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Abstract

Uncovering the complex network of the brain is of great interest to the field of neuroimaging. 

Mining from these rich datasets, scientists try to unveil the fundamental biological mechanisms 

in the human brain. However, neuroimaging data collected for constructing brain networks is 

generally costly, and thus extracting useful information from a limited sample size of brain 

networks is demanding. Currently, there are two common trends in neuroimaging data collection 

that could be exploited to gain more information: 1) multimodal data, and 2) longitudinal 

data. It has been shown that these two types of data provide complementary information. 

Nonetheless, it is challenging to learn brain network representations that can simultaneously 

capture network properties from multimodal as well as longitudinal datasets. Here we propose 

a general fusion framework for multi-source learning of brain networks – multimodal brain 

network fusion with longitudinal coupling (MMLC). In our framework, three layers of information 

are considered, including cross-sectional similarity, multimodal coupling, and longitudinal 

consistency. Specifically, we jointly factorize multimodal networks and construct a rotation-based 

constraint to couple network variance across time. We also adopt the consensus factorization as the 

group consistent pattern. Using two publicly available brain imaging datasets, we demonstrate that 
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MMLC may better predict psychometric scores than some other state-of-the-art brain network 

representation learning algorithms. Additionally, the discovered significant brain regions are 

synergistic with previous literature. Our new approach may boost statistical power and sheds 

new light on neuroimaging network biomarkers for future psychometric prediction research by 

integrating longitudinal and multimodal neuroimaging data.
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1 Introduction

It is widely accepted that the human brain has one of the most complex networks known 

to humanity and acts as the biological hardware to control our cognition and behaviors. 

Recently, advanced noninvasive neuroimaging techniques, e.g., magnetic resonance imaging 

(MRI), have revealed brain functional activities and anatomical structures in vivo. One of 

the modern approaches in neuroscience is to consider brain region interactions as a graph 

network, referred to as brain connectome or brain network [41,13]. Unlike the traditional 

voxel-wise statistics, a brain network describes the system in terms of a node-wise graph 

where graph-theoretical methods can be applied to model and simulate brain functions. By 

learning network properties, researchers could draw a broad picture about how the brain 

controls and regulates information through the orderly transfer of neural signals across brain 

regions [47]. Brain network analysis has been demonstrated to be effective for the diagnosis 

and prognosis of neurological disorders [10,67,69].

In the study of normal brain development or disease-related degeneration, useful biological 

information is encoded by different sources, e.g., multimodal and longitudinal data, which 

are not mutually exclusive but complement each other for a comprehensive description 

of brain activities and structures. For example, as an important period of brain neural 

development, early adolescence reveals a significant maturation of the brain functional 

architectures in terms of increasing functional connectivity between core brain regions 

[58]. Meanwhile, brain structures support these functional architectures exhibit plasticity 

in inter-regional fiber connectivity accompanying the functional maturation [39,50]. On the 

other hand, findings of longitudinal brain changes in multimodal data detail a trajectory 

map of neural development over time and these patterns may be significantly disturbed 

by neuropsychiatric disorders [48,22]. However, longitudinal studies of brain networks 

using single modality, e.g., functional MRI (fMRI) or diffusion tensor imaging (DTI), 

present discrepant patterns of functional and structural connectivity among some brain 

regions. Multimodal fusion makes it possible to systematically evaluate cross-modality 

relationships underlying neural processes. Previous research investigated the relationship 

between brain structural and functional connectivity in healthy and clinical populations 

[26,37,38,65] without considering progression and future changes. However, investigations 

combining longitudinal variations of brain connectivity with multimodal information are 

rarely conducted due to lack of efficient computational models.
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In the present paper, we aim to integrate multiple sources, e.g., longitudinal and multimodal 

information, in brain network analysis. Specifically, we employ longitudinal multimodal 

neuroimaging data fusion with brain network representation learning. Motivated by the fact 

that both brain functional and structural networks reflect the brain regional interactions 

and they are partially shaped by each other [60,63], we design a linear coupling model to 

extract the similar and dissimilar factors of network structure to reveal such interactions. 

The proposed linear coupling model allows weighted emphasis on brain region interactions 

that are consistently strong or week in all modalities. Such linear cross-modality relationship 

is prevalent and has been observed in many brain regions [33,51,57,29,15]. Meanwhile, 

we incorporate the longitudinal consistency to further improve our linear coupling model 

by adding a homology constraint [34]. As a result, multiple sources of network data 

have been unified in our model to provide a better description of brain organization. Our 

model eventually learns a subject-level brain network representation that can be fed into 

any statistical models for various diagnosis or prognosis analyses. Further, the network 

representation contains node and edge features which may help interpret the relationship 

between import brain regions. This is the first work which proposes a comprehensive 

and mathematically rigorous model to integrate multimodal and longitudinal information 

of brain network data in a single framework. We hypothesize that the integrated network 

learning scheme may improve brain network analysis efficacy by providing statistically 

powerful representations. In our experiments, we will evaluate our novel framework, named 

multimodal brain network fusion with longitudinal couplings (MMLC), on two publicly 

available brain imaging datasets (both are the healthy subjects with 3 scans; n=105 and 

n=77, as detailed in Sec. 2.1). Tasks for the prediction of psychometric scores will be 

conducted on these two dataset separately, i.e. predicting anxiety [28] and depression [31] 

scores, respectively. We will also compare our work with several other representative and 

state-of-the-art network representation learning algorithms to validate our hypothesis.

2 Subjects and Methods

2.1 Subjects

The datasets used in this study are all from Southwest University Longitudinal Imaging 

Multimodal Brain Data Repository (SLIM) [1]. It contains a large sample of healthy 

participants who are university students from the local community. Each participant has 

multi-modal neuroimaging data, i.e. functional magnetic resonance imaging (fMRI) and 

diffusion tensor imaging (DTI), and multi-visit scans, i.e. three consecutive scans within 

three and a half years. We use two sub-datasets from this data repository. The first dataset 

(Dataset 1) contains 105 healthy participants and each of them was evaluated based on 

their level of anxiety using the State Trait Anxiety Inventory [28] before each scan. The 

trait anxiety score (TAIs) was used in analyses. The second dataset (Dataset 2) includes 77 

participants assessed with the Automatic Thoughts Questionnaire (ATQ) [31], a self-report 

measure which reflects mental states associated with depression and was recorded before 

imaging acquisition. All participants were right-handed, with no history of neurological 

or psychiatric problems. All participants provided written informed consent prior to the 

imaging acquisitions, which was approved by the Institutional Human Participants Review 
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Board of Southwest University Imaging Center for Brain Research. Table 1 provides their 

detailed demographic information.

2.2 Data Pre-Processing and Network Construction

The pre-processing of the resting state fMRI data was performed using both FSL [2] 

and AFNI (Automated Functional Neuroimaging) [3] toolbox. In brief, the pre-processing 

steps were as follows: (1) discarding the first 10 volumes in each scan series to allow for 

signal equilibration; (2) slice-timing correction for the remaining images; (3) performing 

motion correction; (4) time series despiking; (5) spatial smoothing with a Gaussian kernel 

of 6 mm full-width at half maximum (FWHM); (6) normalizing the mean-based intensity; 

(7) temporal band-pass filtering (0.01–0.08 Hz); (8) removing linear and quadratic trends; 

(9) structural MR image processing including brain masking, tissue classification, linear 

and nonlinear spatial normalization to the MNI152 brain template and other anatomical 

data processing steps; (10) co-registering the anatomical volume with the mean functional 

volume; (11) performing nuisance signal regression (nuisance signals from white matter, 

cerebrospinal fluid, the global signal, and 6 motion parameters); (12) resampling of the 

functional data into MNI space with the concatenated transformations. In the end, a 4-

dimensional (4D) residual time series dataset was built for each brain regions in standard 

MNI space. We construct the fMRI brain networks by computing the edge weights as 

Pearson correlations between each pair of regional time series. The nodes in the networks 

are accordant with brain regions defined in the chosen brain atlas.

The pre-processing of the DTI data follows the standard process of a previous DTI study 

[74]. The DTI images were corrected for eddy current-related distortion and head motion via 

FSL software. Then, based on the structural T1 images, all DTI images were registered to 

a standard space, i.e. MNI152, to be consistent with that in the fMRI pre-processing. Here, 

the fiber probability connections across brain regions are set as the graph edge weights in 

the structural brain networks. More specifically, the fiber connections are measured through 

the probtrackx function in FSL toolbox with the default parameters. Given brain regions 

i and j, we further normalize the output of probtrackx Di,j, as Di, j =
Di, j
Di

Di, j, where Di,j 

stands for the number of fibers reaching region vi seeded from region vj, and Di represents 

the total number of fibers seeded in region i, i.e. Di = ∑j
nDi, j. Such normalization results in 

asymmetry of fiber tracking between two regions. To overcome this, we took the average of 

two directions of tracking, D⌣i, j = Di, j + Dj, i /2.

2.3 Methods

The pipeline of our multi-source brain network fusion is shown in Figure 1. Briefly, an 

individual brain network representation is extracted concurrently through 3 stages of fusions: 

1) The cross-sectional fusion among a group of participants, where the group average 

network representations are measured and forced to align with a group of participants; 2) 

The longitudinal fusion along scans to capture the consistency of longitudinal changes, 

where we use a homology transformation [34], i.e., rotations of network representations, to 

represent the time-dependent variants; and, 3) The multimodal fusion between functional 
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and structural brain networks, where linear relations between multimodal brain networks are 

pursued with matrix factorizations.

2.3.1 The Cross-Sectional Fusion—It is customary to couple subjects in a population 

to achieve the individual and group properties. We defined a graph g = (V, X) for the 

individual brain network, where V = {v1, …, vn} is the set of all n brain regions 

and X = υp, υq ∣ epq ∈ ℝn × n is the connectivity matrix, where epq is the edge weight 

(connectivity strength) between node vp and vq. In an fMRI network, epqf = Cor Sp, Sq , 

where Sp is the average time series of all the vertexes inside brain subregion vp 

and Cor(., .) is the correlation function evaluating similarities between signals Sp and 

Sq. In a DTI network, epqd = D⌣i, j. For both fMRI and DTI networks, the number of 

nodes n is defined as the number of subregions in the applied brain atlas. For each 

subject, we have two connectivity matrices, Xf (the functional network) and Xd (the 

structural network). Thus, for the whole dataset, suppose we have N subjects and each 

subject was scanned T times, we have a set of functional and structural connectivity 

matrices, Xi, j
f , Xi, j

d ∣ i = 1, …, N, j = 1, …, T . We conduct network embedding with matrix 

factorization to map the graph data into a lower dimensional latent space. In other 

words, given a network Xi,j, we identify an optimal approximation matrix factorization, 

Xi, j ≈ Ui, jV i, j
T  and V i, j

T  will be the new representation of network. To this end, one of 

the standard reconstruction processes can be formulated as a Frobenius norm optimization 

problem:

min
Ui, j; V i, j

Xi, j − Ui, jV i, j
T

F
2 . (1)

Let {X1,j, X2,j, …, XN,j} denote the set of networks for a group of N subjects at a given 

scan j, where for each network Xi, j ∈ ℝn × n, we have factorizations that Ui, j ∈ ℝN × P

and V i, j = υ(i, j), t ∈ ℝp ∣ t = 1, …, N ∈ ℝN × P . The coefficient vector v(i,j),t is the new 

representation of the tth node of subject i’s network matrix in a low dimensional space 

(p dimensions) based on the new basis Ui,j. To look for the consistent patterns among a 

population of participants, we adopt the concept of consensus matrix. If participants are 

from the same group, it is natural to hypothesize that they have a similar representation 

matrix (Vi,j) but only differ on the basis matrix (Ui,·). Hence, Vi,· should be the target 

to measure disagreement of the network patterns. Here, we introduce a new variable 

V * ∈ ℝN × P  named the consensus matrix of Vi,· and the following loss function to couple 

the network representations within a group of subjects,

min ∑
i = 1

N
V i, ⋅ − V * F

2 . (2)

Note that all Vi,· are at the same scale because entries of all the network matrix Xi,· locate 

within the range of [−1, 1]. Even though the general factorization problem might exist 

multiple solutions due to the uncertainty of basis matrix, the inter-subjects coupling problem 
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described as below is solvable with the added consensus matrix term and assumption that 

Xi,· are within the same range.

min
Ui, ⋅ ; V i, ⋅

∑
i = 1

N
Xi, ⋅ − Ui, ⋅ V i, ⋅

T
F
2 + λ V i, ⋅ − V * F

2 . (3)

2.3.2 The Multimodal Fusion—For a given participant, the edge weights of graph 

matrix in functional and structural networks fall in the same range and their number of nodes 

are identical. The node definition follows the organization of brain atlas used in this study. 

There are various brain atlases that have been widely applied in neuroimaging studies for 

brain intra- or inter-regional analysis. Previous research has shown the influence of different 

brain atlas to brain network analysis [41]. Ideally, a brain network created from fine-grained 

atlas contains more details of the regional interaction. Thus, in this study, we chose a newly 

proposed brain atlas, called human Brainnetome Atlas [21], which has 246 brain regions and 

contains both functional and structural connectivity patterns extracted from neuroimaging 

data with multiple modalities.

After reconstructing brain functional and structural networks based on the defined brain 

atlas, we get two new network representations for each subject i as V i, ⋅
f  and V i, ⋅

d  with the 

corresponding basis matrices Ui, ⋅
f  and Ui, ⋅

d . As we discussed before, the structural network 

draws the picture of fiber connections that are regarded as the structural foundation of 

brain functional network. Thus we hypothesize that there are quite significant similarities 

between those two kinds of networks that can be interpreted by a shared presentation in the 

latent space. In other words, given a subject i, we let the functional and structural networks 

share the same basis matrix Ui, ⋅
f = Ui, ⋅

d = Ui, ⋅ . Therefore, together with the inter-subject 

coupling model, we propose the multi-modality coupling model as below:

min
Ui, ⋅ ; V i, ⋅

∑
i = 1

N
Xi, ⋅

f − Ui, ⋅ V i, ⋅
f T

F
2

+ α Xi, ⋅
d − Ui, ⋅ V i, ⋅

d T
F
2

+ λ1 V i, ⋅
f − V f *

F
2 + λ1 V i, ⋅

d − V d *
F
2 ,

(4)

with α as the control parameter to modify emphasis of multi-modal network coupling, for 

example, α > 1 means more weights on searching topological consistency of structural 

connectivity and α < 1 otherwise. To be noted that, both Xi, ⋅
f  and Xi, ⋅

d  have the same range 

of weight definition. This property makes the inter-nodality coupling solvable as the general 

matrix factorization problem.

2.3.3 The Longitudinal Fusion—In the longitudinal coupling, we track how the brain 

evolves over time. We model the smooth variation of brain networks as a Procrustes problem 

which maps the consensus matrix to a same effect space [45]. Therefore, the longitudinal 

fusion is a group level fusion strategy. More specifically, first, we improve our proposed 

multi-modality coupling model by adding an orthogonality constraint V .
d * TV .

d * = I to the 
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consensus matrix in structural network part with two reasons: (1) Previous research has 

suggested the pattern that several brain regions structurally form a small subnetwork. Those 

subnetworks might uniquely handle some low-level functions and be eventually integrated 

with each other to solve high-level functions. The matrix factorization with orthogonality 

constraint plays a similar role as the clustering [54] which is consistent with the subgraph 

organization in human brain networks. (2) Human brain functional activities could be easily 

influenced by some sorts of the external stimulus or hormone level [23] while the fiber 

connection or other anatomical biomarkers are more stable to reflect current brain structure 

status [65].

After adding the orthogonality constraint to the objective function in every scan, we further 

model the relationships between each consecutive pair of consensus matrices. Suppose we 

have two consensus matrices V . , j
d *  and V . , j + 1

d *  from two consecutive time points j and 

j + 1 for a group. Due to the relative stability of structural network within subject than 

cross-subjects, we expect that V . , j
d *  shares a rotation relationship with V . , j + 1

d * , i.e.

V . , j
d * = Rj, j + 1V . , j + 1

d * . (5)

Rj, j + 1 ∈ ℝn × n is a rotation matrix thus det(Rj,j+1) = 1 and Rj + 1, j = Rj, j + 1
−1 = Rj, j + 1

T . As 

V . , j
d * TV . , j

d * = I is satisfied for all j, taking the rotation relationship with this orthogonality, 

we construct a new symmetric matrix,

Mj + 1, j = Rj + 1, jV . , j + 1
d * V . , j + 1

d * TRj + 1, j
T , (6)

that V . , j
d * TMj + 1, jV . , j

d * = I. Then we merge the consecutive relations from time j to j + 1 of 

V . , j
d *  into a single time variable as below:

Mj =

M2, 1,  if j = 1
MT , T − 1,  if j = T
Mj − 1, j + Mj + 1, j

2 ,  otherwise

(7)

Eventually, we model the longitudinal coupling with a homology constraint to the structural 

network for a given subject i and a total of T scans.

min
Ui, j, V i, jd

∑
j = 1

T
α Xi, j

d − Ui, j V i, j
d T

F
2

+ λ1 V i, j
d − V j

d *
F
2 ,

 s . t . V j
d * TMjV j

d * = I
(8)

The above constraint is called the generalized Stiefel constrain [5] with the mass matrix 

Mi,j. In this paper, we applied an optimization algorithm which involves the Stiefel manifold 

based on the Cayley transform for preserving the constraints [70,35].
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2.3.4 The Proposed Multi-Stage Fusion Model—We reformulate the problem for 

all N subjects and T time points. The multimodal brain network fusion with longitudinal 

coupling framework is to solve the problem of minimizing the following objective function, 

L, with the corresponding constraint:

min
U, V f, V d, V f * , V d *

∑
i = 1

N
∑
j = 1

T
Xi, j

f − Ui, j V i, j
f T

F
2

+ α Xi, j
d − Ui, j V i, j

d T
F
2

+ λ1 V i, j
f − V j

f *
F
2 + λ1 V i, j

d − V j
d *

F
2 + λ2G,

 s . t . V j
d * TMjV j

d * = I

(9)

where G = Ui, j F
2 + V i, j

f
F
2 + V i, j

d
F
2 + V j

f *
F
2 + V j

d *
F
2

 is the regularization term to 

prevent overfitting. To solve this optimization problem, we propose an iterative update 

procedure together with a Stochastic block coordinate descent algorithm. The mathematical 

details to optimize Eq. 9 are described in Appendix and their implementation source code is 

publicly available at http://gsl.lab.asu.edu/software/multimodal-longitudinal-brain-network-

coupling/. It is worth noting that the objective function in Eq. 9 is non-convex and thus the 

solution we provided here is guaranteed to reach a local optimum. Formally, the MMLC is 

summarised in Algorithm 1.

2.4 Experimental Setting

We compare the performance of MMLC with several representative and state-of-the-art 

brain network representation learning algorithms. It is worth noting that, for a fair 

comparison, the hyperparameters in each model are fine-tuned with the same strategy of 

parameter searching applied for MMLC. Details of settings are explained as below.

• MFCSMC - matrix factorization with the cross-sectional multimodality 
couplings: We apply collective matrix factorization (MF) [59] for functional 

and structural networks with the cross-sectional couplings. This method is the 

backbone of MMLC but does not consider the cross-modality coupling and the 

longitudinal coupling. The loss function is defined as,

min
U, V f, V d, V f * , V d *

∑
i = 1

N
∑
j = 1

T
Xi, j

f − Ui, j
f V i, j

f T
F
2

+ α Xi, j
d − Ui, j

d V i, j
d T

F
2

+ λ1 V i, j
f − V j

f *
F
2 + λ1 V i, j

d − V j
d *

F
2 + λ2G,

(10)

where α = 1 and λ1 = 10 for both anxiety and depression score predictions. 

The feature dimensions of Vf and Vd are the same as in MMLC, i.e., P = 10, 

although they are not necessary to be the same between modalities in this model. 

G = Ui, j
f

F
2 + Ui, j

d
F
2 + V i, j

f
F
2 + V i, j

d
F
2 + V j

f *
F
2 + V j

d *
F
2

 is controlled by 

an empirically chosen weight λ2 = 0.1.
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• EigLC - eigen longitudinal couplings: EigLC [34] is a state-of-the-art method 

that models the longitudinal coupling on a single modality, i.e., structural 

networks. EigLC transforms structural network to the corresponding Laplacian 

matrix and solves the eigenvalue problems with the coupling constraints.

• sMFLC - structural-network matrix factorization with the longitudinal 
couplings: A variant of MMLC by removing the terms concerning functional 

networks in our model. It is an MF version with the longitudinal coupling 

of structural networks, thus it is a single modality analysis with longitudinal 

coupling. This model is designed to compare with EigLC. Its loss is defined as 

Eq. 8. The weight of MF is set as α = 1 and the cross-sectional weight λ1 = 10.

• MFCSLC - matrix factorization with the cross-sectional longitudinal 
couplings: Another variant of MMLC, i.e., MF with cross-sectional and 

longitudinal coupling. Both functional and structural networks are processed 

with MF without sharing the basis matrix, U. The cross-sectional coupling is also 

considered by adding the consensus matrix for both modalities independently. In 

addition, the longitudinal coupling of the structural network is considered in this 

model. The objective function of this variant model is similar to Eq. 9 except the 

shared basis matrix U, which is formulated as:
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min
U, V f, V d, V f * , V d *

∑
i = 1

N
∑
j = 1

T
Xi, j

f − Ui, j
f V i, j

f T
F
2

+ α Xi, j
d − Ui, j

d V i, j
d T

F
2

+ λ1 V i, j
f − V j

f *
F
2 + λ1 V i, j

d − V j
d *

F
2 + λ2G .

s . t . V j
d * TMjV j

d * = I

(11)

However, different to the parameter settings in Eq. 9, α = 5 and λ1 = 10 reveal 

the best performance during parameter searching.

We carry out a regression analysis to predict the given observations S (e.g., psychometric 

evaluation scores) based on the extracted network representations. Specifically, subject i 

will obtain his/her new feature set V i, j
f , V i, j

d  at time point j as the new representation of 

their original network graphs. We then feed the vectorized features and the corresponding 

predicting scores into a linear regression model to encode their relationship by using the 

LIBSVM toolbox [11]. In this experiment, we randomly pick 70% subjects as the training 

set and test on the rest. This process is repeated 20 times and, in the end, the average 

performance and standard deviation are reported. Two widely used evaluation metrics, i.e., 

mean absolute error (MAE) and root mean square error (RMSE), are adopted to evaluate the 

prediction performance. Specifically, MAE is defined as ∑i = 1
N ∑j = 1

T Si, j − Si, j /(N × T )

and RMSE is defined as ∑i = 1
N ∑j = 1

T Si, j − Si, j
2/(N × T ). In both metrics, Si,j denotes the 

real observations of subject i at given time j while Si, j denotes the predicted value based 

on the extracted network representations. We treat the longitudinal scans of a subject as 

independent experiments. Thus the total size of data is equal to the number of subjects N 
times the number of longitudinal scans T.

It is worth noting that the objective function Eq. 9 is non-convex, thus different initialization 

would result in different local optima. The choice of initialization is non-trivial in MF and 

some strategies has been proposed [8,20]. Here, we follow the strategy in [8] to apply 

principal component analysis (PCA) of the network matrices to obtain initial V and U. 

More specifically, given feature dimension P, the singular value decomposition (SVD) of the 

original network matrices is carried out and the top-P principal components are chosen to 

construct V and the corresponding U. Such a process also naturally provides orthogonality 

of the initial structural representation Vd. After that, the consensus matrix V* is computed as 

the average of the initial V.

3 Results

3.1 Parameter Analysis

3.1.1 Weights of Cross-Sectional (λ1) and Cross-Modality (α) Couplings.—
The proposed framework has two important parameters, i.e., α controls the contribution of 

multimodal coupling and λ1 controls cross-sectional coupling. In this section, we evaluate 

the influence of the settings of α and λ1 on MMLC via a metric searching. Specifically, 

we vary α as {0.5, 1, 5, 10, 20} and λ1 as {1, 10, 20, 30, 40}. Similarly, we use the 

aforementioned data splitting strategy for training and testing. By changing α and λ1 
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independently, we show changes of performance measured by MAE and RMSE in two 

experiments (Figure 2 and Figure 3). We observe that: (i) In Dataset 1, both MAE and 

RMSE values reach the relatively small values when α = 1, which means both functional 

and structural networks have equal roles in the prediction task. Besides, there is a tendency 

that MAE and RMSE values go up along with the increase of α. In Dataset 2, obvious 

downgrade of prediction performance, i.e., increasing of MAE and RMSE, is observed when 

α increases beyond a higher value, e.g., α > 10. (ii) Moreover, when λ1 = 20, our framework 

has the relatively best performance in both datasets. In this experiment, we observe the 

different optimal parameter settings of tasks on two different domains, i.e., anxiety and 

depression. It shows that our framework can be generalized to different prediction tasks 

via unsupervised network representation learning. The result is consistent with the previous 

discovery in brain networks that the distinct roles of functional and structural connectivities 

shift in different cognitive tasks [53].

3.1.2 Dimension of Feature Space P—The choice of feature dimension is another 

key hyperparameter that affects the encoding of the brain network matrices. With a smaller 

P, the new network representations, Vf and Vd, focus on the core network topological 

changes but meanwhile might suffer from information loss. On the other hand, high 

dimension features with a larger P, although more informative, downgrade the following 

supervised learning tasks due to added signal noises. Therefore, we explore the influence 

of different settings of P and select the smallest P with acceptable accuracy level. The 

searching space of P is defined as [5,10,15,20]. The evaluation results of the metric MSE 

and MAE are shown in Fig. 4. We observe that P = 5 provides insufficient knowledge of 

network structures given the prediction performance and there is no significant change when 

P increases beyond 10. For both anxiety and depression tasks, the learned representations 

with P = 10 give satisfying accuracy in a relatively low dimension space. In other words, 

for each brain node, its top-10 connectivity patterns contain informative biomarkers related 

to these tasks. As a side note, we set P the same in MFCSLC for a fair comparison to 

MMLC. The larger P is also explored and P = 20 for the structural network in MFCSLC 

exhibit a close performance to MMLC in the anxiety prediction, e.g., MAE=2.145 ± 0.11 

and RMSE=3.98 ± 0.89. However, it achieves this level of accuracy with twice the size of 

parameters of MMLC.

3.2 Prediction Performance

We present the regression performance of our proposed model as opposite to other 

comparison methods in Table 2. We set α = 1, λ1 = 20 for Dataset 1 and α = 5, λ1 = 20 

for Dataset 2 according to the parameter selections. We also empirically chose λ2 to be 0.1 

and dimension of the new feature space P = 10. The prediction is made for each individual in 

each scan since the unsupervised network representation learning (Eq. 9) derives individual-

level features per scan, denoted by [Vf, Vd]. Therefore, the statistical results reported in 

Table 2 reflect the variance (averaged errors) of the individual predictions. From Table 2, we 

see that our proposed model outperforms other methods in both experiments. For example, 

sMFLC, the single modality version of our proposed model with longitudinal coupling, has 

a significantly better performance than EigLC (in Dataset 1, it decreases MAE by 1.072, p 
< 1e − 4 and RMSE by 0.615, p < 0.047; in Dataset 2, it decreases MAE by 1.664, p < 1e 
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− 4 and RMSE by 2.11, p < 1e − 4). The difference of regression analysis between the full 

coupling and partial coupling of multimodal or longitudinal fusions is small but significant. 

In Dataset 2, the result of partial coupling of brain networks in the multimodal fusion 

(MFCSMC) has the higher value of MAE (p < 0.0006) and RMSE (p < 0.153) than MMLC. 

Meanwhile, MMLC outperforms MFCSLC which contains only longitudinal coupling in 

both datasets. Overall, MMLC has the smallest MAE and RMSE values together with the 

relatively low variance compared with other baseline methods in our experiments. This 

shows that the proposed MMLC framework could effectively extract the key properties of 

multimodal brain networks with longitudinal development which underlie normal variation 

in depression or anxiety.

The statistical results prove several assumptions brought forward in this study. For example, 

the role of cross-modality coupling via the shared basis matrix U can be evaluated through 

MFCSLC vs. MMLC. It leverages the prediction of anxiety scores by 0.05 in MAE and 

0.2 in RMSE, and depression scores by 0.1 in MAE and 0.3 in RMSE. Besides, the 

orthogonality of V and its linear rotation across scans are included in the constraint term Eq. 

6. Therefore, by comparing MFCSMC and MMLC, we observe the benefits of adding such 

constraint to the structural representation, which improves the prediction of anxiety scores 

by 0.1 in MAE and 0.3 in RMSE, and depression scores by 0.07 in MAE and 0.15 in RMSE. 

These discoveries might help us to improve the current MMLC model in our future work.

3.3 Feature Evaluation with Subnetworks

To further validate our framework, we study the subnetwork patterns in each dataset. Based 

on the regression model, we evaluate the node-wise sensitivities and identify the top 5 

brain regions whose new representations learned from our framework have the greatest 

sensitivities with the psychometric evaluation scores. In the anxiety data, 5 key regions are: 

left and right middle frontal gyrus (MFG_L_7_7, MFG_R_7_3 in Brainnetome Atlas), left 

superior frontal gyrus (SFG_L_7_5), right basal ganglia (BG_R_6_1) and hippocampus 

(Hipp_R_2_1). In the depression data, 5 key brain regions on the right hemisphere 

are found: superior temporal gyrus (STG_R_6_1), parahippocampal gyrus (PhG_R_6_2), 

Thalamus (Tha_R_8_3), medioventral occipital cortex (MVOcC_R_5_4) and precentral 

gyrus (PrG_R_6_1). We present the subnetwork patterns consisting of the 5 key regions 

extracted from the group mean network in Fig. 5 (the plot guideline can be found at 

[43]). Due to the analogical topology of subnetwork patterns in longitudinal data (differs 

in strength weight), we only shows results from scan 1. In Fig. 5, multimodal subnetworks 

reflect their specific region-wise functional or structural connections. They were generated 

using different thresholds relatively to the level of their connection weights. Generally 

speaking, comparing with the fMRI subnetworks which usually possesses homogeneous 

connection patterns, DTI networks have much weaker connections among several key brain 

regions, i.e., high variance in weights. Therefore, node embeddings of the structural network 

through factorization potentially carry sparse features and are robust to signal noises. It is 

also part of the reason why we use DTI networks as the longitudinal coupling bases.
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4 Discussion

In this study, we investigate a unique problem, i.e., the longitudinal coupling with multiple 

modality information at the network level. A multi-source learning model for brain network 

analysis is then presented. Dealing with the prediction tasks, our model learns the network 

representations in terms of the node embeddings. We investigate the intrinsic cross-modality 

and longitudinal relationships inside brain networks and design a unified fusion strategy to 

combine those relationships. We also propose an effective numerical scheme to optimize 

the proposed objective function. To the best of our knowledge, this is the first work that 

fuses multimodal and longitudinal brain networks simultaneously. The experimental results 

demonstrate the effectiveness of our model in psychological state prediction. We expect the 

current study to bring new insights for brain connectivity analysis and help better understand 

the neural basis of cognitive functions along normal and abnormal brain development.

Generally, there are two types of studies in brain network analysis. One emphasizes the 

analysis of network topology reflected by node-wise connections. By applying knowledge 

from graph theory, previous studies proposed to extract some topological measures, such 

as centrality, similarity and motif patterns, from either binary or weighted brain networks. 

Recently, new trends aim to address network dynamics and higher order dependencies 

among nodes [7]. Comparing the local or global properties of network topology across 

participants, researchers could draw biologically meaningful conclusions about altered 

patterns on brain network efficiency in patients of Alzheimer’s disease [66] and depression 

[67]. The second type is to study network graph as a collection of edges; thus, the traditional 

statistical analysis would be conducted on the edge weights. From a data mining perspective, 

individual brain networks represented as a weighted graph matrix is preferred so that 

informative features could be learned. For example, tensor-based network embedding has 

been recently introduced to uncover brain networks [9]. It derives the latent features, 

or namely new representations, of a network to which conventional machine learning 

techniques could then be applied. Our current work follows the second type of approach 

and may enrich the edge-collection analysis-based brain network methods.

In this study, we analyzed two modalities of brain networks, functional network and 

structural network, where one type might interact with or underpin the other. The functional 

network is extracted from fMRI which records brain activity through the variation of blood 

oxygen level and has good temporal resolution. The structural network is computed from 

diffusion MRI (dMRI) which measures the water diffusion process in the white matter and 

depicts accurate structural neural connections. The two modalities yield complementary 

information to benefit the consistent graph pattern learning across modalities. Several 

studies proposed linear [4] or non-linear [49] multimodal integration approaches for 

brain network analysis, which significantly improve the statistical power to identify brain 

structural or cognitive changes than using single modality data. For example, Chen et 

al. [12] applied multi-view spectral clustering to infer the group-wise consistency in 

multimodal brain networks and obtained several consistent multimodal brain sub-networks 

within the group. Besides, Dodero et al. [17] conducted the joint diagonalization of 

graph Laplacians for multimodal brain networks and extracted the group-wise coherent sub-

graphs. Benefits of such multi-source network integration have been discussed in [68]. Since 
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network estimation for neuroimaging data might suffer from many false connections due to 

the signal noise and acquisition limitations in data collection, effectively learning features 

from few noisy brain networks is challenging. Therefore, we include more brain network 

data, e.g., longitudinal scans, as a supplement to multimodal analysis of the baseline scans. 

Because the multimodal and longitudinal studies are inherently related, it is promising 

to explore multimodal fusion with longitudinal coupling to learn effective brain network 

representations.

It is worth noting that the joint factorization of connectivity matrices is equivalent to 

the linear fusion of the node-wise connectivity patterns and the process is controlled by 

the consensus term to maximize the group consistency. Evidence from previous research 

supports our linear multimodality combination. For example, the DTI- and fMRI-derived 

connectivity topology is proved to be similar [62]. Brain regions in some important 

functional subnetworks, e.g., core resting-state networks, are found interconnected by 

anatomical white matter tracts [30]. Other research observed strong agreement of structure-

function connectivity in the default mode network [33]. Those discoveries suggest that 

there may exist a linear mapping relationship between part of the functional network and 

its structural counterpart [46]. We also observe that, without the joint factorization across 

modalities, our variant model (i.e., MFCSLC) shows comparable performance to MMLC 

with a higher P value. Theoretically, MFCSLC has more freedom of factorization that 

allows each modality to independently encode its network topology. However, benefits of 

this quality are achieved with a solid optimization strategy that is usually non-trivial and 

may easily overfit the downstream prediction tasks when P is increasing. Consequently, to 

leverage encoding accuracy, MFCSLC requires considerably more efforts to search optimal 

hyperparameters, α, and, λ, at a higher P value. It may also significantly increase memory 

consumption for high dimensional embedding features. It may become a serious problem if 

we study high resolution brain networks with more nodes (i.e., brain regions). Therefore, we 

propose a practical approach by adding multimodal coupling as a constraint to capture a low 

level of cross-modality association that creates an efficient feature embedding.

In the experiment of anxiety prediction, MMLC identified five regions associated with 

anxiety self-report (TAI) that are synergistic with previous literature: left and right middle 

frontal gyrus (MFG), left superior frontal gyrus (SFG), right basal ganglia (BG), and right 

hippocampus (Hipp). Regions distribute on both hemispheres, suggesting bilaterally anxiety 

processing [44]. The hippocampus has a central role in processing emotions and long-term 

memories and a recent study also found the structural development of hippocampus, 

e.g., neurogenesis, is affected by anxiety-related behaviours [55]. Hippocampal volumes 

correlate with TAI in both healthy controls and depressed patients [56]. Participants with 

elevated TAI scores show reduced bilateral MFG activity during socioemotional processing 

[40]. Further, neuromodulation of MFG improves attentional control [36] and emotional 

memory retrieval [6] in high TAI endorsers. Using EEG, increased SFG theta has been 

observed in participants with high TAI scorers during risky decision making. A smaller 

body of literature notes relationships between anxiety and basal ganglia measures. Using 

proton magnetic resonance spectroscopy in healthy participants, TAI was associated with 

neurotransmitter levels in the nucleus accumbens [64]. Moreover, generalized anxiety 

patients show decreased metabolism in the basal ganglia [71]. There are notable regions 
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associated with anxiety and depression constructs missing in our results (e.g., amygdala 

and cingulate cortex) that are likely due to our healthy population and the self-report 

measures used. As others have noted, instruments such as the STAI capture sub-dimensions 

of personality linked to anxiety, rather than the clinical expression of anxiety disorders [18]. 

Future analyses in clinical populations of depression and anxiety are warranted to determine 

the full utility of MMLC for detecting the neural substrates of symptoms.

In the depression score prediction study, we find regions within the right side of 

brain dominate associations, a pattern that has been seen in other studies as well [27]. 

MMLC identified five regions associated with the ATQ that are synergistic with previous 

literature: superior temporal gyrus (STG), parahippocampal gyrus (PhG), Thalamus (Tha), 

medioventral occipital cortex (MVOcC) and precentral gyrus (PrG). Two previous studies 

found right PhG gray matter volume predicts ATQ scores in healthy participants [19,14]. 

[14] also examined DTI data and found that white matter connections to the right STG 

was an additional significant predictor. In patients with major depression disorder (MDD), 

ATQ scores were related to activity of the right STG as measured by multi-channel near-

infrared spectroscopy [42]. Using EEG, MDD patients who score high on the ATQ also 

show excessive high-beta activity specifically in right hemisphere frontal, temporal, and 

parahippocampal regions that reduces with effective treatment [52]. Moreover, [72] found 

ATQ scores were correlated with functional connectivity of the cingulo-opercular network, 

which includes the PrG, in MDD patients. While no previous literature has associated ATQ 

scores with the MVOcC, reduced connectivity of this region to the insula in MDD patients 

has been noted [25]. Lastly, the thalamus is an important brain region in MDD because 

of its connecting role between limbic subcortical structures and relevant cortical regions. 

This structure shows greater functional connectivity to the subgenual cingulate at rest in 

MDD patients, compared to healthy controls [24], as well as a greater number of neurons at 

autopsy, compared to other psychiatric conditions [73]. Notably, no one study has been able 

to identify all five of these regions associated with depressive symptoms in healthy controls. 

Several of these brain regions have only been related to the ATQ in MDD patients. This 

highlights the capabilities of MMLC to detect subtle relationships between psychological 

process and brain measures, compared to traditional unimodal or single time point methods. 

Thus, this new technique has the potential to address reproducibility and reliability concerns 

in brain-behavior relationship research.

Despite the promising results obtained by applying the MMLC framework to analyze 

longitudinal multimodal imaging data, there are three important caveats. First, the current 

work takes the linear coupling approach to integrate multimodal brain networks. However, 

recent research also shows that functional organization of the human brain has a dynamic 

system which may partially stem from the structural foundations of the white matter [61]. 

Thus, regional-wise functional activities may possess both linear and non-linear elements 

related to the regional patterns of structural connectivities. Moreover, formulations of brain 

networks, e.g., regional connections, can also be categorized into the linear [4] or non-linear 

[16,32] methods, which further affects multimodal brain network coupling, locally and 

globally. A possible solution to these problems is to obtain a hierarchical map of function-

structure matching for each brain region. On each level of the hierarchy, brain functional 

connectivities have a linear relation with white matter connections. This can be understood 
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as the sub-networks. The different linear patterns in the subnetworks further consist of 

non-linear multimodal relationship in the whole brain. Second, for a convenient modeling, 

we adopt a rotation matrix for the longitudinal coupling in the structural networks. We 

could potentially apply non-linear deformations as well for the longitudinal coupling in both 

structural and functional networks. As a result, the high order graph matching between the 

functional networks may provide additional constraints to our model and it may further 

improve the sensitivity of our entire network analysis framework. Third, in our current 

model, we empirically set the same weights, λ1, for the cross-sectional couplings of Vf and 

Vd (Eq. 9). By this setting, individual Vf and Vd are equally forced to align cross-sectionally. 

Since subjects in this study are normal young college students, we hypothesize that these 

two network representations contain the strong topological patterns which are shared among 

the group and therefore equally important. On the other hand, this setting reduces the 

complexity of parameter searching. However, we also believe, by assigning different cross-

sectional weights for functional and structural modalities, the proposed model may enjoy 

more flexibility in learning tasks. We will carefully explore these approaches in our future 

work.

5 Conclusion

This paper describes a novel network fusion framework, named multimodal brain network 

fusion with longitudinal coupling (MMLC), which simultaneously considers multiple levels 

of information such as relationships between brain functional and structural organizations 

and longitudinal brain changes. We construct a linear combination of multimodal networks 

with matrix factorization on the target domain, and couple the longitudinal variants 

to enhance the network representation learning. We test our proposed framework with 

two relatively large datasets, and experimental results demonstrate the effectiveness of 

the generated network representations for predicting psychological characteristics. We 

demonstrate MMLC is better able to predict psychometric scores than several representative 

and state-of-the-art brain network learning algorithms. There are several interesting 

directions that are warranted for further investigation. For example, in this paper, we 

evaluate the learned brain network representation performance for regression tasks. In 

the future, we will derive subnetwork patters from the learned network representations 

and evaluate contributions to early disease diagnosis and prevention. The current work 

focuses on studying how to fuse different brain modality networks. However, it would be 

also interesting to investigate the generated subnetwork patterns. For example, it could be 

interesting to show that strong topological patterns which are shared among the groups are 

equally important and justify identical cross-sectional weights for functional and structural 

modalities. We plan to study these important questions in our future work.
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8: Appendix

We present the formulation of iterative optimization to obtain the local optimal solution. 

Basically, for the five learning parameters, i.e. V j
f * , V j

d * , Ui,j, V i, j
f  and V i, j

d , each update 

step learns one of them by fixing the rest. The algorithm details are described in Algorithm 

1.

Fixing V j
f *  and V j

d * , minimize L over Ui,j, V i, j
f  and V i, j

d

Under the defined condition, objective function L only depends on Ui,j, V i, j
f , V i, j

d . For 

brevity in this subsection, we use U, Vf, Vd, Vf* and Vd* to represent Ui,j, V i, j
f , V i, j

d , V j
f *

and V j
d * . Therefore, the new objective function can be simplified as:

L1 = Xf − U V f T
F
2

+ α Xd − U V d T
F
2

+ λ1 V f − V f *
F
2

+ λ1 V d − V d *
F
2 + λ2G .

(12)

First, we further fix Vf and Vd to update U. For a given subject i and time point j, we could 

take the derivative of L1 with respect to U.

∂L1
∂U = 2 U V f TV f − XfV f + 2α U V d TV d − XdV d + λ2G′(U) . (13)

Here, G′(U) is the derivative of U with respect to U. Given a step size l, we update U 

as Unew = Upre − l ∗
∂L1

∂Upre
. Then, we fix Vd and U to update Vf. The objective function in 

functional network part is related to Vf, thus the gradient of L1 with respect to Vf is:

∂L1
∂V f = 2 V f(U)TU − XfU + 2λ1 V f − V f * + λ2G′ V f . (14)

Similarly, we update Vd with the same procedure as Vf,

∂L1
∂V d = 2α V d(U)TU − XdU + 2λ1 V d − V d * + λ2G′ V d . (15)

Fixing Ui,j, V i, j
f  and V i, j

d , minimize L over V j
f *  and V j

d *

For brevity in this subsection, we use V i
f, V i

d, Vf* and Vd* to represent V i, j
f , V i, j

d , V j
f *  and 

V j
d * . We observe that for each time j, the framework will generate a group-wise V j

f *  and 

V j
d * . Therefore we can reorganize the objective function L to make it only relate to those 

two parameters, as below:
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L2 = λ1 ∑
i = 1

N
V i

f − V f *
F
2 + V i

d − V d *
F
2 + λ2G V f * , V d * . (16)

After updating all individual Ui, V i
f and V i

d, we could take the derivative of L2 with respect 

to Vf*.

∂L2
∂V f * = 2λ1 ∑

i = 1

N
V f * − V i

f + λ2G′ V f * . (17)

For Vd*, an equality constraint (Vd*)TMVd* = I will regulate the gradient direction 

of L2 with respect to Vd*, which makes the solution difficult. Instead of directly 

finding an optimal direction with gradient descent on the surface described by original 

objective function, we construct the descent curves on the constraint-based Stiefel manifold 

[34]. Specifically, Vd* will be divided into two submatrixes V d * = V 1
d * ; V 2

d * , where 

V 1
d * ∈ ℝs × p is the free variable to be solved and V 2

d * ∈ ℝ(n − s) × p is the fixed variable 

treated as constants. Then we rearrange the constraint as:

V 1
d *

V 2
d *

T M11 M12

M12
T M22

V 1
d *

V 2
d * = I . (18)

It is easy to conclude that M11 is a full rank positive definite matrix. Then a 

descent curve based on the previous Vd* will be constructed and it starts at the point 

Ps = V 1
d * + M11

− 1
2M12V 2

d *  which is the initial point for the line search on the generalized 

Stiefel manifold. Given the descending gradient −L2′ (P ) = −
∂L2

∂V d * ∘ ∂V d *
∂P  at point P, we 

further project −L2′ (P ) onto the tangent space of the Stiefel manifold by constructing a 

skew-symmetric matrix:

A = L2′(P )Ps
T − PsL2′(P )T . (19)

This will lead to a curve function Y(τ) by the Crank-Nicolson-like design as in the paper 

[70].

Y (τ) = I + τ
2AM11

−1
I − τ

2AM11 Ps . (20)

The above function gives a linear search procedure of updating point P by Pnew = Y(τ) for 

small τ which results sufficient decrease in L2. Finally, the next feasible V new
d *  will be given 

as:
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V new
d * (P ) = P − M11

− 1
2M12V 2

d *

V 2
d *

. (21)

Optimization of the variant models. In this study, different variants of the model are 

studied to test how each coupling term affects the outcome of the learning tasks. Their 

MP parameters, e.g., dimension P, are deliberately set to be the same as the proposed 

model MMLC. We find relatively similar patterns of MFCSMC and MFCSLC that both of 

them have a close performance to MMLC with larger P values, i.e., in high dimensional 

feature space. As we discussed in Sec. 4, the proposed MMLC enjoys better computational 

efficiency for high dimensional feature space. Meanwhile, sMFLC yields a relatively stable 

pattern as EigLC, which has no significant improvements by increasing P beyond 10. It is 

partially because the knowledge solely comes from the structural modality containing sparse 

connections. For the purpose of replicating our investigation, we provide the details on how 

to optimize these comparison algorithm as follows. Specifically, to optimize MFCSMC, in 

Algorithm 1, we skip steps in line 11–19 and update V j
d ∗ as V j

f ∗ in line 9. To optimize 

sMFLC, we skip steps in line 5,6,9 to avoid updates of Ui, j
f , V i, j

f  and V j
f ∗. As for MFCSLC, 

we update Ui, j
f  and Ui, j

d  independently but keep the rest of Algorithm 1. For all algorithms, 

Their learning rates are all set as 1e − 5.
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Fig. 1: 
The pipeline of the proposed multimodal brain network fusion with longitudinal couplings 

(MMLC) framework. Three levels of information couplings are considered: cross-sectional 

coupling, longitudinal coupling, and multimodal coupling. First, each single modality brain 

network in a given scan (left column) is decomposed into two matrices (middle column), 

U and V. We force U to be shared across modalities (green arrows) and V of a group 

of subjects similar to the estimated consensus matrix V* (purple arrows). Furthermore, 

the consensus matrices of structural brain networks (bottom right) are aligned by rotation 

mappings, i.e. matrix R (red arrows), which manipulate the time consistency. Eventually, 

after solving these 3 coupling strategy, the new individual network representation at a given 

scan time is the concatenation of Vf and Vd.
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Fig. 2: 
Parameter Analysis of Dataset 1 (Anxiety)
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Fig. 3: 
Parameter Analysis of Dataset 2 (Depression)
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Fig. 4: 
Performance of prediction tasks with various settings of P. MAE and RMSE scores do not 

yield significant changes when P > 10, which suggest the optimal choice of P is 10 in both 

Anxiety and Depression prediction tasks.
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Fig. 5: 
Slice view of five key brain regions (middle) and their inter-connection strength 

visualization. The top row shows results for the anxiety study (Dataset 1) and the 

second row for the depression study (Dataset 2). On each row, the left circos [43] 

describes the functional connection network and the right circos describes the structural 

connection network. In each circos, the arc widths indicate the connection strengths. 

Abbreviation: left and right middle frontal gyrus (L/R_MFG), left superior frontal gyrus 

(L_SFG), right basal ganglia (R_BG), hippocampus (R_Hipp), superior temporal gyrus 

(R_STG), parahippocampal gyrus (R_PhG), Thalamus (R_Tha), medioventral occipital 

cortex (R_MVOcC) and precentral gyrus (R_PrG).
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Table 1:

Demographic Information of Anxiety and Depression Datasets. Mental states is evaluated through TAIs for 

Anxiety data and ATQs for Depression data. Three consecutive scans within three and a half years.

Dataset Age Gender(F/M) Scan1 Scan2 Scan3

Anxiety 20.5 ± 0.77 55/50 39.14 ± 8.47 41.39 ± 9.03 40.75 ± 9.29

Depression 20.2 ± 0.60 39/38 7.87 ± 6.62 7.69 ± 6.91 5.83 ± 5.13
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Table 2:

Performance comparison regarding MAE and RMSE on Anxiety and Depression Datasets

Methods
Dataset 1 (Anxiety) Dataset 2 (Depression)

MAE RMSE MAE RMSE

EigLC 3.401 ± 0.931 5.037 ± 1.464 3.536 ± 0.729 5.227 ± 0.886

sMFLC 2.329 ± 0.135 4.422 ± 0.770 1.872 ± 0.556 3.117 ± 1.405

MFCSLC 2.225 ± 0.185 4.223 ± 1.120 1.788 ± 0.092 3.050 ± 0.504

MFCSMC 2.285 ± 0.151 4.340 ± 0.918 1.741 ± 0.080 2.924 ± 0.392

MMLC 2.173±0.098* 4.015±0.751* 1.672±0.067* 2.773±0.416*

*
Significant with p < 0.05, two-sample t-test between MMLC and the compared methods.
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