Skip to main content
. 2021 Oct 29;12:770656. doi: 10.3389/fmicb.2021.770656

TABLE 2.

Evasion IFN-I system by HP-hCoV-encoded proteins.

Protein Virus Mechanism References
Non-structural proteins
NSP1 HP-hCoVs Suppressing phosphorylation of STAT1 and STAT2 Xia et al., 2020; Kumar et al., 2021
NSP3 SARS-CoV-2 Cleaving IRF3 directly Moustaqil et al., 2021
SARS-CoV-2,
SARS-CoV,
Cleaving ubiquitin-like protein ISG15 Shin et al., 2020
HP-hCoVs Exhibiting DUB and deISGylating activities Ratia et al., 2014; Yang et al., 2014; Shin et al., 2020
SARS-CoV Binding to IRF3 and inhibiting the degradation of IκBα Devaraj et al., 2007; Frieman et al., 2009
MERS-CoV Blocking IRF3 phosphorylation and nuclear transport Yang et al., 2014
NSP5 SARS-CoV-2,
SARS-CoV
Preventing nuclear translocation of phosphorylated IRF3 Fung et al., 2021
NSP6 SARS-CoV-2,
MERS-CoV
Binding to TBK1 and suppressing IRF3 phosphorylation Xia et al., 2020
NSP8 SARS-CoV-2 Binding to MDA5 and impairing its K63-linked polyubiquitination Yang et al., 2020
NSP13 SARS-CoV-2 Binding and blocking TBK1 phosphorylation Yuen et al., 2020
NSP14 SARS-CoV-2 Inducing lysosomal degradation of the IFNAR1 (IFN-I receptor) and inhibiting STAT activation Hayn et al., 2021
Accessory proteins
ORF3a SARS-CoV-2 Impeding the phosphorylation of STAT1 Lei et al., 2020; Xia et al., 2020
SARS-CoV Degradation of IFNAR1 Minakshi et al., 2009
ORF3b SARS-CoV-2,
SARS-CoV
Hampering the nuclear translocation of IRF3 Konno et al., 2020
ORF6 SARS-CoV-2,
SARS-CoV
Binding directly to the Nup98 and Rae1 to Prevent bidirectional nucleocytoplasmic transport Kopecky-Bromberg et al., 2007; Addetia et al., 2021
SARS-CoV Tethering KPNA2 and suppressing nuclear translocation of STAT1 Frieman et al., 2007
ORF7a SARS-CoV-2 Impeding phosphorylation of STAT1 but STAT2 Xia et al., 2020; Suryawanshi et al., 2021
ORF7b SARS-CoV-2 Suppressing phosphorylation of STAT1 and STAT2 Xia et al., 2020; Suryawanshi et al., 2021
ORF8 SARS-CoV-2 Attenuating SeV induced IFN-β promoter activation and IFN-β mRNA level Li et al., 2020a
ORF9b SARS-CoV-2 Interrupting K63-linked ubiquitination of NEMO Wu J. et al., 2021
SARS-CoV-2,
SARS-CoV
Interacting with human TOM70 Jiang et al., 2020; Thorne et al., 2021
SARS-CoV Targeting MAVS by usurping poly(C)-binding protein 2 (PCBP2) and the HECT domain E3 ligase AIP4 Shi et al., 2014
ORF4a MERS-CoV Binding to PACT Siu et al., 2014
ORF4b MERS-CoV Interacting with TBK1 and IKKε, Yang et al., 2015
Associating with KPNA4 and suppressing nuclear translocation of NF-κB Canton et al., 2018
Structural proteins
M SARS-CoV-2 Interacting with MAVS Fu et al., 2021
Associating with MDA5, TRAF3, IKK, and TBK1 and degrading TBK1 via the ubiquitin pathway Sui et al., 2021
SARS-CoV Associating with RIG-I, TBK1, IKKε, and TRAF3 and impedes the formation of TRAF3/TANK/TBK1 complex Siu et al., 2009
MERS-CoV Interacting with TRAF3 Lui et al., 2016
N SARS-CoV-2 Interacting with MDA5 and RIG-I and blocking the IRF3 phosphorylation and nuclear translocation Chen et al., 2020
SARS-CoV-2 Blocking the STAT1 and STAT2 phosphorylation and nuclear translocation Mu et al., 2020
SARS-CoV-2 Inhibiting Lys63-linked poly-ubiquitination and aggregation of MAVS Wang S. et al., 2021
HP-hCoVs Interfering with TRIM25-mediated RIG-I ubiquitination Hu et al., 2017; Chang et al., 2020; Gori Savellini et al., 2021
SARS-CoV Binding with PACT Ding et al., 2017