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Phosphoproteomics reveals therapeutic targets of esophageal
squamous cell carcinoma
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Dear Editor,
Esophageal squamous cell carcinoma (ESCC) is one of the

most aggressive squamous cell carcinomas and highly prevalent
in Asia. The incidence of ESCC is affected by environmental
factors (alcohol consumption, tobacco use, etc.) and genetic
factors, both result in tumorigenesis by altering proteomic,
posttranslational modification (PTM) and metabolic character-
ization of esophageal epithelial cells. Recently, large-scale
investigations of ESCC have been performed, focusing on the
discovery of new driver mutations. However, the mechanisms
underlying ESCC development remain unclear, and comprehen-
sive protein profiling of ESCC is necessary to understand its
underlying mechanisms.
So far, the approaches to the treatment of ESCC patients mainly

include endoscopic therapy, surgery and chemoradiotherapy.
However, most patients especially with poor prognosis ESCC still
lack effective targeted treatment. Phosphorylation is of common
occurrence in cells and leads to a cascade of downstream
signaling events important for cell and dysregulation of this
process has been implicated in cancer. By now, great progress has
been made in developing therapeutic drugs that antagonize the
activity of kinases that are aberrantly activated in cancer. It stands
to reason that the implementation of phosphoproteomics may
provide greater clues to develop effective therapeutic targets.
Here, we selected 94 surgically resected primary tumor tissues (T)
and 24 non-tumor esophageal tissues (N) from 94 cases of
intermediate- and advanced-stage (TNM II–IV stage) ESCC and
performed an extensive proteomic and phosphoproteomic
characterization with consistent quality control using the iTRAQ
technique (Supplementary Fig. S1). A total of 9,042 proteins as
well as 26,892 phosphosites were identified (Supplementary Table
S1). On average, 5,049 proteins and 7,064 phosphosites quantified
per non-tumor esophageal tissues were quantified and 4,875
proteins as well as 9,376 phosphosites per tumor esophageal
tissues were quantified (Supplementary Fig. S2a). Principle
component analysis (PCA) showed the non-tumor tissues were
clustered together and clearly separated from the tumors based
on the proteomic (Fig. 1a) and phosphoproteomic (Fig. 1b) data.
Proteomics data identified a total of 556 differentially expressed
proteins (DEPs), including 227 upregulated and 329 down-
regulated proteins (Supplementary Fig. S2b). The top down-
regulated and upregulated DEPs were annotated as extracellular
and nuclear proteins, respectively (Supplementary Fig. S2c).
Phosphoproteomic data identified a total of 1691 differentially
expressed phosphorylation sites (DEPSs), including 695 upregu-
lated and 996 downregulated DEPSs in 491 and 447 differentially
expressed phosphorylation proteins (DEPPs), respectively (Supple-
mentary Fig. S2d). The upregulated DEPSs were mainly enriched in
the nucleoplasm and nucleoli (Supplementary Fig. S2e). ESCC
were mainly characterized by elevated proteomic and phospho-
proteomic levels in the spliceosome pathway and the cell cycle

pathway, and lowered ECM-receptor interaction and focal
adhesion pathway (Supplementary Fig. S3).
Furthermore, three major proteomic subtypes (S-I, S-II and S-III)

in this tumor cohort of ESCC were defined (Fig. 1c and
Supplementary Fig. S4). And the S-III had the significantly lowest
disease-free survival (DFS) (Fig. 1d) and the most proportion of
patients with lymph node metastasis (Supplementary Table S2),
and was characterized by elevated proteins and phosphorylation
proteins level in spliceosome pathways (Supplementary Fig. S5).
To identify the overactive kinase and explore the druggable

targets in ESCC, kinase activity prediction derived from phospho-
peptide data. Consistent with high levels of cell cycle activity,
nuclear-localized S/T kinase (CDK) (cluster 2) activities in ESCC
tumor tissues (especially S-III) were higher than non-tumor tissues
(Supplementary Fig. S6a). In contrast to the specificity of kinases
due to binding to the specific motifs of their substrates,
phosphatases use the following strategies to target their
substrates: through their own targeting domains or motifs directly
bind to their substrates (such as protein tyrosine phosphatases
(PTPs)), and through some phosphatase interacting proteins (PIPs)
(also named regulatory subunit) (such as protein phosphatase 1
(PP1), protein phosphatase 2 A (PP2A), etc.).1 PP1 is a single-
domain hub protein with nearly 200 validated interactors. PIPs can
increase the local concentration of PP1 through binding PP1 and
control associated PP1 by interference with substrate recruitment
or access to the active site. Several PP1 interactome had been
performed and identified hundreds of PIPs.2 Here, we considered
phosphatase and PIPs together as a unit enzyme for predicting its
activity by phosphatases or phosphatase-PIPs—substrates enrich-
ment analysis (PhSEA). Except for a small number of PPP1C-PIPs
(cluster 4) activity was increased in ESCC, lots of nuclear-localized
PPP1C-PIPs (cluster 3) activity was remarkably downregulated in
ESCC (especially S-III) (Supplementary Fig. S6b). In addition, our
data showed that only a small number of kinase activities were
correlated with their abundances, which was correlated more with
the phosphorylation level at particular Tyr/Ser/Thr sites (Supple-
mentary Fig. S6c-e), which was which frequently downregulated
in ESCC (Supplementary Fig. S6f). Moreover, only a few PIPs
(PPP1R7, etc.) positively correlated with PP1-PIP activity, a majority
of PIPs were negative correlated with PP1-PIP activity functioned as
PP1 inhibitor (Fig. 1e) and some of them, such as CD2BP2, WBP11
and MKI67 etc. have been reported to inhibit PP1 and considered
as inhibitors of PP1.2,3 Both CD2BP2 and WBP11 had been reported
to involve in spliceosome assembly and pre-mRNA splicing3,4 and
were upregulated in S-III ESCC (Fig. 1f). Knockdown of CD2BP2
and WBP11 remarkably inhibited the KYSE150 and KYSE30 growth
(Fig. 1g and Supplementary Fig. S7a-b), which suggested that these
two PP1 inhibitors played a key role in proliferation. Moreover, the
ESCC patients with high CD2BP2 had the significantly lower DFS
(Supplementary Fig. S7c). To further understand their functional
role in tumor development, the KEGG pathways of PPP1C-PIPs
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associated differentially expressed phosphorylation interactors
(DEPIs) were generated (Supplementary Fig. S7d-e), and the top
pathway enriched by the DEPIs of PPP1C-CD2BP2 and PPP1C-
WBP11 both was the spliceosome pathway (Fig. 1h).

The phosphatases with corresponding kinases well coordinate to
ensure phosphorylation homeostasis of proteins. Here, the corre-
sponding kinases of each phosphatase were analyzed by paired
relationship analysis (PRA). As shown in Fig. 1i, the substrates of
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Fig. 1 a, b PCA scatter plots of proteomic (a) and phosphoproteomic (b) datasets in 94 tumors and 24 non-tumor tissues. c Consensus
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PPP1C-CD2BP2 and -WBP11 mainly overlapped with the substrates
of CDC-like kinase 1(CLK1), cyclin-dependent kinase-like (CDKL), etc.,
which suggested that CD2BP2 and WBP11 functioned as enhancer of
these CLK1 and CDKL kinases. Consistently, inferred activity of CLK1
was mostly increased in S-III (Fig. 1j), and CLK1 DEPIs were also
enriched in the spliceosome pathway (Supplementary Fig. S7f). CLK1
phosphorylate serine- and arginine-rich (SR) proteins (such as SRSF1,
SRSF3) of the spliceosomal complex and enable SR proteins to
control RNA splicing.5 Our data showed that SRSF family proteins and
HNRNPD phosphorylation were upregulated in ESCC S-III (Supple-
mentary Fig. S7g-h). Patients of S-III have the worst prognosis after
surgery, and should receive further targeted therapy. To evaluate the
potential of CLK1 for further ESCC treatment, TG003 (CLK1 inhibitor)
was used and injected intraperitoneally into three ESCC patient-
derived tumor xenograft (PDX) mouse models. Treatment with
moderate TG003 dosage had no effect on mice body weight
(Supplementary Fig. S8a-b), and reduced tumor growth in two PDX
models, especially in PDX#2 (Fig. 1k). However, moderate dosage of
TG003 had no effect on tumor growth in PDX#3, only high dosage of
TG003 had an effect on reducing tumor growth (Supplementary
Fig. S8c). Moreover, the most TG003-sensitive PDX#2 has the highest
levels of WBP11 and CD2BP2 (Supplementary Fig. S8d), and the
reason for the TG003-insensitive PDX#3 may be due to its higher
proliferation rate, although it has the same level of WBP11 and
CD2BP2 as PDX#1. In addition, TG003 had more advantage in
treatment of ESCC with CD2BP2 and WBP11 high level than CDK4/6
inhibitor (palbocicib) (Supplementary Fig. S8b).
Overall, our data revealed that S-III ESCC with the worst prognosis

after surgery were characterized by elevated proteomic and
phosphoproteomic levels in the spliceosome pathway, and some
of PP1 inhibitors (CD2BP2, WBP11, etc.) functioning as enhancer of
CLK1 kinase were upregulated in S-III and involved in ESCC
development; and CLK1 might represent a new promising ther-
apeutic target in attempts to improve the poor prognoses of ESCC.
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