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Abstract: Feature Pyramid Network (FPN) is used as the neck of current popular object detection
networks. Research has shown that the structure of FPN has some defects. In addition to the loss
of information caused by the reduction of the channel number, the features scale of different levels
are also different, and the corresponding information at different abstract levels are also different,
resulting in a semantic gap between each level. We call the semantic gap level imbalance. Correlation
convolution is a way to alleviate the imbalance between adjacent layers; however, how to alleviate
imbalance between all levels is another problem. In this article, we propose a new simple but effective
network structure called Scale-Equalizing Feature Pyramid Network (SEFPN), which generates
multiple features of different scales by iteratively fusing the features of each level. SEFPN improves
the overall performance of the network by balancing the semantic representation of each layer of
features. The experimental results on the MS-COCO2017 dataset show that the integration of SEFPN
as a standalone module into the one-stage network can further improve the performance of the
detector, by ∼1AP, and improve the detection performance of Faster R-CNN, a typical two-stage
network, especially for large object detection APL∼2AP.

Keywords: object detection; feature pyramid; level imbalance; correlation convolution

1. Introduction

It is a challenging task to detect objects of different scales in the field of computer vision.
With the development of deep convolutional networks, many detectors have made signifi-
cant improvements in object detection [1,2]. In order to extract effective features, the de-
tector can use powerful network structures such as ResNet [3], HourglassNet [4], HTC [5],
etc. Using them as backbone, two-stage detectors [6,7] and one-stage detectors [8–10] lead
to improvements in detection performance and speed, respectively. On this basis, Anchor
Base [11–13] and Anchor-Free [14,15] detectors further improve the detection performance
of the detectors. No matter what kind of strategy the detector adopts, the detection net-
work is usually designed to consist of three parts: backbone, neck, and head. Feature
Pyramid Network (FPN) [16] is a commonly used neck structure, as shown in Figure 1.
The input feature features of FPN have the following characteristics: low-level features
have high resolution and less channels, while high-level features have low resolution and
more channels, but high-level features and low-level features are complementary [17]. The
output features of the feature pyramid FPN have multiple scales but the same number
of channels, and the features are fused through a top-down path. The head part uses the
features output of FPN as input for object detection according to different strategies, such
as FSAF [18] and ATSS [19].
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Figure 1. 4-level FPN. For the reasons of share head and feature fuse, FPN’s output features have
the same channel number but different scale.

As the features extracted from backbone are in different network depths, there is a
semantic gap between the features. FPN adopts a top-down path to improve the semantic
representation of the underlying features by sequentially fusing features from the upper-
level, thereby improving the detection performance of the network.

From the output point of view, after the input feature passes through the FPN, the
number of channels of the high-level feature is reduced from 2048 to 256, and then infor-
mation loss appears [17]. At the same time, FPN merges the high-level features with the
next-level features sequentially through a top-down path, so that the generated features
pay more attention to adjacent resolution features and less attention to other features. In
this way, high-level features are passed down. The semantic information contained in
non-adjacent layers will be diluted after each cross-layer fusion. It does not make full use
of the correlation [20] and complementarity between high-level and low-level features.

To solve the problem of semantic gap, new solutions were proposed. PANet [21]
introduced a bottom-up path to pass the low-level features to the high-level. Libra R-
CNN [22] proposed the Balanced Feature Pyramids(BFP) which combines the FPN output
features of different levels into a middle scale, and then generates features of different sizes
through rescaling, as shown in Figure 2. The way of processing features in BFP is similar
to image pyramid and SNIP [23,24]. X. Wang proposed to use a 3D convolution, called
Scale-Equalizing Pyramid Convolution (SEPC) [20], to extract scale and spatial features
simultaneously, as shown in Figure 3. SEPC mainly focuses on the inter-level correlation in
the feature pyramid but ignores the complementarity of high and low layer features.

Figure 2. Libra RCNN’s BFP. BFP re-scale the output features of FPN into one size and use summation
to fuse the features, then resize the output feature into different scale.
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Figure 3. 3D Convolution-SEPC. Pconv apply the correlation between adjacent feature layers to fuse
the features. SEPC construct a layer which use PConv on all level of input features.

Inspired by SEPC and Libra R-CNN, we propose a simple but effective method,
namely, Scale-Equalized Feature Pyramid Network (SEFPN), to deal with semantic gaps.
Through the iterative fusion of features with various resolutions, the semantic difference
of output features is reduced. To evaluate the proposed method, we validated it on the
MS-COCO2017 dataset. Using the FoveaBox method [14], a one-stage method, SEFPN can
improve the Average Precision (AP) by 1%, especially for large scale object detection (APL)
by 2%. Experiments on Faster R-CNN, a two-stage algorithm, show a 2% improvement in
large object detection (APL). These experiments fully prove that SEFPN is an effective way
to improve the efficiency of network detection.

2. Related Work
2.1. Deep Object Detector

Modern deep detection networks use convolutional (CNN) neural networks to detect
objects. Object detection methods can be divided into two-stage and one-stage according
to whether to they use the Region Proposal Network (RPN) [25]. Two-stage detectors,
such as Faster R-CNN [7] and its improvements, use RPN to extract the Region Of Interest
(ROI), and then classify and locate the ROI. One-stage detectors, e.g., YOLO [9], follow an
end-to-end manner to classify and locate objects on features. Compared with two-stage
detectors, one-stage detectors are more efficient. RefineNet [26] introduces task-specific
branches into the network architecture to surpass the accuracy of the two-stage detector
while it maintains the speed of the one-stage detector.

According to whether an anchor is used or not, it can be divided into anchor-free and
anchor base algorithms. The anchor base algorithm is used to layout priori anchor boxes on
the features. The anchor box parameters depend on the dataset used. Typical algorithms
are YOLOV3 [10], SSD [13], etc. While the anchor-free algorithm avoids the use of anchor,
the entire framework has a lower computational cost and runs faster, such as FoveaBox [14]
and CornerNet [15]. ATSS [19] adopts a new positive sample sampling strategy to bridge
the gap between anchor-based and anchor-free detection.

This paper uses FoveaBox as the baseline, which is an anchor-free, one-stage detector.
It detects objects on features of different scales according to the size of the object, such as
SNIP [23]. If the center of the sample is in a specific smaller area, this sample is selected
as positive.

2.2. Feature Fusion

The output of FPN is a feature set with multiple levels, but the same number of
channels, and can apply different object detection strategies. The FPN structure has the
following defects: on the one hand, high-level features suffer from information loss due
to the reduced feature channels. On the other hand, a top-down path transfers high-level
features to the bottom through sequential fusion. The sequential approach will allow
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the integrated feature to focus more on adjacent resolutions rather than other resolutions.
During the information flow, the semantic information contained in non-adjacent layers
will be diluted once every time when they are fused. The result is that there is a semantic
gap between high-level features and low-level features, and FPN does not make full use of
the complementarity between features.

PANet [21] adds a bottom-up path on FPN in an attempt to improve the content
descriptive of high-level features. Libra R-CNN [22] integrates the output of FPN into a
specific scale feature, and then re-scales it into different scale features through upsampling
and downsampling. Its main idea is to lighten up the semantics gap.

SEPC [20] applies the correlation between adjacent-layer features to fuse those features
using a 3D convolution method. AugFPN [17] introduces Residual Feature Augmentation
(RFA) and Adaptive Spatial Fusion (ASF) to improve network performance and reduces
the influence of FPN network defects. NasFPN [27] uses Neural Architecture Search(NAS)
to search for a better network structure, which greatly improves the detection results.
ASFF [28] generates weight coefficients for the fusing features and adopts the adaptive
strategy for feature fusion.

Inspired by Libra R-CNN and SEPC, this paper proposes a new network structure
called Scale-Equalizing Feature Pyramid Network(SEFPN). SEFPN can generate balanced
features while considering the correlation between features of different scales, and the
computational cost will maintain in a low increase.

3. Framework
3.1. Overall

The whole framework pipeline is as follows. First, features with channel number set
to [256, 512, 1024, 2048] are extracted from backbone. In other words, the scale of high-level
feature is 1/2 of the adjacent low-level feature scale, that is, ScaleCi =

1
2 ScaleCi−1 . Second,

FPN takes the output feature as input, then feature Fi with a channel number of 256 as
output. Feature Fi is rescaled to generate a specific size and then fused with other features
to form one level Pi,j, then put all levels together to form one stage. Finally, the output
feature will pass a refine module. The pipeline of framework is shown in Figure 4.

Figure 4. Pipeline of SEFPN. The whole pipeline is constructed by FPN, full connected layer, and
a refine module. FPN acts as a basic module to output features. The full connected layer acts as a
module to fuse all scales features. The last module is used to make the feature coarse or fine.

3.2. Multi-Level Libra

To balance the feature representation, Libra R-CNN proposes to re-scale the output
features of FPN into a specific scale. The refine method is applied through the non-local
module, and the final re-scale will generate features Ri of different scales. That is, the only
difference between the features Ri is the scale.

The proposed SEFPN is an improvement of Libra RCNN. Because of the comple-
mentary relationship between high-level features and low-level features, as well as the
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correlation between feature layers, directly integrating features at all levels is undoubtedly
the most straightforward way. Thus, features in Leveli can be expressed as

yi =
j=L

∑
j=i+1

Upsample(xj) + xi +
j=i−1

∑
j=0

Downsample(xj) (1)

In SEFPN, the upsampling method uses bilinear interpolation, and the downsampling
method uses global max pooling. Compared with the SEPC, it just merges feature from
Leveli with those from adjacent levels Leveli−1, Leveli+1, that is,

yi = Upsample(ωi+1 ∗ xj) + ωi ∗ xi + Downsample(ωi−1 ∗ xj) (2)

SEPC requires more parameters and more computational cost. In intuition, the output
features still suffer from semantic gap between different levels.

3.3. Multi-Block Libra

Inspired by SEPC, we treat multi-level Libra as a block. In order to fully fuse the
features of different scales, we arrange the blocks in a sequential manner to form a multi-
block network. To prevent the gradient vanishing, a short connect is added between block
input and the output. The block is formulated as (3).

Output = x + f (yl), yl = yi|i ∈ [0, L− 1]. (3)

f (·) is the refine method.

3.4. Refine Method

The purpose of the refine method is to introduce an attention mechanism to make
the generated features focus on a certain feature component according to the different
inputs. We select Non-Local [29], GC Block [30], and convolution as candidates, and the
experimental results show that SEFPN is not sensitive to the type of refine method.

4. Experiments
4.1. Dataset and Evaluation Metrics

All experiments in this paper are performed on the challenging MS-COCO2017
dataset [31]. The dataset contains 80 categories of around 160K images (118k images
for training, 5k images for validation, and 41k images for testing). All reported results
follow the standard COCO-style mean Average Precision (mAP) metrics under different
IoU thresholds, ranging from 0.5 to 0.95. We also report the results APS, APM, APL on
small, medium, and large scales, respectively.

4.2. Implementation Details

All experiments are implemented based on mm detection [32]. The input images
are first resized to (1333, 800). We perform our training using one compute node of
2 A100 GPUs each with 40GB memory. The initial learning rate is set as 0.0125. In the
training process, 1× schedule means 12 epochs, and 2× schedule means 24 epochs. In
1× scheduling, the learning rate drops by 0.1 after 8 and 11 epochs, respectively, and 2×
scheduling drops after 16 and 22 epochs. All other parameters not noted in this paper
following mm detection. We chose the one-stage detector FoveaBox and two-stage detector
Faster RCNN as baseline.

4.3. Main Results

To verify the effectiveness of the SEFPN method for performance improvement, we
evaluate SEFPN on COCO test set and compare it with other SOTA one-stage and two-stage
detectors. For a fair comparison, we have re-implemented the corresponding baseline
methods with FPN on mm detection. All results are shown in Table 1. By appending
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SEFPN after FPN, when using ResNet50 and ResNet101 as backbone, Faster R-CNN can
achieve 37.3AP and 39.6AP, respectively, which is higher than that on ResNet50 with FPN.
Specifically, Faster R-CNN with SEFPN can achieve 47.7AP and 52.0AP on large-scale
object detection, which is 3.1AP and 3.7AP higher than Faster R-CNN with FPN. Obviously,
Faster R-CNN with SEFPN is better than Faster R-CNN with FPN on large-scale object
detection.

Table 1. Comparison with the state-of-the-art results on MS-COCO, symbol “*” means our re-
implemented results.

Method Backbone Epoch AP AP50 AP75 APS APM APL

One-stage

FoveaBox * [14] ResNet50 1× 36.2 56.1 38.5 20.4 39.7 46.2

FoveaBox * [14] ResNet101 1× 38.3 58.3 40.9 21.4 42.4 50.0

FoveaBox * [14] ResNet101 2× 38.9 58.7 42.0 22.1 42.8 50.6

YOLOV2 [33] Darknet19 - 21.6 44.0 19.2 5.0 22.4 35.5

YOLOV3 [10] Darknet53 - 33.0 57.9 34.4 18.3 35.4 41.9

RetinaNet [34] ResNet101 - 39.1 59.1 42.3 21.8 42.7 50.2

FCOS * [35] ResNet50 1× 37.0 56.6 39.4 20.8 39.8 46.4

SSD512 [13] ResNet101 - 31.2 50.4 33.3 10.2 34.5 49.8

CARAFE [36] ResNet50 - 38.1 60.7 41.0 22.8 41.2 46.9

Two-stage

Faster RCNN * [7] ResNet50 1× 36.5 58.7 39.1 21.5 39.7 44.6

Faster RCNN * [7] ResNet101 1× 38.9 60.9 42.3 22.4 42.4 48.3

Faster RCNN * [7] ResNet101 2× 39.7 61.4 43.3 22.3 42.9 50.4

ours

FoveaBox w/SEFPN ResNet50 1× 37.3 58.0 39.6 22.0 41.0 47.7

FoveaBox w/SEFPN ResNet101 1× 39.1 59.5 41.7 22.9 43.0 50.6

FoveaBox w/SEFPN ResNet101 2× 39.9 61.0 42.8 23.3 43.8 52.6

Faster RCNN w/SEFPN ResNet50 1× 37.3 58.6 40.6 22.2 40.3 47.7

Faster RCNN w/SEFPN ResNet101 1× 39.6 60.6 43.4 22.8 43.5 52.0

Faster RCNN w/SEFPN ResNet101 2× 39.7 60.2 43.6 22.3 43.2 52.5

For one-stage detectors, we append SEFPN after FPN in FoveaBox detector. FoveaBox
with SEFPN boosts all the metrics by almost 1AP. When using ResNet50 and ResNet101 as
backbone, FoveaBox with SEFPN brings AP to 37.3 and 39.1. when 2× schedule is adopted,
FoveaBox with SEFPN and ResNet101 can achieve 52.6AP on large-scale object detect,
which is 2AP higher than FoveaBox with FPN.

As shown in Table 1, detector with SEFPN can boost the detect performance, especially
for the detection of large-scale objects. Because SEFPN performs better on large-scale object
detection, we attribute this to the information loss of high-level features, while high-level
features are used for small-scale object detection in FoveaBox with SEFPN. For Faster
R-CNN with SEFPN, in addition to the information loss, the refinement module might be
also considered.
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4.4. Computing Costs

Table 2 compares the changes of FPS, FLOP, and parameters after the Faster RCNN
algorithm and the Foveabox algorithm modify the NECK structure. After modifying Faster
RCNN, FPS dropped from 5.3 to 4.8, ~9%. The computational complexity(FLOP and
Parameters) is very small and can be ignored. After Foveabox replaced FPN with SEFPN,
FPS dropped by 0.8. The FLOP has increased by 5.6 G, which is about 2.7%. The rate of
increase in the calculation cost is acceptable.

Table 2. Compare the computing cost of Fast RCNN and Foveabox.

Method FPS FLOP(G) Params(M)

Faster RCNN/w FPN 5.3 207.07 41.53

Faster RCNN/w SEFPN 4.8 207.17 41.57

Foveabox/w FPN 7.3 206.3 36.19

Foveabox/w SEFPN 6.5 211.9 36.46

4.5. Ablation Study
4.5.1. Effectiveness of the Block Number

To evaluate the impact of different block numbers on the performance of detector, we
set the framework as following, using ResNet50 as Backbone, FPN as Neck, and set the
number of blocks to be 1, 2, and 4, respectively, and use the refinement method Non-Local.
Each block shares the same refinement method, and the number of nodes in each block is
set to be 5.

Table 3 shows the experimental results. It can be seen from the table that setting the
block number as 2 has the best effect. From the point of view of network structure, each
block is a direct fusion of input features. After two fusions, the output features can be
considered to have reached an equilibrium state.

Table 3. Ablation studies of block number on COCO val2017.

Block AP AP50 AP75 APS APM APL

1 37.0 57.5 39.2 22.1 40.9 47.1

2 37.3 57.9 39.3 21.8 41.1 48.5

4 36.9 57.8 38.9 21.7 41.0 47.2

4.5.2. Effectiveness of Batch Normalization Method

During experiments, we found that adding an integrated Batch Normalization (BN)
method can improve the performance. BN_pre places BN method before the refine method,
while BN_post places BN after the refine method. Other settings are as follows. Backbone
is ResNet50, fusion block number is 2, and refine method is Non-Local.

Table 4 shows the experimental results. Refine method acts as a self-attention module.
While in BN_pre setting, BN normalizes the input feature of refine module, which indirectly
weakens the function of refine. BN_post gets a better result, brings all metrics up.
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Table 4. Ablation studies of BN method on COCO val2017.

Type AP AP50 AP75 APS APM APL

None 37.0 57.5 39.2 21.2 40.9 47.1

BN_pre 36.1 57.2 38.0 21.0 40.3 46.3

BN_post 37.3 58.0 39.6 22.0 41.0 47.7

4.5.3. Effectiveness of Refine Method

To evaluate the impact of different refine method, we design experiments in this
section on Non-Local, global context (GC Block) [30], and 3 × 3 convolution block. We set
the backbone as ResNet50, FPN as Neck, and set the number of block as 2. Compared with
no refinement setting, using Non-Local and GC Block can improve the detection metrics.

The results have shown in Table 5. Especially, Non-Local gets 1AP up on large-scale
object detection, GC Block has achieved an improvement of 1.6AP on small scale object.
Surprisingly, convolution can also achieve similar results. GC Block+ is not good as GC
Block because of putting more attention on all level features.

Table 5. Ablation studies of refine method on COCO val2017.

Type AP AP50 AP75 APS APM APL

None 36.9 57.2 39.2 21.0 40.7 47.5

NonLocal 37.3 57.9 39.3 21.8 41.1 48.5

GC Block 37.2 57.9 39.2 22.6 41.1 47.2

GC Block+ 36.9 57.4 39.2 21.9 40.9 47.4

Conv 37.1 57.1 39.5 20.5 40.7 48.4

5. Discussion

We define feature imbalance as the difference in object detection ability between feature
layers. That is, deep, high-level features in backbones have more semantic meanings, while
the shallow low-level features are more content descriptive. The imbalance may just
because the features are at different levels, or the distribution of object categories and sizes
of the data set, or the ratio of positive and negative samples at each level. This article
discusses imbalance between feature levels, which is due to the fact that the deeper the
backbone network, the more semantics; on the contrary, the less location information.
FPN introduce a top-down path to make the semantic information in high-level flows
to low-level features. Moreover, PANet adds a bottom-up path to introduce the position
information of the low-level into the high-level features.

Through FPN and PANet, the object detection performance of the network is improved.
As shown in Figure 1, FPN uses a sequential method to fuse high-level and low-level
feature, which will cause information attenuation. That is, feature in lower level get less
semanticinformation. Therefore, what is the best way to make the lower-level feature more
semantic? The answer is to directly fuse the high-level and low-level features, as described
in this paper. By comparing with Balance FPN, both algorithms use the direct fusion of all
level features. The difference is that Balance FPN fuses features into a single size, and then
features of different sizes are generated by resize. Our method directly merges features
of different sizes, and at the same time, ensures that the output features are fully fused
through iterative operations. The experimental results in Table 3 show that multiple layers
fusions is better than single layer fusions. We believe that the features have been fully
integrated, and the imbalance between features has been eliminated to a certain extent.
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For the postprocessing of the output features, as Tables 4 and 5 show, we verified the
impact of using BN and Self-attention on the overall performance. Integrate BN works on
a 3D convolution in PConv, which is similar to what we do in this paper. As the results
shown in SEPC, iBN can also play a role on multi-layer features fusion.

As for the Non-Local and GC Block of Self-Attention, Table 5 shows that the overall
performance has been improved. Due to the computational cost of Self-Attention, we
evaluated the increase in computational cost, with results shown in Table 2. As can be
seen from network structure, the previous multi-layer libra part uses linear interpolation
and does not require parameters. The network parameters are mainly concentrated in the
refinement part. In order to reduce parameters, we share the method between levels. That
is, each level uses the same attention module. These make the overall calculation load a
little increase.

We have verified through experiments that the direct fusion of features in our way
can improve the detection performance of the network, but in fact, there is still no way to
quantitatively measure the specific difference in semantics and positioning information
between the feature layers. Although it is possible to use Loss and IoU, as well as positive
and negative sample ratios, etc., these require samples to go through a complete pipeline.
We are exploring a new way to directly measure the imbalance of features. This is also our
later work.

6. Conclusions

In this paper, we analyze the imbalance problem of different scale features along
with FPN, and present a novel object detection neck, which generates multiple features
of different scales by iteratively fusing features of each level. With the help of simple but
effective components, we alleviate the semantic gap of different level features generated
by FPN. Through the improvement on small-scale objects is not so obvious, with less
computation cost, it still improves 1mAP on Foveabox. On the other hand, it bring up
a 2mAP on Faster-RCNN. It can be used as a plugin block and integrated into existing
detector frameworks to improve their performance. In the future work, we will verify the
generalization of SEFPN on more detectors.
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