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Abstract

Despite the considerable efforts in screening and diagnostic protocols, prostate cancer still represents the second
leading cause of cancer-related death in men. Many patients with localized disease and low risk of recurrence have a
favourable outcome. In a substantial proportion of patients, however, the disease progresses and becomes aggres-
sive. The mechanisms that promote prostate cancer progression remain still debated. Many findings point to the role
of cross-communication between prostate tumor cells and their surrounding microenvironment during the disease
progression. Such a connection fosters survival, proliferation, angiogenesis, metastatic spreading and drug-resistance
of prostate cancer. Recent years have seen a profound interest in understanding the way by which prostate cancer
cells communicate with the surrounding cells in the microenvironment. In this regard, direct cell-to-cell contacts and
soluble factors have been identified. Increasing evidence indicates that PC cells communicate with the surrounding
cells through the release of extracellular vesicles, mainly the exosomes. By directly acting in stromal or prostate cancer
epithelial cells, exosomes represent a critical intercellular communication system. By querying the public database
(https://pubmed.ncbi.nim.nih.gov) for the past 10 years, we have found more than four hundred papers. Among
them, we have extrapolated the most relevant about the role of exosomes in prostate cancer malignancy and pro-
gression. Emerging data concerning the use of these vesicles in diagnostic management and therapeutic guidance of
PC patients are also presented.
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Background

Prostate cancer (PC) remains the most commonly diag-
nosed non-cutaneous malignancy in men. The starting
events in PC involve intrinsic changes in epithelial pros-
tate cells, in combination with distinct changes in the sur-
rounding microenvironment. The consequences of these
interactions can be profound, ranging from cell survival
to angiogenesis, metabolic reprogramming, resistance
to therapy, escape from immune surveillance and meta-
static spreading. These hallmarks lead to progression
and development of metastatic disease, which is almost
untreatable. Currently used therapies, indeed, initially
show antitumor effect to become almost inefficacious
as PC progresses [1]. As such, a better understanding of
the mechanisms responsible for disease progression and
drug-resistance represents a challenging puzzle.

PC cells undergo epithelial-mesenchymal transition
(EMT) to drive metastasis in distant organs. This process
enables a gain of functions, such as the loss of cell—cell
contacts, a robust increase in proliferation and acquisi-
tion of a high-motile phenotype [2]. Once detached from
the primary site, tumor cells invade extracellular matrix
(ECM) and disseminate into the bloodstream and lym-
phatics, where they are detectable as circulating tumor
cells (CTCs). These cells often survive to the journey
through the circulation, and once reached the meta-
static site, they might co-opt the resident stromal cells
to generate a ‘permissive’ microenvironment. It has been

consistently shown that PC cells alter the microenviron-
ment to allow the development of metastases only when
metastatic sites contain a cluster of specialized cells,
known as metastases-initiating cells (MICs). These cells
recruit and re-program prostate transformed and non-
transformed epithelial as well as stromal cells to control
metastatic events [3]. Although simple in their summa-
rization, these processes require participation of lead
actors, extras and ‘bystander’ cells.

Therefore, there is a great interest in understanding
the way by which PC cells communicate with the sur-
rounding stromal cells. A lot of papers have so far identi-
fied direct cell-to-cell contacts, soluble factors, nutrients
and hormones implicated in this liaison [4—11]. Increas-
ing evidence, however, indicates that extracellular vesi-
cles (EVs), including the exosomes, mediate the complex
cross talk between stroma and cancer epithelial cells [12].

Exosomes deliver a plethora of molecules. Therefore,
they represent a critical intercellular communication sys-
tem for exchange of information between cells. The lipid
bilayer membrane of exosomes protects their cargo from
RNases and proteases [13]. Thus, they may also act as
an efficient delivery system in therapy. Exosomes medi-
ate prostate carcinogenesis as well as PC progression by
directly acting on cancer epithelial cells or stromal cells,
or even by reprogramming the ‘dormant’ cells in tumor
microenvironment [14]. Nevertheless, the role and
molecular signatures of exosomes during PC progression
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and drug-resistance are still under investigation. Even
less clear appears the role of exosome-derived androgen
receptor (AR) in PC progression and hormone-resist-
ance. The present manuscript aims to fill this gap.

EVs: structure and functions

EVs are circular membrane-enclosed particles secreted
by almost all cell types during their physiological and
pathological processes. Cardiovascular, neuronal,
immune and non-immune cells release EVs. Although
their physiological role needs to be further elucidated
in vivo, EVs contribute to pathogenesis of cardiovascular
as well as neurodegenerative diseases and regulate the
immuno-responses, including the host-response to viral
infections. Cancer cells also release EVs [15].

EVs generally fall into two major categories, ectosomes
and exosomes [16], although their classification is far to
be defined [17]. Ectosomes are generated by the direct
outward budding of plasma membrane, which produces
micro-vesicles, micro-particles, and large vesicles in
the size range of ~50 nm-1 pm in diameter. Exosomes,
instead, are of endosomal origin and have a size range
of ~40-160 nm in diameter. They derive from a process
involving the formation of intracellular multivesicular
bodies (MVBs), containing intraluminal vesicles (ILVs),
which are secreted as exosomes through MVB fusion to
plasma membrane and the subsequent exocytosis. These

processes are finely regulated by effectors involved in
the intracellular vesicular trafficking, such as the Ras-
related GTPase, Rab or the endosomal sorting complexes
required for transport (ESCRT) of proteins, phospholip-
ids and ceramides.

Exosomes deliver cytoplasmic proteins, nucleic acids,
lipids and glycol-conjugates protected by a lipid bilayer.
Their composition often reflects the identity of the
cell of origin, but at the same time exosomes exhibit
some unique mixtures of genetic material [18]. Nota-
bly, exosomes show a great heterogeneity, which reflects
their content, origin and size (Fig. 1). Cross-combination
of these characteristics allows a great range of func-
tions, including survival, immuno-response, and so on.
The role of exosomes in recipient cells remains, how-
ever, an important challenge. They might directly stimu-
late acceptor cells by interaction with surface-expressed
ligands or transfer membrane receptors between cells or
mediate the horizontal transfer of proteins and genetic
information, such as small or long non-coding RNAs,
structural RNAs, tRNAs, and small interfering RNAs
between cells [19-22]. When exosomes deliver oncogenic
material that might induce transformation of the recipi-
ent cells, they are usually named oncosomes [23]. Mul-
tiple signaling pathways affected by tumor-derived EVs
and exosomes have been so far identified. Their relevance
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in PC progression will be discussed in the subsequent
sections of this review.

EVs in prostate tissue and PC

Prostasomes in prostate and PC

Prostate-derived EVs were found many years ago in pro-
static fluids as well as seminal plasma, and hence named
‘prostasomes’ [24—26]. Although sharing many features
with exosomes, such as the storage into (inside storage)
with the consequent release from MVBs and the expres-
sion of exosome markers, such as CD9 and CD63, pros-
tasomes appear larger (50—500 nm) than exosomes and
may possess a multilayer membrane. Additionally, their
lipidic content is mainly represented by sphingomyelin
and their membranes contain high cholesterol levels [27].
Prostasomes might also contain chromosomal DNA,
representing an array of small DNA fragments randomly
selected from the entire human genome [28, 29], or
derived from contaminating apoptotic bodies containing
small DNA fragments [30].

In physiological conditions, prostasomes interact with
spermatozoa and regulate sperm cell functions, such as
spermatozoa motility, capacitation events, acrosome
reaction, recognition by the female’s immune cells. They
also exhibit antioxidant and antibacterial capacities.
Therefore, the role of prostasomes in male fertility and
reproduction is undeniable [30].

Hyperplastic prostate cells, PC and metastatic PC cells
release prostasomes, which exhibit some typical proper-
ties of prostasomes derived from normal cells [31, 32].
However, once released from the apical side of the nor-
mal, columnar prostate epithelial cells into the glandu-
lar lumen, prostasomes can be detected in the semen or
urine. By contrast, PC cells release prostasomes in the
interstitial compartment or even into the bloodstream,
since transformed cells lose their polarity and often
invade the basement membrane [33, 34].

Many findings have pointed to the differences in mark-
er’s expression or even to the different functions exhib-
ited by prostasomes derived from normal or PC cells.
Some of these characteristics include the involvement
of PC-derived prostasomes in the complement pathway,
the expression of surface enzymes and the promotion of
angiogenesis that might influence PC progression [34]. In
contrast, prostasome derived from the seminal fluid of
healthy men inhibit angiogenesis [35, 36]. Additionally,
prostasomes express the complement regulatory pro-
teins, CD46 and CD59 and might transfer CD59 to the
surrounding cells [37]. PC-derived prostasomes acquire
the ability to transfer CD59, as compared to prostas-
omes from normal cells [38]. Because of the high kinase
activity levels, PC-derived prostasomes phosphorylate
the complement protein C3 and fibrinogen [39]. These
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changes are implicated in cancer cell motility [40]. Addi-
tionally, PC-derived prostasomes exhibit hyper-activa-
tion of enzymes involved in ECM degradation and cancer
cell invasion, such as matrix metalloproteinases (MMP),
plasminogen activator and peptidoglycan hydrolyzing
enzymes [41]. At last, PC-derived prostasomes exhibit
reduced levels of CD26, thus lowering its onco-suppres-
sor function [41]. Of note, the TMPRSS2 serine protease
is also secreted as component of the prostasomes into
human semen [42]. The recent finding that TMPRSS2
activity is required for fusion between SARS-CoV-2 and
human sperm has increased the interest in TMPRSS2
functions and paved the way for the sexual transmission
of the virus [43]. Nonetheless, the role of TMPRSS2 in
PC-derived prostasome still remains unclear, while its
de-regulation by gene fusion is implicated in PC metas-
tasis [44]. From the presented findings, it appears that
prostasomes from PC cells foster survival and tumor pro-
gression. Their use in diagnostic approach of this disease
is, hence, envisaged.

Oncosomes in PC

Highly migratory PC cells release large EVs, (1-10 pm),
which have been named “large oncosomes” (LO; 45). LO
derive from the shedding of non-apoptotic plasma mem-
brane blebs and their release is fostered by overexpres-
sion of oncoproteins, including the membrane-bound
myristoylated-AKT, heparin-binding EGF-like growth
factor (HB-EGF), caveolin-1 and epidermal growth factor
receptor (EGF-R; 45-47) or the loss of cytoskeletal regu-
lator diaphanous related formin-3 (DIAPH3), which con-
trols the mesenchyme-amoeboid transition [48]. LO are
released from amoeboid, highly invasive PC cells and can
be detected in tumor specimens and plasma from patients
or mice with metastatic PC. Notably, LO degrade ECM
in vitro and cannot be detected in benign specimens [46].
By delivering signaling factors implicated in cell prolifera-
tion, growth and motility or RNA processing, they might
activate specific molecular pathways. Additionally, LO are
enriched of proteins and enzymes involved in glucose, glu-
tamine as well as amino acid metabolism, and exhibit abun-
dant levels of cytokeratin 18. These signatures suggest a
role for LO in PC progression and identify them as a source
of markers representative of PC malignancy [49]. It has
been subsequently shown that once internalized by human
normal fibroblasts, LO from patients with metastatic PC
or PC cells induce the fibroblast reprogramming, enabling
the endothelial tube formation in vitro and tumor growth
in vivo. Dissection of molecular mechanism has revealed
that LO from patients with metastatic PC or PC cells con-
tain abundant levels of active AKT1, which is required for
¢-MYC activation in the surrounding stroma. From these
data, it might be concluded that activation of stromal



Giovannelli et al. Cell Communication and Signaling (2021) 19:110

¢-MYC is critical for re-programming of stromal cells,
and that inhibition of LO internalization might impair the
tumor-supporting properties of fibroblasts by preventing
¢-MYC activation [50]. In addition to providing evidence
that LO mediate intercellular communication in aggressive
PC, such mechanism offers new hints for future therapeu-
tic application. More recently, it has been also reported that
LO derived from invasive PC-derived cells express high lev-
els of aV-integrin, which upon internalization by autocrine
and/or paracrine loop, sustain the aggressive phenotype of
PC cells, [51].

Taken together, the arguments put forward here add
new insights into biological functions of LO in PC devel-
opment and progression. Overall, they suggest that
LO activity can be further exploited for identification
of novel diagnostic markers and therapeutic targets in
aggressive and metastatic PC.

Exosomes in PC

Exosomes have emerged as a key communication mecha-
nism between different cell types in the tumor microen-
vironment. They deliver important information from one
cell to another and re-program the recipient cells, thus
regulating their proliferation, survival and immune-sur-
veillance. Most of the current studies have been obtained
using exosomes derived from PC cells, or body fluids
(plasma, serum, urine) from PC patients. The findings
obtained from differential analyses are included in spe-
cific databases, such as Vesiclepedia (http://www.micro
vesiscles.org; 52) or ExoCarta (http://www.exocarta.org;
53), which represent important web-based compendia
for exosomal research and content. The obtained infor-
mation shows how exosomes are heterogeneous in PC
and proteins as well as nucleic acids (miRNAs, mRNA,
IncRNAs) can change depending on the PC stage.

In plasma of PC patients there is a higher number
of exosomes than in healthy men or in patients with
benign prostatic hyperplasia (BPH; 54, 55). Further-
more, the number of urinary exosomes, higher in PC
patients, decreases after androgen deprivation therapy
[56]. Besides the exosome’s enumeration, their molecular
structure changes with the prostate status (BPH, PC or
castration resistant PC). The lipidic composition is quite
different, as exosomes from PC patients have a higher
content in lactosylceramide and phosphatidylserine than
vesicles from healthy controls [57].

The size and the tetraspanin content, in particular
CD9, CD81, CD63 and CD41a are different in exosomes
collected from benign prostatic hyperplasia, localized PC
(LPC) and advanced prostate cancer (AdvPC; 58). BPH
and AdvPC display a similar profile: CD63% and CD81%
vesicles with a diameter of 50 nm, CD9" with a diameter
of both 50 and 55 nm and CD41a vesicles with a diameter
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of 60 nm. In LPC, CD63" vesicles have mainly a diameter
of 50 or 55 nm, while CD9% has a diameter of 55 nm. The
CD9" vesicles are mostly represented in AdvPC than in
BPH and LPC. Bigger differences aree highlighted when
another marker, the prostate cancer specific PMSA is
used to select exosomes. In this case, PSMA and CD9
positive vesicles are most abundant in AdvPC than in
BPH or LPC while PSMA, CD9 and CD63 positive ves-
icles are most copious in AdvPC and LPc than in BPH.
Again, vesicles CD9 and CD63 positive were highly rep-
resented in LPC than in BPH or LPC [58].

Concentration and type of nucleic acids and proteins
loaded in exosomes change with the prostate health con-
dition. MiR-375 and miR-141 expression is associated
with the pathological stage and Gleason score [59] and
their level is high in patients with castration resistant PC
[60]. MiR-141 level is also used to distinguish patients
with PC from healthy controls [61].

Nilsson and Colleagues demonstrated that exosome
RNA content can be used as a diagnostic marker. In
their study, all PC patients express PCA3, whereas only
patients with high Gleason score and high PSA lev-
els exhibit the mRNA transcript for the fusion gene
TMPRSS2:ERG. In prostatectomized or ADT-treated
patients with bone metastases, TMPRSS2:ERG and
PCA3 were not detactable [62].

Some PC markers, such as PSA, PSMA and tumor-
associated marker T54 have been detected only in PC
urinary exosomes [56]. In PC patients, exosomes contain
a higher level of survivin (a protein inhibiting apoptosis)
than in patients with BPH or in healthy men. However,
almost all cell types, from benign to malignant prostate
tissue, release exosomes [63]. Since prostate cancer-sur-
rounding stroma also releases exosomes [64] might be
argued that exosomes from cancer cells and microenvi-
ronment cross-cooperate to promote PC malignancy.

Data from in vitro studies better analyze the role of
proteins and miRNA carried by PC vesicles.

Exosomes from aggressive PC cells, such as PC3 and
DU-145 cells, contain high levels of transforming growth
factor-p (TGE-P). Once internalized by stromal cells, it
induces activation of fibroblasts into myo-fibroblasts
through the TGEF-B/ mothers against decapentaplegic
homolog 3 (SMAD3) signaling activation [65]. Again,
exosomes from PC-derived cells or xenografted LNCaP
cells or serum from PC patients contain high levels
of EGFR, suggesting that detection of the receptor in
exosomes from PC patients can be used as a marker of
the disease state [66]. Using DU145 cells expressing a
constitutively active EGFR, Read and Colleagues have
reported that this EGFR mutant is trafficked through
extracellular vesicles and transported to the nucleus of
un-transfected DU145 [67]. These results have suggested


http://www.microvesiscles.org
http://www.microvesiscles.org
http://www.exocarta.org

Giovannelli et al. Cell Communication and Signaling (2021) 19:110

that EGFR or its mutant versions can be transferred
through exosomes, thereby modulating PC growth and
progression. The finding that EGFR might be used as a
marker for PC state is, however, arguable. Although data
in cultured cells and xenografts, including ours, have
indicated that EGFR plays a role in PC progression [68,
69], clinical trials with EGFR inhibitors have shown lim-
ited efficacy in PC patients [70, 71]. Again, in addition to
expressing the full length 170 kDa EGFR, serum-derived
exosomes from PC patients also express a variant protein
migrating at 110 kDa, which likely represents a soluble
form of EGFR. Nevertheless, the EGFR isoform detect-
able in PC patient serum does not exhibit to date a role
in prostate tumorigenesis [66]. As such, further investi-
gations are required for a better evaluation of EGFR and
its isoforms in PC-derived exosomes. A recent study
reported that exosomes from PC-derived 22Rv1 cells
contain high levels of the hyaluronidase Hyall, which is
implicated in PC progression and metastasis. Exosome-
derived Hyall stimulates, indeed, the migration of pros-
tate stromal cells, simultaneously with an increase in
adhesion to a type IV collagen matrix as well as focal
adhesion kinase (FAK) phosphorylation and integrin
engagement [72]. The presence of Hyall in PC-derived
exosomes, together with its ability to impact the behav-
ior of stromal cells, suggests that elevated Hyall levels in
exosomes promote PC spreading and progression. Again,
PC-derived exosomes are enriched of active Src and FAK
as well as insulin-like growth factor I receptor (IGFI-
R; 73). These findings provide new hints in biomarker
detection by liquid biopsy. Of note, they indicate that
PC-derived exosomes are enriched of signaling effectors
commonly engaged by the androgen receptor (AR) to
transmit its non-genomic effects in PC and stromal cells
as well as cancer-associated fibroblasts (CAFs) from PC
patients [11, 68, 74—77]. These considerations raise the
question whether or not PC-derived exosomes contain
AR, which still represents one of the most important tar-
geted biomarkers in PC.

Some years ago, it was reported that exosomes secreted
from LNCaP, but not PC3 cells contain AR. The Authors,
however, failed to detect AR in exosomes derived from
the plasma of PC patients, likely because of the low
amounts of exosomes isolated from blood as well as the
low content of AR in exosomes. However, the two mark-
ers, CD9 and CD63 were expressed in exosomes from
LNCaP cells [54]. Subsequent results showed that CD9-
enriched exosomes from PC cells or patients modulate
the growth of androgen-deprived PC cells by paracrine
signaling [78], indicating that PC-derived exosomes
might influence the AR activity. Furthermore, the AR
splice variant 7 (AR-V7) mRNA was isolated from
exosome-RNA in the blood of PC patients, and it was
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associated with the resistance to the anti-androgens,
enzalutamide or abiraterone [79]. More recently, AR
amplification and AR-V7 mutant have been identified in
circulating DNA or RNA of plasma-derived exosomes
from PC patients [80]. Despite the small patient’s cohort
analyzed in this study, the resulting findings would help
to stratify PC patients who benefit from abiraterone or
enzalutamide therapy, since AR amplification [81] and
AR-V7 mutant [82] represent valuable biomarkers for
treatment guidance in castration resistant PC (CRPC).
Additionally, three AR aberrations (AR T878A, AR-V7
and wild-type AR amplification) have been recently iden-
tified in enriched-tumor exosomes from a small cohort
of CRPC patients. Here again, the exosome cargo has
been linked to response or resistance to treatment with
anti-androgens [83]. A very recent study reinforced the
concept that exosome-RNA represents a reliable source
of AR variants, which might predict the PC-resistance
to AR signaling inhibitors [84]. In summary, these stud-
ies have explored the advantage of a feasible approach to
stratify CRPC patients in the context of their response to
anti-androgen therapy. Nevertheless, they have left still
pending the question concerning the impact of exosome-
derived AR (full-length or mutants) in PC progression
and metastasis. By using exosomes derived from 22Rv1
cells, which contain both the full-lenght AR as well as the
AR-V7 mutant, it has been shown that exosome cargo
can be directly transferred to the nuclear compartment
of AR-negative PC3 cells, thus activating gene transcrip-
tion [67]. Therefore, further investigations of the mecha-
nisms regulating the receptor transfer through exosomes
might offer unexpected advances in the understanding of
PC progression. However, a precise picture of the role of
AR or its variants in exosomes still appears tricky, likely
because the approaches so far used (cell culture in vitro,
xenograft experiments in mouse, correlative studies of
exosome-derived AR with therapeutic response in PC
patients) have hindered the progress in this topic.

The past years have seen a great expansion into CAFs
researches. These cells release ECM, growth factors,
cytokines and exosomes that might promote tumor pro-
gression. CAFs-derived exosomes can transfer proteins,
messenger RNAs (mRNAs), and microRNAs (miRNAs).
Their putative effects in PC have been extensively discussed
[85] and several studies have investigated the miRNA pro-
file in serum/plasma from PC patients [59, 61, 86, 87].

The role of CAFs in metabolic reprogramming of PC
cells is largely recognized. Once activated, CAFs from
PC patients produce lactate, which shuttles back to PC
cells, fueling their proliferation [88]. Subsequent stud-
ies from the same group have shown that CAFs directly
transfer their functional mitochondria to PC cells, fur-
ther promoting mitochondrial utilization by cancer cells
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and PC malignancy [89]. These studies have revealed
intriguing and novel aspects of CAFs secretoma. The
role of exosomes in metabolic reprogramming of PC cells
has been investigated in CAFs exosomes derived from
PC patients, and it has been shown that they provide
nutrients that enable PC growth, even under nutrient
deprivation or nutrient stressed conditions [90]. Alto-
gether, these findings pave the way for new therapeu-
tic approaches targeting the communication exchange
between CAFs, CAF-derived exosomes and PC cells.
Beyond the well-established role of miRNA and exoso-
mal miRNA in PC cells and tissues [85, 91], many find-
ings have shown that transfer of miRNAs through EVs
from the CAFs to the adjacent epithelial cells induces
tumor growth in several PC mouse models [92, 93]. This
transfer promotes EMT of PC cells, thereby increasing
their migration, invasion, and metastasis to bone and soft
tissues. Studies of miRNA members, miR-409, miR-379
and miR-154*, located within the delta-like 1 homolog-
deiodinase, iodothyronine 3 (DLK1-DIO3) imprinted
region located on human chromosome 14, have shown
that these miRNAs induce tumor effects in vitro and
in PC xenograft models. DLK1-DIO3 miRNAs are
“hijacked” to promote PC tumorigenesis and metasta-
sis through enhancement of tumor—stroma interactions.
Since PC cells are susceptible to activation by surround-
ing cells, this process activates pathways that lead to
enhanced growth, survival and metastasis of PC [92, 93].
Again, a recent study reported that CAFs exosomes from
PC patients over-express miR-423-5p, which mediates

resistance of PC cells to taxanes [94]. Taken together,
the findings here discussed indicate that DLK1-DIO3
miRNAs are attractive therapeutic targets to block the
tumor—stroma interactions in PC patients and demon-
strate a role for miR-423-5p in PC chemoresistance.

In conclusion, PC arises and progresses through an
intricate network of signals and information exchanged
by cancerous cells and the surrounding microenviron-
ment. The complexity of this network relies on the abil-
ity of EVs to transfer, both locally and systemically, a
repertoire of bioactive molecules regulating PC malig-
nancy and drug-resistance (Fig. 2). Therefore, exosomes
represent promising circulating biomarkers detectable
through non-invasive liquid biopsy for early diagnosis,
screening and risk of PC relapses. Their shuttled signal-
ing might be specifically targeted to interrupt cell-to-cell
communication in PC.

Androgens, anti-androgens and exosomes

In literature, only few studies have analyzed the effect of
androgens and anti-androgens on the heterogeneity of
exosomes in PC.

Extracellular vesicles positive for CD9 or double
positive for CD9 and PMSA are the most expressed in
patients with advanced metastatic PC, while there is a
higher number of exosomes double positive for CD9 and
CD63 in patients with localised PC [58]. Dihydrotestes-
terone (DHT) and Enzalutamide alter size and hetero-
geneity of CD9 exosomes in AR positive PC cells. The
androgen and its antagonists have no effect on number
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and type of protein cargo, but influence the RNA content
of vesicles. Five hundred and forty-three small RNA are
controlled by androgen treatment including miR-19-3p
and miR-361-5p [58].

In another study, McCormick and Colleagues demon-
strated that the anti-androgen Casodex stimulates the
secretion of exosomes characterized by the expression
of Rablla in CRPC in vitro models. In these cells, the
antiandrogen reduces the mTORCI activity, thus pro-
moting the Rablla-exosome release [95]. Similar data
were obtained in aromatase inhibitor resistant breast
cancer cells, in which the upregulated exosome produc-
tion is due to an enhanced RabGTPase expression [96]. It
is known that other GTPases, such as Rac, Rho and Ras
are controlled by androgens [77, 97] and are involved in
exosomes biogenesis [98, 99]. Thus, it could be intrigu-
ing to scrutinize this aspect in the future.

Clinical and therapeutic use of exosomes

Different studies highlight the pivotal role of exosomes in
PC development and progression. By carrying different
molecules, exosomes allow PC cells to communicate with
tumor microenvironment, thus creating the best niche
both for primary and metastatic cancer. Furthermore,
considering that exosome’s composition in protein and
nucleic acids depends on cancer stage or cancer response
to chemical treatment, these vesicles represent a poten-
tial source of tumor biomarkers for both diagnosing the
PC stages and monitoring PC therapies. Exosomes are
detectable in blood, urine, prostatic secretions, saliva and
other biological fluids, for this they can be quickly col-
lected with a minimal burden for the patients, contrary to
the prostatic biopsies now used.

Nevertheless, cause of their reduced shape and their
ability to fuse with cancer cells, biocompatibility, stability,
low immunogenicity and tossicity, exosomes can be engi-
neered to deliver proteins, short interfering RNA, long
non-coding RNA, microRNA, nucleic acids, immune
modulators, and drugs to therapeutic purpose [15]. As
proposed by Batracova et al. [100], exosomes represent a
promising tool in cancer chemotherapy. Thanks to their
structure, exosomes can penetrate organs protected by
physiological barriers and can circumvent the immune
system of cells without being destroyed and are also well
tolerated [101].

Obviously, their use as therapeutic target needs to be
better investigated, but represents a promising challenge.
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Concluding remarks

PC remains a major public health problem. Given the
expected increase in PC burden, it is a priority to rapidly
translate basic research findings into novel and effective
tools for the early detection, diagnosis and prognosis in
PC patients.

Many advances have been made in this direction.
Nevertheless, pieces of the PC puzzle are still missing,
especially concerning the complexities of cell-to-cell
communication. Preclinical and clinical findings here
discussed might provide new insights into the molecu-
lar characteristics of PC- and stromal-derived exosomes.
They may also have many potentialities for future appli-
cations in PC therapy as well as other common endo-
crine-related malignancies, such as breast and thyroid
cancers.
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