, 2. (50)

Taking into account the denotes in Equation (49) in Equations (1)–(3), (20), and (42),
and the solutions in Equations (26) and (27), the dimensionless temperature rise can be
written in the following form:

Θ∗(ζ, τ) =
K∗0
γ∗2

e−γ∗1 ζ/2

[
e−γ∗1 ζ/2

(1 + γεKε)
q∗(τ) +

4
γε

∞

∑
n=1

φ∗1 (ζ, µn)

Ψ(µn)
G′(τ, µn)

]
, ζ ≥ 0,0 ≤ τ ≤ τs,

(51)

Θ∗(ζ, τ) =
K∗0
γ∗2

eγ∗2 ζ/2

[
eγ∗2 ζ/2

(1 + γεKε)
q∗(τ) +

4
γε

∞

∑
n=1

φ∗2 (ζ, µn)

Ψ(µn)
G′(τ, µn)

]
, ζ ≤ 0, 0 ≤ τ ≤ τs,

(52)
where

q∗(τ) = p∗(τ)
[

1− τ

τ0
s
+

τi

τ0
s

p∗(τ)
]

, p∗(τ) = 1− e−τ/τi , (53)

φ∗1 (ζ, µn) = J1(γεµn)J1(µne−γ∗1 ζ/2), φ∗2 (ζ, µn) = J1(µn)J1(γεµneγ∗2 ζ/2), (54)

G′n(τ) =
(

1 + τi
τ0

s

)
e−λnτ − (1−e−λnτ)

τ0
s λn

+
(

1 + 2τi
λ0

s
+ 1

τ0
s αn

)
(τ−1

i e−τ/τi−λne−λnτ)
αn

−

− τi(2τ−1
i e−2τ/τi−λne−λnτ)

τ0
s βn

+ 1
τ0

s αn

(
1− τ

τi

)
e−τ/τi ,

αn = λn − τ−1
i 6= 0, βn = λn − 2τ−1

i 6= 0,

(55)

λn = (0.5γ∗1 µn)
2, n = 1, 2, . . . , (56)

τs ∼= τ0
s + 0.99τi, 0 < τi ≤ 0.3τ0

s . (57)

Function Ψ(µn) is given by Equation (21), and numbers µn > 0 are the real roots of
the functional Equation (24). From Equations (43) and (44), it follows that

G′k(τ) =
τ

τ0
s

(
3 +

τ0
s

τi
− τ

2τi

)
e−τ/τi +

τi

τ0
s

(
2e−2τ/τi − e−τ/τi − 1

)
, λk = τ−1

i , (58)

G′k(τ) =
(

1 + 4
τi

τ0
s

)(
e−t/ti − e−2τ/τi

)
− τi

2τ0
s

(
1− e−2τ/τi

)
− τ

τ0
s

(
e−τ/τi + 2e−2τ/τi

)
, λk = 2τ−1

i . (59)
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Substituting ζ = 0 into Equations (51), (52), and (54), the dimensionless temperature
rise on the contact surface can be written in the following form:

G′k(τ) =
(

1 + 4
τi

τ0
s

)(
e−t/ti − e−2τ/τi

)
− τi

2τ0
s

(
1− e−2τ/τi

)
− τ

τ0
s

(
e−τ/τi + 2e−2τ/τi

)
, λk = 2τ−1

i , (60)

where
φ∗(µn) ≡ φ∗1 (0, µn) = φ∗2 (0, µn) = J1(γεµn)J1(µn). (61)

In case of braking with constant deceleration ( τi → 0), from Equation (47), it can be
obtained that

q∗(τ) = 1− τ

τ0
s

, G′(τ, µn) = e−λn τ − 1
τ0

s λn
(1− e−λn τ), 0 ≤ τ ≤ τ0

s . (62)

It should be noted that the exact solution to the problem considering the contact scheme
of friction for two semi-infinite bodies, made of homogeneous materials (γ1 = γ2 = 0), with
account of the time of contact pressure increase, was achieved in [19]. A special case of this
solution—braking with constant deceleration—was investigated in [24].

5. Numerical Analysis

On the basis of the obtained exact solutions in Equations (51), (52), and (60), the calcu-
lations of the temperature generated due to friction in the disc–pad system during single
braking were performed. Materials of the friction surfaces of elements were zirconium diox-
ide (l = 1) and the other ceramic (l = 2). With the distance from these surfaces deeper into
the bodies, their thermal conductivity coefficients increased exponentially in accordance
with Equation (10), reaching at the effective depths al , l = 1, 2 values corresponding to
titanium and aluminum alloys, respectively. The thermal properties of the abovementioned
materials are listed in Table 1.

Table 1. Thermophysical properties of the FGM components [15,25].

Element Subscript Material Thermal Conductivity
K [Wm−1K−1]

Thermal Diffusivity
k × 106 [m2s−1]

l = 1
ZrO2 2.09 0.86

Ti-6Al-4V 7.5 3.16

l = 2
ceramic 3 1.15

aluminum alloy 173 67.16

Values of the remaining input parameters were as follows: Aa = 0.442 · 10−2m2,
f = 0.27, p0 = 0.607 MPa, T0 = 20 ◦C, V0 = 23.8 m s−1, and W0 = 103.54 kJ [26]. From
Equation (2), the braking time with constant deceleration was found t0

s = 12 s and, next,
the stop time ts = 12.49 s. This allowed determining from Equation (50) the effective
depths of heat penetration a1 = 5.556 mm and a2 = 6.435 mm, as well as the value of the
scaling parameter a = a2. According to the methodology, described in detail in [17], the
dimensionless parameters of the material gradient were also established as γ∗1 = 1.28 and
γ∗2 = 4.05.

Isotherms of the temperature rise Θ(z, t) inside the elements of the friction pair are
illustrated in Figure 2. The most heated (Θ = 800÷ 943 ◦C) was a narrow, approximately
0.5 mm thick, near-surface area that appeared ≈ 3 s after start of braking. The lifetime of
such a high-temperature area is ≈ 3 s. The friction surfaces of both elements were cooled
down until the stop time moment. At the stop moment, the distance from the friction
surface, where the noticeable temperature occurs in the disc was greater than in the pad.
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Figure 2. Isotherms of the temperature rise Θ(z, t) in the disc and the pad at ti = 0.5 s.

Evolutions of the temperature rise Θ(z, t) during braking on the contact surface and
inside the friction elements on different depths are presented in Figure 3. At the beginning
of braking, the temperature on the friction surfaces z = 0 rapidly increases over time,
achieving the maximum value Θmax = 943◦C at the moment tmax = 5 s. This is followed by
a period of cooling of these surfaces until it stops. The temporal profiles of the temperature
inside the disc and the pad also have a similar shape. However, the known “delay” effect is
visible in the disc, which is that the time to reach the maximum temperature increases with
the distance from the contact surface. At the same time, this effect is almost imperceptible.
Noteworthy is also the process of rapid cooling on the friction surface of disc after reaching
maximum Θmax; at the stop moment, the temperature inside the disc is higher than on the
surface. Again, this effect does not occur in the pad material.

Materials 2021, 14, x FOR PEER REVIEW 11 of 15 
 

 

disc after reaching maximum 
max ; at the stop moment, the temperature inside the disc 

is higher than on the surface. Again, this effect does not occur in the pad material. 

  

(a) (b) 

Figure 3. Evolutions of the temperature rise ),( tz  during braking at s5.0=it  for different dis-

tances from the friction surface: (a) the disc; (b) the pad. 

Variations of the temperature during braking on the friction surfaces of disc and pad 

for different times of contact pressure increase are demonstrated in Figure 4. Extending 

the time of achieving the nominal value of pressure causes a drop of maximum tempera-

ture on the contact surface, while increasing the braking time. The effect of temperature 

drop with the growth of time of pressure increase is also presented in Figure 5. 

 

Figure 4. Evolutions of the temperature rise ),0( t during braking for different values of the time 

it
 
of contact pressure increase. 

Figure 3. Evolutions of the temperature rise Θ(z, t) during braking at ti = 0.5 s for different distances
from the friction surface: (a) the disc; (b) the pad.
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Variations of the temperature during braking on the friction surfaces of disc and pad
for different times of contact pressure increase are demonstrated in Figure 4. Extending the
time of achieving the nominal value of pressure causes a drop of maximum temperature
on the contact surface, while increasing the braking time. The effect of temperature drop
with the growth of time of pressure increase is also presented in Figure 5.
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Figure 5. Dependence of the maximum temperature rise Θmax on the time ti of contact pressure
increase.

The influence of dimensionless parameters of material gradients γ∗l , l = 1, 2 on the
dimensionless maximum temperature Θ∗max on the contact surface is illustrated in Figure 6.
It shows that an increase in the core material volume fraction in selected FGMs (Ti-6Al-4V
for disc and aluminum alloy for pad) causes a decrease in the maximum temperature in
the brake. The biggest drop in Θ∗max occurs when the gradient of the pad material γ∗2 is
increased (Figure 6b). However, the highest values of Θ∗max are reached for the friction
pair in which one of the elements is entirely made of homogeneous material. These are
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zirconium dioxide ZrO2 for the disc (Θ∗max = 995 ◦C at γ∗1 = 0, in Figure 6a) and the other
ceramic for the pad (Θ∗max = 1340 ◦C at γ∗2 = 0, in Figure 6b).
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6. Conclusions

The presented results are the continuation of an investigation from a previous article
of the authors [17], in which, in the dimensionless form, a comparative, qualitative analysis
was performed in order to study the influence of gradient of FGMs on the temperature
during frictional heating under uniform sliding. However, in this paper the mathematical
model was derived to determine the temperature field in a disc–pad system during single
braking. An important and unique feature of this model was its taking into account
of the time-dependent pressure and velocity for friction elements, made of functionally
graded materials with exponentially changing conductivity coefficients with thickness. The
proposed model allows for a quick assessment of the brake temperature mode depending
on the operational parameters, such as the time of contact pressure increase and the value
of the gradient of the friction materials. The analysis was performed in the dimensional
form. The friction surfaces of the materials were ceramic, and their cores were titanium
alloys (disc) and aluminum alloys (pad). It was established that extending the time of
pressure increase causes significant extending of the braking time and, thus, extending of
the braking distance. The maximum temperature reached on the friction surfaces drops
when the parameters of material gradients are increased.

Application of the proposed model has some limitations, resulting from the simpli-
fying assumptions made, especially the use of only an exponential function to describe
the thermal conductivity changes in FGMs. In further research, it is planned to include in
the formulation of the boundary value problem of heat conduction, as well as the thermal
resistance on the contact surface of the disc and the pad (imperfect thermal contact of
friction), and to adapt the obtained exact solution to determine the temperature of the
brake during a repeated short-term mode of braking.

As shown in the results of the numerical analysis presented in this article, the max-
imum temperature achieved even with a single braking is quite high. With such a tem-
perature, the necessary problem is to develop a model that takes into account the thermal
sensitivity of the materials. Some steps toward implementing the exact solutions of linear
problems for homogeneous materials to take into account their thermal sensitivity have
already been made for a single [27] and a repetitive short-term [28] braking modes. On the
basis of this methodology, the development of appropriate models for FGM has begun.
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Another problem caused by high temperatures is a reduction in the strength of the
material, especially when the temperature exceeds the melting point of the aluminum alloy.
Investigations of the strength were not the subject of this article, but they should also be
considered in the future.
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Nomenclature

al Effective depth of heat penetration (m)
Aa Area of the nominal contact region (m2)
cl Specific heat (J kg−1K−1)
f Coefficient of friction (dimensionless)
Jk(·) Bessel functions of the first kind of the k-th order
kl Thermal diffusivity (m2s−1)
Kl Thermal conductivity (W m−1K−1)
p Contact pressure (Pa)
p0 Nominal value of the contact pressure (Pa)
q Specific power of friction (W m−2)
q0 Nominal value of the specific power of friction (W m−2)
t Time (s)
ti Time of the contact pressure increase (s)
t0
s Stop time at braking with constant deceleration (s)

ts Stop time (s)
T Temperature (◦C)
Ta Initial (ambient) temperature (◦C)
V Velocity (m s−1)
V0 Initial velocity (m s−1)
W0 Initial kinetic energy of the system (J)
x, y, z Spatial coordinates (m)
lower l Number of the main (l = 1) and frictional (l = 2) elements of the friction pair
γl Parameter of material gradient (m−1)
γ∗l Parameter of material gradient (dimensionless)
Θl Temperature rise (◦C)
Θ∗l Temperature rise (dimensionless)
Θ0 Temperature scaling factor (◦C)
ρl Density (kg m−3)
τ Time (dimensionless)
τi Time of contact pressure increase (dimensionless)
τ0

s Braking time at constant deceleration (dimensionless)
τs Braking time (dimensionless)
ζ Spatial coordinate in axial direction (dimensionless)
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