Skip to main content
. 2021 Nov 12;92:103752. doi: 10.1016/j.regsciurbeco.2021.103752

Table 1.

Predictive performances for 2019 (log) overall employment levels.

Panel A – Performance on all LLMs
Predictive method MSE MEDSE
Corresponding quarter – last year (2018) 0.00101 0.00040
Corresponding quarter – 3-year average (2016–2018) 0.00320 0.00214
OLS 0.08510 0.04799
Regression tree 0.05669 0.02907
Random forest 0.00082 0.00026
Panel B – Performance by population size
≤ 50,000 inhabitants
Corresponding quarter – last year (2018) 0.00120 0.00042
Corresponding quarter – 3-year average (2016–2018) 0.00325 0.00189
OLS 0.08067 0.03839
Regression tree 0.04337 0.02366
Random forest 0.00107 0.00034
Between 50,000 and 200,000 inhabitants
Corresponding quarter – last year (2018) 0.00075 0.00037
Corresponding quarter – 3-year average (2016–2018) 0.00312 0.00224
OLS 0.06415 0.05289
Regression tree 0.04382 0.02943
Random forest 0.00052 0.00021
≥ 200,000 inhabitants
Corresponding quarter – last year (2018) 0.00090 0.00042
Corresponding quarter – 3-year average (2016–2018) 0.00324 0.00274
OLS 0.20479 0.18258
Regression tree 0.19768 0.08120
Random forest 0.00056 0.00020

Notes: Estimates on the 2019 sample. MSE stands for Mean Squared Error; MEDSE for Median Squared Error.