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Abstract

Purpose: To demonstrate methods for Receiver-Operating Characteristic (ROC) analysis of 

correlated eye data.

Methods: We applied the Obuchowski’s nonparametric approach and cluster bootstrap for 

estimating and comparing the area under ROC curve (AUC) between different sets of predictors to 

three datasets with varying inter-eye correlation.

Results: In an optic neuritis (ON) study of 152 eyes (80 patients), the AUC of optical coherence 

tomography retinal nerve fiber layer thickness for diagnosing ON (inter-eye kappa=0.13) was 0.71 

(95% confidence interval (95%CI): 0.622, 0.792) from the naïve approach without accounting 

for inter-eye correlation was narrower than from nonparametric (95%CI: 0.613, 0.801) or cluster 

bootstrap (95%CI: 0.614, 0.797) approaches.

In an analysis of 198 eyes (135 patients), the baseline AREDS scale predicted 5-year incidence of 

advanced AMD (inter-eye kappa=0.23) with AUC of 0.72. The 95%CI from the naïve approach 

was slightly narrower (0.645, 0.794) than from the nonparametric (0.641, 0.797) or cluster 

bootstrap (0.641, 0.793) approaches.

In an analysis of 1542 eyes (771 infants), birth-weight and gestational-age predicted treatment-

requiring retinopathy of prematurity (inter-eye kappa=0.98) with AUC of 0.80. Furthermore, the 

95%CI from the naïve approach was narrower (0.769, 0.835) than from the nonparametric (0.755, 

0.848) or cluster bootstrap (0.755, 0.845) approaches. 95%CIs for AUC differences between 

different models were narrower in the naïve approach than the nonparametric or cluster bootstrap 

approaches.

Conclusion: In ROC analysis of correlated eye data, ignoring inter-eye correlation leads 

to narrower 95%CI with under-estimation dependent on magnitude of inter-eye correlation. 

Nonparametric and cluster bootstrap approaches properly account for inter-eye correlation.
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INTRODUCTION

In ophthalmology and vision science, diagnostic or screening tests/tools including summary 

risk scores incorporating multiple predictors play an important role for the diagnosis and 

management of eye diseases.1–5 As many eye diseases can be bilateral,6 ocular tests or 

summary risk scores are often available in both eyes of a subject, yielding correlated eye 

data. Examples include ophthalmic imaging (e.g., optical coherence tomography (OCT)) 

in both eyes for the diagnosis of retinal diseases and tests of tear break-up time in both 

eyes for the diagnosis of dry eye. Before a new ocular test is adopted, its performance 

for the diagnosis or prediction of disease must be evaluated in a sample of the targeted 

population. Ocular tests that provide a binary determination of disease status (present or 

absent) are usually evaluated by sensitivity and specificity.7 However, for ocular tests that 

provide ordinal or continuous measures (e.g., OCT retinal thickness for retinal diseases), 

or a summary risk score for predicting development of advanced age-related macular 

degeneration,8 the sensitivity and specificity at various cutpoints of continuous or ordinal 

measures are calculated to yield the receiver operating characteristic (ROC) curve, and 

the area under the curve (AUC) is often used to evaluate the overall performance of the 

test for discriminating or predicting the disease.9 When data from both eyes are used to 

calculate the AUC or to compare two AUCs from two diagnostic tests or two prediction 

models, the inter-eye correlation needs to be accounted for, particularly with respect to the 

estimation of variance of the estimated AUC or AUC difference that affects the confidence 

interval and p-value. However, the methods for ROC analysis with correlated eye data are 

not well known by most ophthalmic and vision researchers. This tutorial paper describes two 

statistical approaches for calculating AUC, its 95% confidence interval (95% CI) and the 

comparison of two AUCs for correlated eye data. We demonstrate the application of these 

approaches to analyze three correlated eye datasets from real clinical ophthalmic studies.

METHODS

We start the description of ROC analysis by calculating the AUC, its 95% CI, and comparing 

AUCs from two tests under the assumption of independent samples, for example if only one 

eye from each subject is evaluated, or the evaluation occurs at the subject level. We then 

describe the statistical methods to account for inter-eye correlation in calculating the 95% 

CIs of AUC and in the comparison of two AUCs when ocular measures are taken from both 

eyes.

ROC Analysis for Independent Samples

For the independent sample case, AUC and its 95% CI can be obtained through logistic 

regression models by using the continuous or ordinal diagnostic test result as the predictor 

and the true disease status (yes/no) as the outcome variable. The c-index from the logistic 

regression model is equivalent to the AUC. The AUC is equal to the probability that a 
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random eye with the disease has a higher value of the test result than a random eye 

without the disease (assuming a higher value of the test indicates a higher likelihood of 

abnormality). The AUC usually ranges from 0.5 to 1, with 0.5 indicating no discrimination 

and 1 indicating perfect discrimination.9 An AUC greater than 0.9 is considered excellent, 

0.8 to 0.9 very good, 0.7 to 0.8 good, 0.6 to 0.7 average, and less than 0.6 poor.10

The comparison of two AUCs needs to consider whether two AUCs are from the 

same subjects or not. If two AUCs are from the same subjects (i.e., paired data), the 

ROCCONTRAST statement in SAS for fitting a logistic regression model can be used to 

compare AUCs using the method of Delong.11 However, the Delong method was found 

not appropriate when: (1) the AUCs are from two nested models (e.g. a base model with 

one or more predictors and a more comprehensive model that includes all predictors in 

the base model plus additional predictors); and (2) the additional predictors in the more 

comprehensive model are not associated with the disease.12 If two AUCs for comparison are 

from two different samples (e.g., unpaired data), a logistic regression model can be fitted 

for each sample to get their AUCs and their standard errors. The chi-square test can then be 

applied to compare two independent AUCs using the followingformula.13

χ2 = AUC1 − AUC2 2/ s1
2 + s2

2 ,

where AUC1 and AUC2 are areas under two independent ROC curves, and s1 and s2 are 

their respective standard errors from two logistic regression models for two independent 

samples.14 The p-value corresponding to the above χ2 statistic with one degree of freedom 

can then be calculated.

ROC Curve Analysis for Correlated Eye Data

When data from both eyes of at least some subjects are available, it is often desirable to 

perform the ROC analysis at the eye-level (i.e., using the eye as the unit of analysis) to 

maximize the use of data, while accounting for the inter-eye correlation. When an ocular test 

is performed in two eyes of a subject, it is appropriate to calculate the point estimate for 

AUC using the same approach as for independent data. However, the calculation of variance 

for estimated AUC and 95% CI for AUC, or comparison of two AUCs needs to account for 

the inter-eye correlation. Here we describe two approaches for ROC analysis of correlated 

eye data including the Obuchowski nonparametric ROC analysis for clustered data,15 and 

the cluster bootstrap.16

Nonparametric ROC Analysis for Clustered Data

Obuchowski described a method for estimating the variance and standard error of the AUC 

from clustered data based on the concepts of design effect and effective sample size.15 

This method allows estimation of the standard error of the AUC for a single test or of the 

difference of two AUCs, for example arising from two different risk scores applied to the 

same clustered data. Obuchowski used the structural components approach to ROC curve 

estimation of DeLong et al, 11 but extended it to clustered ROC data using ideas from Rao 

and Scott 17 that are based on the concepts of design effect and effective sample size used 
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in the analysis of data from sample surveys. The Obuchowski method is nonparametric, thus 

it does not require specification of the intra-cluster correlation structure. The method can 

be used to account for inter-eye correlation in the dichotomous disease status and inter-eye 

correlation in test results that are either continuous or ordinal. Her Monte Carlo simulation 

study suggests that the method is robust to a variety of intra-cluster correlation patterns, 

as well as to non-normally distributed test results. The technical details and the formulas 

for calculations of the variance, standard error of AUC and AUC differences, and their 

95% CIs for correlated eye data can be found in Supplemental Note 1. R functions for 

performing Obuchowski’s nonparametric ROC analysis of clustered data are available at 

https://www.lerner.ccf.org/qhs/software/roc_analysis.php.

Cluster Bootstrap for ROC Analysis of Clustered Data

Bootstrapping18 is a resampling technique involving computing a statistic of interest (e.g., 

AUC) repeatedly based on a large number of random samples (with replacement) drawn 

from the original sample, so that the variability of the statistic of interest can be determined. 

Thus, the bootstrap provides a way of making probability-based, assumption-free inference 

for the AUC.

For the bootstrap of correlated eye data, the same number of subjects as that in a given 

sample are randomly selected with replacement. For each subject selected, all eligible eyes 

are included in the bootstrapped sample. The AUC is computed using the bootstrapped 

sample and the process is repeated B times. The nonparametric 95% CI for AUC can be 

derived based on the 2.5th percentile and 97.5th percentile of the ordered distribution of AUC 

from the B samples. The 95% CI for the AUC can also be calculated as asymptotic normal 

intervals using mean AUC ± 1.96 × SD where the mean and SD of AUC are calculated from 

the AUCs of B bootstrap samples. Simulation studies have shown that percentile intervals 

have better coverage than asymptotic normal intervals.19 However, the percentile-based 

95% confidence interval has two potential limitations. First, it does not use the AUC 

estimate from the original data; the estimate is based only on bootstrap resamples. Second, 

it does not adjust for the skewed distribution of the bootstrapped AUC estimates. The 

bias-corrected/accelerated (BCa) bootstrap confidence interval was developed to improve the 

percentile-based confidence interval,20 as the BCa method can correct for bias and skewness 

in the distribution of the bootstrapped AUC estimates. The R codes for calculating both the 

percentile-based confidence interval and BCa confidence interval using clustered bootstrap 

are in Supplemental Note 2. Although guidelines have been suggested as to the optimal 

number of bootstrap replications, 1,000 replications is generally considered acceptable for 

standard error estimates.16

When bootstrapping the AUC from a multivariable logistic regression model (i.e., with more 

than one predictor in the logistic regression model), the risk score from the multivariable 

logistic regression model in the original sample should be first calculated as α + ∑k = 1
K βkXk, 

where α is the intercept, and βk is the regression coefficient for the kth predictor Xk in 

the multivariable logistic model. These risk scores are used in the calculation of the point 

estimate of the AUC. To calculate the 95% CI for the AUC, we re-sample the dataset 

of the risk scores and calculate the AUC for each re-sampled dataset using a univariable 
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logistic regression model with risk score as the only predictor. It is important to use risk 

scores calculated from the original sample for calculating the AUC for each bootstrap 

sample. In this way, a subject will have the same risk score for AUC calculation across 

all bootstrap samples. Otherwise, if a multivariable logistic regression model were fitted 

for each bootstrap sample, the risk score for a subject would be different across bootstrap 

samples, which could result in a biased estimate of the AUC and its 95% CI.

The cluster bootstrap approach can also be used to compare two AUCs from two different 

risk scores or two different tests, by calculating their AUC difference (ΔAUC) and its 95% 

CI, following the similar bootstrap procedure as described above. For the cluster bootstrap 

of ΔAUC, the two AUCs correspond to two different tests or risk scores and their AUC 

difference (ΔAUC) were calculated from each bootstrap sample, and this cluster bootstrap 

process is repeated B times to generate the distribution of ΔAUC. The nonparametric 

95% CI for ΔAUC can be derived based on the 2.5th percentile and 97.5th percentile of 

the ordered distribution of ΔAUC from the B bootstrap samples. If the predictor(s) of 

interest are significantly associated with the outcome, the p-value for testing whether the 

ΔAUC from these additional predictor(s) is significantly different from 0 (e.g. two AUCs 

differ significantly or not) can be calculated based on the test statistic ΔAUC/SD, which 

asymptotically follows a N(0, 1) distribution.

The SAS macro for performing these cluster bootstrap AUC analyses is in Supplemental 

Note 3.

We applied the Obuchowski’s nonparametric approach and cluster bootstrap for estimating 

and comparing AUC to the data from three clinical studies as described below.

Example 1: ROC Analysis of Retinal Nerve Fiber Layer Thickness for Diagnosis of Optic 
Neuritis in Patients with Multiple Sclerosis

Eyes of patients with multiple sclerosis (MS) have a reduced number of retinal ganglion cell 

axons.21 Ocular imaging techniques, including optical coherence tomography (OCT) and 

scanning laser polarimetry with variable corneal compensation (GDx) have demonstrated 

retinal nerve fiber layer (RNFL) thinning from optic neuritis (ON) in patients with MS. A 

study22 was conducted to examine the capacity of RNFL thickness measurements from OCT 

and GDx to distinguish between MS eyes with and without a history of ON. The study 

included a total of 152 eyes from 80 MS patients, 66 eyes from 50 patients had a history 

of ON and 86 eyes from 60 patients did not have a history of ON. Of note, 30 patients had 

one eye with ON but the fellow eye without ON (Online Table 1). The study excluded 8 

eyes with ongoing ON or having an ON episode within 3 months of testing. Each patient 

underwent measurement of the RNFL thickness for eligible eyes using OCT and GDx. The 

AUC was calculated to determine the capacity of RNFL thickness to distinguish eyes with 

a history of ON from eyes without a history of ON by using OCT alone and GDx alone. 

The AUCs for OCT and GDx were compared to determine whether their discrimination 

ability for ON eyes was the same or different. Since most patients contributed both eyes 

for analysis (although their ON status may have differed) and RNFL thickness from two 

eyes are correlated, we applied Obuchowski’s nonparametric ROC analysis and the cluster 

bootstrap. For comparison, the ROC analysis for independent samples (e.g., naïve analysis 
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that ignored the inter-eye correlation) was also performed. The SAS codes for the naïve 

analysis and cluster bootstrap and R codes for Obuchowski’s nonparametric ROC analysis 

are in Supplemental Note 4.

Example 2: ROC Analysis for Predicting Incidence of Advanced Age-related macular 
Degeneration

The Age-related Eye disease Study (AREDS) is a multi-center study of the clinical course, 

prognosis, and risk factors for age-related macular degeneration (AMD) and cataract.23 The 

study included a randomized, placebo-controlled clinical trial of treatment with high-dose 

antioxidant vitamins and/or zinc on the incidence of advanced AMD and vision loss. During 

the study, the AREDS study group developed a 9-step AREDS severity scale for AMD 

to predict its progression to advanced AMD.24 This eye-specific 9-step severity scale was 

determined based on the drusen area and pigmentary abnormalities of the retina. Higher 

scores on the severity scale were found to be strongly associated with increased risk of 

progression to advanced AMD in the AREDS Study.24

We performed ROC analyses of the AREDS severity scale for predicting the 5-year 

incidence of advanced AMD among high risk eyes (defined as baseline AREDS severity 

scale of 5 or above) that were followed at least for 5 years. Among 1355 patients eligible 

for this analysis, a random sample of 135 patients (198 eyes) were selected, consisting of 

63 patients (126 eyes) with both eyes eligible, 34 patients with one eye eligible because the 

fellow eye had a severity scale below 5, and 38 patients with one eye eligible because the 

fellow eye already had advanced AMD at baseline. We further evaluated whether including 

baseline demographics (age, gender, smoking status), the randomized treatment group and 

the fellow eye status (e.g., severity scale below 5, severity scale 5 to 8, or advanced AMD) 

improves the prediction for 5-year incidence of advanced AMD by comparing the AUC from 

a prediction model using only the baseline AREDS severity scale to a prediction model 

using the baseline AREDS severity scale plus these baseline covariates.

Since both the AREDS severity scale and outcome measure (e.g. incidence of advanced 

AMD) are eye-specific, it is desirable to perform the ROC analysis at the eye-level. For 

comparison purposes, we performed ROC analysis using several approaches: (1) naïve 

approach using the eye as the unit of analysis without accounting for inter-eye correlation; 

(2) Obuchowski’s nonparametric ROC analysis of clustered data; (3) cluster bootstrap; (4) 

ROC analysis for right eye and left eye separately; (5) person-level ROC analysis using the 

severity scale from the worse eye for predicting advanced AMD in either eligible eye. The 

SAS and R codes for these ROC analyses are in Supplemental Note 5.

Example 3: ROC Analysis for Predicting the Treatment-Requiring Retinopathy of 
Prematurity

Using data from the Telemedicine Approaches to Evaluating Acute-Phase Retinopathy 

of Prematurity Study,25 we previously developed a model for predicting development of 

treatment-requiring ROP (TR-ROP).5 The prediction model was based on data from 771 

infants with birth weight <1251 grams who completed one retinal imaging session by 

34 weeks of postmenstrual age and one subsequent retinopathy of prematurity (ROP) 
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examination by study-certified ophthalmologists to determine the TR-ROP. The factors in 

the model were: birth weight (BW), gestational age (GA), findings from the first image 

session (number of quadrants with preplus disease, presence of blot hemorrhage, ROP stage 

and zone), respiratory status and weight gain rate by the first image session. We calculated 

the AUC from a prediction model using all of the above factors, and compared it to the AUC 

using BW and GA only. The analysis codes are in Supplemental Note 6.

RESULTS:

ROC Analysis of Retinal Nerve Fiber Layer Thickness for Diagnosis of Optic Neuritis in 
Patients with Multiple Sclerosis.

The RNFL was significantly thinner in the 66 eyes with ON than in the 86 eyes without 

ON for both OCT (82.1 μm vs. 95.8 μm, p<0.0001, Figure 1A) and GDx (50.0 μm vs. 

55.6 μm, p<0.0001, Figure 1B). The inter-eye correlation for RNFL thickness was moderate 

for both OCT (Spearman correlation coefficient=0.55) and GDx (Spearman correlation 

coefficient=0.61). The RNFL thickness from OCT and GDx were also moderately correlated 

(Spearman correlation coefficient=0.61). The inter-eye agreement on ON status was low 

(percent agreement=52.5%, kappa=0.13, Online Table 1).

The AUC and 95% CI from various ROC analyses are shown in Table 1. The point estimate 

of AUC for RNFL thickness from various analysis approaches were similar (0.71 for OCT, 

0.67 for GDx, Figure 2), but their 95% CIs were different. The naïve approach provided 

a narrower 95% CI than the approaches that accounted for inter-eye correlation, with the 

width of the 95% CI for AUC from the naïve approach, nonparametric approach, and 

bootstrap approach in SAS 0.170, 0.188, 0.183, respectively for OCT, 0.176, 0.199 and 

0.191 respectively for GDx. When the AUCs for OCT and GDx were compared, all three 

analysis approaches did not yield a statistically significant difference (all p≥0.35); the width 

of the 95% CI for the AUC difference between OCT and GDx was 0.167, 0.180, and 0.176 

respectively for the naïve approach, nonparametric approach, and cluster bootstrap. The 

percentile-based 95% confidence interval and the BCa confidence interval from the cluster 

bootstrap were similar for both AUC and AUC difference (Table 1).

To demonstrate the loss of precision from choosing one eye per patient for analysis which 

avoids the need to account for inter-eye correlation, we also randomly chose one eye for 

analysis. This analysis included 36 eyes with ON and 44 eyes without ON. The AUC (95% 

CI) from this analysis was 0.717 (95% CI: 0.598, 0.835) for OCT, 0.665 (95% CI: 0.541, 

0.790) for GDx, and 0.051 (95% CI: −0.069, 0.171) for their difference. These 95% CIs 

were wider than in the analyses using all eyes with accounting for the inter-eye correlation 

(Table 1).

ROC Analysis for Predicting Incidence of Advanced Age-related Macular Degeneration

The frequency distribution of baseline AREDS severity scale scores and the 5-year risk 

of advanced AMD in the bilateral and unilateral eyes are shown in Table 2. The 5-year 

advanced AMD risk was highest (47%) in the unilateral eyes whose fellow eye had 

advanced AMD at baseline, while lowest (8.8%) in the unilateral eyes whose fellow eye had 
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baseline severity scale less than 5, while the bilateral eligible eyes had a 5-year advanced 

AMD rate of 21%. For all included eyes, the 5-year risk of advanced AMD increases with 

higher baseline AREDS severity scale (Table 2).

The inter-eye agreement of the baseline AREDS severity scale among the 63 bilateral 

eligible subjects is shown in Online Table 2. Their inter-eye agreement is low, with 

percent of agreement 44.4% and weighted kappa (weight calculated using Cicchetti and 

Allison method26) of 0.33 (95% CI: 0.16, 0.49). The risk score calculated from regression 

coefficients of the multivariable logistic regression model (Online Table 3) had inter-eye 

correlation of 0.60.

Among 63 bilateral eligible subjects, 21 (33.3%) subjects (26 eyes, 20.6%) developed 

advanced AMD by 5-years, with 5 (7.9%) subjects having bilateral advanced AMD and 16 

(25.3%) subjects having unilateral advanced AMD. The inter-eye agreement for incidence of 

advanced AMD was low, with a percent of agreement of 75% and kappa of 0.23 (95% CI: 

−0.05, 0.50) (Online Table 4).

The prediction model for advanced AMD in an eye within 5 years using only the baseline 

AREDS severity scale had the area under the ROC curve of 0.719 (Figure 3). The 95% CIs 

of the AUC calculated from various approaches are shown in Table 3. The naïve approach 

that ignored the inter-eye correlation had the narrowest 95% CI (width of 95% CI: 0.149), 

while the 95% CIs from the nonparametric clustered ROC analysis and cluster bootstrap 

in SAS were slightly wider than the naïve approach (0.156, 0.152, respectively). When the 

ROC analyses were performed for left eyes and right eyes separately, the AUC from right 

eyes was higher than that from left eyes (0.745 vs. 0.691), and the 95% CIs were all wider 

(width 0.205 and 0.218 respectively) than that from the analysis using both eyes, reflecting 

the loss of information from a single eye analysis. Similarly, when the AREDS severity scale 

scores from the worse eye were used to predict 5-year incidence of advanced AMD in either 

eye, the AUC was 0.727 (width of 95% CI: 0.161).

Inclusion of baseline demographics, AREDS assigned treatment, and status of the 

contralateral eye in the prediction model improved the AUC by 0.064 (Figure 3). This 

improvement was statistically significant (p<0.05) in each analytic approach except for the 

left eye (p=0.06) and worse eye (p = 0.13) analysis (Table 3). The 95% CI for the AUC 

improvement was slightly narrower with the naïve approach (width: 0.110) than for the 

nonparametric clustered ROC analysis (width: 0.112) and cluster bootstrap (width: 0.111). 

The percentile-based 95% confidence interval and the BCa confidence interval from the 

cluster bootstrap were similar for both AUC and AUC difference (Table 3).

ROC Analysis for the Treatment-Requiring Retinopathy of Prematurity

Among 771 infants, 85 (11.0%) developed TR-ROP, including 82 (10.6%) infants requiring 

treatment in both eyes, and 3 (0.4%) infants requiring treatment in the right eye only. There 

was high inter-eye agreement in TR-ROP, with a percent agreement of 99.6% and kappa of 

0.98 (95% CI: 0.96–1.00) (Online Table 5).
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The inter-eye correlation for findings from the first image session were mild to moderate for 

presence of blot hemorrhage (kappa=0.26, Online Table 6), for number of quadrants with 

preplus disease (weighted kappa=0.41, Online Table 7), ROP stage and zone (weighted 

kappa=0.49, Online Table 8). The inter-eye correlation for the risk scores from the 

multivariable logistic regression that included BW, GA and these image evaluation findings 

was 0.95.

A comparison of the AUCs from the models predicting TR-ROP using BW and GA only, 

and using BW, GA and the first image session findings are shown in Figure 4 and Table 

4. The point estimates of the AUC from the model with BW and GA were approximately 

0.802 from the naïve approach, nonparametric cluster ROC analysis and cluster bootstrap, 

but the 95% CIs differed substantially. The naïve approach had a narrower width for the 

95% CI (0.066) than the nonparametric ROC analysis approach (0.093) and the cluster 

bootstrap in SAS (0.090). The AUCs from the prediction model using BW, GA and the 

first image session findings were 0.878 from each of these three approaches, but the 95% 

CIs were different, with a narrower 95% CI from the naïve approach (0.050) than from 

the nonparametric cluster ROC analysis (0.066) and cluster bootstrap in SAS (0.068). The 

inclusion of first image session findings significantly improved the AUC by 0.076, with 

narrower 95% CI of AUC improvement from the naive analysis (0.053) than from the 

nonparametric cluster ROC analysis (0.070) and cluster bootstrap approach in SAS (0.070). 

The percentile-based 95% confidence interval and the BCa confidence interval from the 

cluster bootstrap were similar for both AUC and AUC difference (Table 4).

The analyses using one eye only (left eye, or right eye, or worse eye) provided almost the 

same results as the analyses using two eyes for the prediction model based on BW and GA. 

However, for the prediction model using BW, GA and first image findings, the analyses of 

one eye provided wider 95% CIs of the AUCs and the difference between two AUCs (Table 

4).

DISCUSSION

In this tutorial paper, we illustrated two approaches (i.e., Obuchowski’s nonparametric 

approach and the cluster bootstrap) to account for inter-eye correlation in ROC analysis 

and demonstrated their use in analyzing correlated eye data from three clinical studies 

with substantially different degrees of inter-eye correlation. We demonstrated that ignoring 

inter-eye correlation can lead to under-estimation of the variability of AUC, making its 95% 

CI too narrow, while analyzing data from left eyes and right eyes separately is inefficient (as 

evidenced by the wider 95% CIs than for the AUCs from the ROC analysis of two eyes).

The impact of ignoring the inter-eye correlation on the AUC is dependent on the magnitude 

of inter-eye correlation in both the test results and the ocular disease status. As shown 

in the analysis of AREDS data, when the inter-eye correlation for the predictors and 

inter-eye correlation in outcome are all relatively small, ignoring the inter-eye correlation 

using the naïve approach provides slightly narrower 95% CI of AUC, compared to the 

nonparametric ROC analysis and cluster bootstrap that properly account for the inter-eye 

correlation. However, when the inter-eye correlation is high, as in the TR-ROP data, the 
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naïve approach that ignores the inter-eye correlation substantially under-estimates the 95% 

CIs for the AUCs and the AUC difference, compared to the two approaches that properly 

adjust for the inter-eye correlation. The cost of inappropriately narrow confidence intervals 

can lead to incorrect inferences, such as incorrectly concluding that a more complicated 

model meaningfully enhances discrimination.

The cluster bootstrap approach provides a powerful tool to account for inter-eye correlation 

in calculating the 95% CI for AUC and AUC difference. The bootstrap approach requires 

no distributional assumptions. For correlated eye data resulting from ocular tests on two 

eyes of a subject, the cluster bootstrap is performed at the cluster level (e.g., subject level) 

instead of at the eye level, and the statistic calculated from many bootstrap samples (e.g., 

2000) yields an empirical distribution of the AUC, which provides the basis for calculating a 

percentile-based 95% CI or bias-corrected/accelerated 95% CI for single AUC and for AUC 

comparisons. The cluster bootstrap approach can be easily implemented in most statistical 

packages as demonstrated in SAS and R (Supplemental Notes 2–6). Obuchowski’s approach 

is a nonparametric analytic approach. Although calculating the variances for the AUC and 

AUC differences involves several formulas, an R function is available to perform these 

calculations. Results from these two different approaches to adjust for inter-eye correlation 

in ROC analyses were very similar, but not exactly the same. Previous Monte Carlo 

simulation studies found that Obuchowski’s nonparametric approach can handle a variety 

of intra-cluster correlation structures between disease status and test results,15 and that the 

cluster bootstrap had performance similar to Obuchowski’s nonparametric ROC analysis.19

Many variations of the bootstrap have been developed to improve the statistical 

inference when data are clustered.27 In our ROC analysis of three example datasets, 

we calculated both percentile-based confidence intervals and bias-corrected/accelerated 

confidence intervals from the cluster bootstrap. We did not find any substantial differences 

in their confidence intervals. Their similarity may be due to the fact that each study had 

a moderate or large sample size and the distribution of AUC and the AUC difference 

from the bootstrap samples were not skewed. Simulation studies are needed to evaluate the 

performance of various bootstrap approaches for deriving 95% confidence intervals under 

different settings for number of clusters, cluster size (1 or 2), and magnitude of inter-eye 

correlation.

In the past, a common practice for dealing with correlated eye data from ocular tests was 

to analyze data from one eye only, or to analyze data from left and right eyes separately. 

In our examples, we demonstrated that such analyses are inefficient in that their 95% 

CIs were usually wider compared to the appropriate analyses that account for inter-eye 

correlation. Furthermore, analyzing left eye and right eye separately can yield somewhat 

different results, making the interpretation of results complicated.

In conclusion, using ROC analysis to evaluate ocular test data from both eyes needs to 

account for the inter-eye correlation. There are valid methods (Obuchowski’s nonparametric 

approach and cluster bootstrap) available to account for the inter-eye correlation that are 

executable in statistical packages (SAS or R). Ignoring the inter-eye correlation can lead to 

over-statement of the precision of AUC and invalid conclusions about differences in AUCs. 

Ying et al. Page 10

Ophthalmic Epidemiol. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While analyzing data from each eye separately avoids the need to account for the inter-eye 

correlation, such analyses are inefficient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1A: 
Boxplots for the retinal nerve fiber layer (RNFL) thickness from optical coherence 

tomography (OCT) in eyes with and without optic neuritis
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Figure 1B: 
The Boxplots for the retinal nerve fiber layer (RNFL) thickness from GDx in eyes with and 

without optic neuritis
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Figure 2: 
Receiver-Operating Characteristic (ROC) curves from optical coherence tomography (OCT) 
and GDx RNFL thickness of all eyes
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Figure 3: 
Receiver-Operating Characteristic (ROC) curves for predicting 5-year incidence of advanced 

AMD using baseline severity scale only and using the combination of baseline severity scale 

along with demographics and treatment. AUC=Area under ROC curve.
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Figure 4: 
Receiver-Operating Characteristic (ROC) curves for predicting treatment-requiring 

retinopathy of prematurity (ROP) using birth weight (BW) and gestational age (GA) only 

and using the combination of birth weight, gestational age and findings of the first image 

session. AUC=Area under ROC curve.
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