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Abstract: The color of transformer oil can be one of the first indicators determining the quality of
the transformer oil and the condition of the power transformer. The current method of determining
the color index (CI) of transformer oil utilizes a color comparator based on the American Society
for Testing and Materials (ASTM) D1500 standard, which requires a human observer, leading to
human error and a limited number of samples tested per day. This paper reports on the utilization of
ultra violet-blue laser at 405- and 450-nm wavelengths to measure the CI of transformer oil. In total,
20 transformer oil samples with CI ranging from 0.5 to 7.5 were measured at optical pathlengths
of 10 and 1 mm. A linear regression model was developed to determine the color index of the
transformer oil. The equation was validated and verified by measuring the output power of a new
batch of transformer oil samples. Data obtained from the measurements were able to quantify the
CI accurately with root-mean-square errors (RMSEs) of 0.2229 for 405 nm and 0.4129 for 450 nm.
This approach shows the commercialization potential of a low-cost portable device that can be used
on-site for the monitoring of power transformers.

Keywords: ASTM D1500; color; insulating oil; power transformers; single wavelength; transformer
oil; ultraviolet-blue wavelength

1. Introduction

Power transformers are key assets of power utilities that ensure the regulation and dis-
tribution of electricity to housing and industrial areas. The insulation system is constantly
exposed to electrical stress, mechanical stress, and thermal stress [1–4] during its operation.
Lack of supervision of the condition of the transformer may cause catastrophic failures. In
this regard, regular maintenance and monitoring of its insulation system are important to
ensure their functionality is in an optimum condition. Conventionally, transformer oil is
sampled from the power transformers and sent to an accredited laboratory for test analysis.

Early detection of transformer oil degradation is important through its color visualiza-
tion since the quality of the transformer oil can be reflected by its color [5]. Color changes
may be indicative of problems in the production process, contamination, degradation, or
the oxidation of the materials and products. In addition, as the level of degradation of the
transformer oil increases, the color of the transformer oil becomes darker [4]. Therefore, a
faster approach for color measurement, which is cost effective and has high accuracy, is
required.
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There are several available methods for measuring the color of liquid, such as visual
examinations [6], color comparator [7], visual colorimeter [8–10], automatic colorime-
ter [11,12], optical spectroscopy [13–25], and image analysis [26–32]. The conventional
method of measuring the color of transformer oil is to use a color comparator, where a
sample is compared with a standard colored disc. The American Society for Testing and
Materials (ASTM) D1500 is a standard color scale and test method for ASTM color of
petroleum products including transformer oil. The ASTM color scale consists of 16 ASTM
color indices ranging from 0.5 for the lightest color to 8.0 for the darkest color, with a 0.5
step size [7]. Operation wise, using a light source with a color temperature of 2750 K, the
sample in a standard glass jar is placed in the comparator, and it is compared with colored
glass discs of the 16 ASTM color. If the color of the sample matches with any of the color
disc, the color is reported. Otherwise, if the sample color is between two ASTM colors, the
darker glass of the ASTM color preceded by the letter “L” is reported.

The optical spectroscopy technique has received increasing interest from researchers
and industries as it is a non-destructive method. Through optical techniques, it elimi-
nates human handling error and improves the measurement accuracy [13]. Researchers
have used this method for measuring the color of palm oil [33,34], olive oil [25,35–38],
honey [18–20,39], maple syrup [40,41], beer [21,22,42], and vegetable oils [15,16,43]. Specif-
ically for transformer oil, Leong et al. [13] demonstrated the possibility of determining
the color index (CI) of transformer oil in accordance with ASTM D1500 using ultraviolet
(UV)-visible spectroscopy by measuring its optical absorbance at wavelengths from 300 to
700 nm. The study shows that different color index of transformer oil can be accurately
identified in the UV-visible waveband.

Although the UV-visible waveband has been used widely in the industries to measure
the color of various types of oils, the basis of utilizing a single wavelength or a combination
of a few wavelengths for color measurement of olive oil was first studied and reported
by D. Escolar et al. [37]. Two absorbance measurements at 480 and 670 nm from a spec-
trophotometer were used to develop a mathematical model. The mathematical model
was then used to estimate the chromatic coordinates and the chroma of olive oil based on
the International Commission on Illumination (CIE) Lab values. Although this method
does not exactly utilize a single-wavelength light source, the concept of measuring color
using a single wavelength was exercised. Subsequently, R. Sanga et al. [44] managed to
develop an in-line quasi-digital sensor system. This system utilizes two single-wavelength
light-emitting diodes (LEDs) at 590 and 840 nm to measure the color and turbidity of
lubricant oil. Two sets of optical systems were designed using two sets of light-dependent
resistors (LDRs) and LEDs. One set was used to measure the color of the lubricant oil while
another set was used to measure the turbidity and to correct the deviation in the color scale
reading due to turbidity. An embedded system is required to convert the pulse frequency
into the color scale. In comparison to other works on the utilization of a single wavelength
for the determination of color, this system uses an LED, which has a broader spectrum
across a wider waveband compared to a laser diode.

Previous works have shown that color measurement using a single wavelength is
achievable. However, there is still no study on the color measurement of transformer oil
using a single-wavelength laser diode in the UV-blue wavelength range. Figure 1 shows
the absorbance spectrum for transformer oil samples with different color indices obtained
from the measurement conducted by Leong et al. [13]. The measurement was carried
out by using an ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometer. They
developed a mathematical model to determine the color index of transformer insulating
oil using UV-visible spectroscopy with reference to the ASTM D1500 standard. Each color
index has a different absorbance value throughout the UV-visible wavelength range. The
color index is directly proportional to the absorbance value.
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Figure 1. Optical absorbance spectrums for transformer oil samples based on ASTM D1500 and the 
possibility of using a single-wavelength laser diode. 

It was observed that in the UV-blue waveband (400–500 nm), the absorbance values 
of the oil samples with different color indices are distinctly different. The blue dashed line 
shows the possibility of using a single-wavelength laser diode to determine the color in-
dex of transformer oil. The points on the blue dashed line that intercepts on the absorbance 
graph shows that each color index can be differentiated and measured using a single 
wavelength. Considering the availability of laser diodes at certain wavelengths, laser di-
odes at wavelengths of 405 and 450 nm were chosen as the light source because the ab-
sorbance of the oil sample can be distinctively determined. 

Therefore, a comprehensive study was carried out to investigate the absorption of 
transformer oil samples with various color indices at wavelengths of 405 and 450 nm. The 
correlation between the color index in accordance with the ASTM D1500 standard and the 
optical power output was established, and mathematical models were formulated. Criti-
cal comparisons between the proposed method and the other techniques were provided. 
The contributions of the study are as follows: 
1. Utilization of a single-wavelength laser diode in the UV-blue wavelength for color 

index measurement of transformer oil was established. 
2. Mathematical models were developed and validated to correlate the output power 

with the color index in accordance with ASTM D1500. 

2. Experimental Details 
In this study, transformer oil samples were collected, and their color indices were 

measured using a color comparator in accordance with the ASTM D1500 by an accredited 
lab. The oil samples were then tested, where the light beam from the single-wavelength 
laser diode passed through the oil sample and was detected by a photodiode sensor. The 
experimental setup for this study is shown in Figure 2. Light from the laser source was 
transmitted through the oil sample, which was placed in a quartz cuvette. The resulting 
optical signal was detected by the photodiode sensor. Table 1 shows the details and pa-
rameters of the components used in this experiment. 

Figure 1. Optical absorbance spectrums for transformer oil samples based on ASTM D1500 and the
possibility of using a single-wavelength laser diode.

It was observed that in the UV-blue waveband (400–500 nm), the absorbance values of
the oil samples with different color indices are distinctly different. The blue dashed line
shows the possibility of using a single-wavelength laser diode to determine the color index
of transformer oil. The points on the blue dashed line that intercepts on the absorbance
graph shows that each color index can be differentiated and measured using a single
wavelength. Considering the availability of laser diodes at certain wavelengths, laser
diodes at wavelengths of 405 and 450 nm were chosen as the light source because the
absorbance of the oil sample can be distinctively determined.

Therefore, a comprehensive study was carried out to investigate the absorption of
transformer oil samples with various color indices at wavelengths of 405 and 450 nm. The
correlation between the color index in accordance with the ASTM D1500 standard and the
optical power output was established, and mathematical models were formulated. Critical
comparisons between the proposed method and the other techniques were provided. The
contributions of the study are as follows:

1. Utilization of a single-wavelength laser diode in the UV-blue wavelength for color
index measurement of transformer oil was established.

2. Mathematical models were developed and validated to correlate the output power
with the color index in accordance with ASTM D1500.

2. Experimental Details

In this study, transformer oil samples were collected, and their color indices were
measured using a color comparator in accordance with the ASTM D1500 by an accredited
lab. The oil samples were then tested, where the light beam from the single-wavelength
laser diode passed through the oil sample and was detected by a photodiode sensor. The
experimental setup for this study is shown in Figure 2. Light from the laser source was
transmitted through the oil sample, which was placed in a quartz cuvette. The resulting
optical signal was detected by the photodiode sensor. Table 1 shows the details and
parameters of the components used in this experiment.
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Figure 2. Schematics diagram of the components of the optical measuring setup.

Table 1. Components’ details and parameters.

Component Details Parameters

Laser Diode
405 nm Output Power: 20 mW

450 nm Output Power: 50 mW

Quartz Cuvette
10 mm Volume: 3.5 mL

1 mm Volume: 0.35 mL

Detector Thorlabs S121C Standard
Photodiode Power Sensor

Material: Silicon
Range of Detection:
400 nm to 1100 nm
Responsivity: <1 µs
Sensitivity: 10 nW

As shown in Figure 2, the setup is divided into three parts. The first part is the
laser source. The laser diode is connected by fiber optic cable to the cuvette holder. Two
commercially available laser diodes were used for the measurements and data collection.
To ensure the consistency of the laser power, the laser diode was initially warmed up for
30 min at a constant operating temperature of 25 ◦C before conducting the measurement.
Both laser diodes were operated at the same operating voltage of 3.3 V. For the 405-nm
laser diode, the output power was 20 mW while the output power of the 450-nm laser
diode was 50 mW. This difference in the output powers of the two laser diodes is due to the
availability of the laser diode in the market. Although the output powers were different,
measurements were made to observe whether higher output power can affect the results of
the color measurement of transformer oil.

The second part of the setup is the sample holder. The sample holder is where the oil
sample is located and is placed in a cuvette holder. Quartz cuvette cells with two different
optical pathlengths of 10 and 1 mm were used in this experiment. This is to compare and to
minimize the effect of optical pathlengths on the accuracy of the color index measurement.
Before conducting the experiment, the oil sample was slowly pipetted into the cuvette cell
to prevent the formation of bubbles. To ensure the consistency of the measurement, the
sides of the cuvette were cleaned, such that there was no dust or fingerprints on the cuvette
to allow optimum light interaction with the transformer oil samples.

In this experiment, 20 transformer oil samples with a color index ranging from 0.5
to 7.5 were used. However, a limited number of samples of only 1 or 2 oil samples were
obtained for color index 4.5 and above. This is because the oil collected was from operating
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power transformers, where, according to the IEC 60422 standard, the oil needs to be
replaced or maintained after reaching a certain threshold of color index. For the output
power detection, a silicon photodiode was used. The amount of light detected by the sensor
was measured using an optical power meter. To ensure the consistency of the reading
collected, 5 readings were recorded at 10-s intervals. The average of the 5 readings was
computed with a maximum error from ±0.07% to ±1.50%.

3. Results and Discussion

Figure 3 shows the output power at wavelengths of 405 and 450 nm when oil samples
with different color indices were measured using the 10-mm pathlength cuvette. Based
on the collected data, the output power decreases as the color index of the oil sample
increases. The reduction of the output power, either at 405 or 450 nm, was due to the optical
absorption by the oil sample. The steeper decreasing slope for the measurement at 405 nm
indicates that the measurement of the color index at this wavelength is more sensitive,
compared to the measurement at 450 nm. For the measurement at 405 nm (450 nm), the
output power saturated to almost zero for CI ≥ 2 (CI ≥ 3.5).
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Figure 3. Measurement using laser diodes at wavelengths of 405 (input power = 24.7 mW) and
450 nm (input power = 55.8 mW) with a 10-mm pathlength cuvette.

This saturation corresponds to the Beer–Lambert’s law [45], where the loss of light
intensity is directly proportional to the absorbance and length of the light path. In this
case, the length of the light path, which is the cuvette pathlength, is long enough for most
of the light to be absorbed by the transformer oil samples. Thus, this causes the output
power to be saturated. The saturated CI was discarded because it does not represent the
real measured values and only measurements up to CI = 1.5 for 405 nm, and CI = 3.0
for 450 nm were used for the linear regression. A linear decrement relationship can be
observed between the color index and the output power when the saturated data was
excluded. To measure the strength of the correlation between the variables, the Pearson
product-moment correlation coefficient (r) of the data was calculated. The r value indicates
the strength and the trend line direction of the linear relationship between the two variables.
The calculated r values between the color index and output power in Figure 3 is −0.9539
for 405 nm and −0.9925 for 450 nm. Table 2 shows the guideline to determine the strength
of the correlation relationship for absolute value of r (|r|). In both cases, since |r| > 0.95,
the strength of linear correlation is considered very strong.
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Table 2. The interpretation of the strength of the relationship for absolute values of correlation.

Absolute Value of r, |r| Strength of Relationship

0–0.19 Very weak
0.20–0.39 Weak
0.40–0.59 Moderate
0.60–0.79 Strong
0.80–1.00 Very strong

The negative r value indicates a negative correlation between the color index and
output power. The two correlation coefficient show a very strong linear correlation as the
absolute values of r are very close to 1.

Although measurement using 10 mm was saturated at a certain CI, a linear regression
line was done on the unsaturated data points and the regression model was used to
calculate the CI. Table 3 shows the linear equations obtained from the regression model.

Table 3. Linear equation and R2 for measurement using the 10-mm pathlength cuvette.

Wavelength (nm) Equation Intercept, a Slope, b R2

405 y = a + b × x 26.269 −15.133 0.92277
450 55.438 −17.830 0.98497

Nevertheless, to ensure that the measurement can be done for the full range of CI (0.5
to 7.5) based on the ASTM D1500 standard, a cuvette with a shorter pathlength of 1 mm
was used. The interaction of light with the oil sample was shortened, thus reducing the
light absorbance.

Data collected from the measurement using the 1-mm pathlength cuvette are plotted
in Figure 4. The r values for the data points in Figure 4 were also calculated. The r values for
the data points of 405 and 450 nm are −0.99958 and −0.986, respectively, which also show
a very strong linear correlation. The data points for the measurements were fitted with a
linear regression model that described the relationship of the data. The linear regression
model obtained from the plotted data points for the CI measurement at 405 and 450 nm is
shown in Table 4.
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Table 4. Linear equation and R2 for measurements using the 1-mm pathlength cuvette.

Wavelength (nm) Equation Intercept, a Slope, b R2

405 y = a + b × x 24.421 −3.1745 0.99168
450 57.284 −5.7831 0.97202

The equations were rearranged as follows to determine the color index:

CI405 =
Output Power − 24.421

(−3.1745)
(1)

CI450 =
Output Power − 57.285

(−5.7832)
(2)

where x is the CI and y is the Output Power measured.
The linear regression line on the data obtained from measurements at 405 nm has an

R2 value of 0.99168, while measurement with the 450-nm laser diode has an R2 value of
0.97202. Based on Table 4, the slope for 450 nm is steeper than 405 nm. The steeper slope
indicates that the absorbance value increased more significantly at 450 nm as the color
index increased. However, the data distribution measured at 405 nm has better linearity
compared to that measured at 450 nm. This was because the absorbance value increased
consistently with the increasing color index as shown in Figure 1. At 450 nm, the increment
in the absorbance value with the increasing color index was not consistent. The increments
in the absorbance value for low (0.5 to 1.5) and high (7.0 and 7.5) color indices were smaller,
compared to those at 2.0 ≤ CI ≤ 6.5. Therefore, 405 nm gave a better regression line fitting,
which led to a better R2 value.

To validate the mathematical models of Equations (1) and (2), a new set of transformer
oil samples (S1–S11) were collected from the accredited laboratory, with their results on the
color indices in accordance with the ASTM D1500 standard. However, since a transformer
oil sample with a higher color index was difficult to obtain, a few samples were reused to
validate the equation. The repeating samples were S8–S11. The oil samples were measured
for their output power at 405 and 450 nm with a 1-mm pathlength cuvette. The estimated CI
was calculated using Equations (1) and (2). The difference between the actual CI obtained
from the ASTM D1500 measurement and the estimated CI using the developed model was
then calculated and analyzed.

Based on Table 5, the result shows that the estimated CI for each sample using Equation (1)
was closer to the actual CI compared to the estimated CI using Equation (2). The root-mean-
square error (RMSE) values were calculated and compared for Equations (1) and (2). RMSE
defines the standard deviation of the difference between the actual value and estimated
value. The error from RMSE was possibly due to the measurement process, and the model
developed. The error could also be due to the measurement from the conventional method
of the ASTM D1500 standard. Through RMSE, the variation of the actual data near the
regression line can be identified.

Theoretically, based on Figure 1, measurement at 450 nm should be able to predict the
CI for samples with high CI more accurately than measurement at 405 nm. This is because
the differences in absorbance for the higher color index at 450 nm is bigger than that at
405 nm. However, the difference in CI for S5, S6, S7, S9, S10, and S11 in Table 5 showed
otherwise as the estimated CI using Equation (2) has a bigger difference in CI. It is also
shown that the RMSE for Equation (1) is 0.2229, which is lower compared to RMSE for
Equation (2), which has an RMSE of 0.4129. Compared to the ASTM D1500 standard, which
has an error of ≤0.5 due to the method of reporting, the RMSE of 0.4129 using Equation (2)
is within the acceptable range of error, although it was higher than that obtained from
Equation (1).
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Table 5. Comparison between ASTM D1500 standard, and estimated color index using
Equations (1) and (2).

Sample ASTM
D1500 Estimated CI Difference

in CI RMSE

Equation (1)
CI405

(R2 = 0.99170)

S1 0.5 0.55 0.05

0.2229

S2 1.0 0.99 −0.01
S3 1.5 1.39 −0.11
S4 2.0 1.97 −0.03
S5 2.5 2.52 0.02
S6 3.0 3.25 0.25
S7 5.0 4.50 −0.50
S8 5.5 5.87 0.37
S9 6.5 6.26 −0.24
S10 7.0 7.15 0.15
S11 7.5 7.55 0.05

Equation (2)
CI450

(R2 = 0.97200)

S1 0.5 0.97 0.47

0.4129

S2 1.0 1.34 0.34
S3 1.5 1.60 0.10
S4 2.0 1.86 −0.14
S5 2.5 2.25 −0.25
S6 3.0 2.52 −0.48
S7 5.0 4.46 −0.54
S8 5.5 5.33 −0.17
S9 6.5 6.13 −0.37
S10 7.0 7.17 0.17
S11 7.5 8.36 0.86

CI—Color index.

The RMSE value (0.2229) obtained from this work was slightly higher compared to
the RMSE (0.1961) obtained by Leong et al. [13]. However, this work utilized data obtained
from a single wavelength while Leong et al. [13] relied on data obtained from 350 to 700 nm
and correlated the CI with the cutoff wavelengths from the absorbance spectrum and
absorbance of the oil samples. The conventional method of measuring the color index
according to ASTM D1500 relies on manual visual inspection by an operator, which limits
the number of measurements per day. This conventional method also depends on the
operator’s perception of colors, which can lead to human error. Other than that, the color
scale contains a large step size of 0.5 CI, which can result in higher error of the color index.
This shows that measurement using a single-wavelength laser diode produced a sufficiently
small error with a simpler measurement setup.

To elucidate the effect of the optical pathlength on the accuracy of CI measure-
ment, repeating samples were used for the validation of the regression models (refer
to Tables 3 and 4) using 10- and 1-mm cuvettes. The estimated CI values using the regres-
sion models are shown in Table 6. The measurement at both wavelengths using the 10-mm
pathlength showed good RMSE values of 0.1181 and 0.1055.

A comparison between measurements using the 10- and 1-mm pathlengths is shown
in Table 6. Repeating samples were used for this comparison. At 450 nm, the utilization
of the 10-mm pathlength cuvette improved the RMSE significantly from 0.3309 to 0.1055.
However, the RMSE obtained for measurements at 405 nm with the 10- and 1-mm path-
lengths were comparable. This shows that measuring different CI (from 0.5 to 8.0) at the
optimum optical pathlength is important in minimizing the measurement error.
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Table 6. Comparison of the estimated CI between the 10-mm pathlength cuvette and 1-mm pathlength cuvette.

Wavelength Sample ASTM
D1500

Cuvette

10 mm 1 mm

Estimated
CI Difference RMSE Estimated

CI Difference RMSE

405
S1 0.5 0.42 −0.08

0.1181
0.55 0.05

0.0728S2 1.0 1.17 0.17 0.99 −0.01
S3 1.5 1.42 −0.08 1.39 −0.11

450

S1 0.5 0.36 −0.14

0.1055

0.97 0.47

0.3309

S2 1.0 1.04 0.04 1.34 0.34
S3 1.5 1.58 0.08 1.60 0.10
S4 2.0 2.15 0.15 1.86 −0.14
S5 2.5 2.50 0.00 2.25 −0.25
S6 3.0 2.87 −0.13 2.52 −0.48

Table 7 presents a summary of the methods and techniques for color index mea-
surement of transformer oil. The results demonstrated that the utilization of a single-
wavelength laser diode in the UV-blue wavelength in determining the CI of transformer oil
based on ASTM D1500 can provide better sensitivity up to 0.1 CI. Human handling error
can also be eliminated as it does not require a human observer for the color identification
process. In comparison with previous work that utilizes the full spectrum from 350 to
700 nm, this work requires only a single-wavelength optical source, which simplifies the
optoelectronic components significantly.

Table 7. Comparison of methods for color index measurement of transformer oil.

Methods Wavelength (nm) Human Observation Model Equation Accuracy

ASTM D1500 standard NA 3 5 Max. error of 0.5 is tolerated
UV-Vis Spectroscopy 300–700 5 3 RMSE = 0.1961

Single wavelength
spectroscopy

405 5 3 RMSE405 = 0.2229
450 5 3 RMSE450 = 0.4129

4. Conclusions

This work shows that the color index of transformer oil can be measured using a single-
wavelength optical source. Based on the ASTM D1500 standard, linear regression models
were developed to accurately determine the color index of transformer oil using the data
obtained from measurements at 405 and 450 nm. Model validation using a second batch
of oil samples showed that the models were able to determine the color index accurately,
with RMSE values of 0.2229 and 0.4129 for data measured at 405 and 450 nm, respectively.
The results of this work demonstrate that UV-blue wavelengths at 405 and 450 nm can be
used for the determination of the color index of transformer oil. Unlike previous work that
requires a spectrophotometer for measurements of the full spectrum from 350 to 700 nm,
the utilization of a single wavelength promises a much-simplified portable device for the
color measurement of transformer oil. Although the measurement using either 405 or
450 nm can provide accurate color measurement of transformer oil, it is hypothesized that
a hybrid of both wavelengths may lead to better accuracy. While this work has clearly
demonstrated the possibility of utilizing single-wavelength measurement to determine the
color index of transformer oil, the following future works are proposed to achieve higher
accuracy:

1. A detailed study on the effect of optical pathlength variation and more accurate color
index measurement.

2. An investigation of the optimum laser power required for a particular color index to
ensure that transformer oil with the full range of the color index can be measured.
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3. Due to the variations of optical pathlengths and optimum laser powers, a machine
learning-based model can be developed to more accurately model the color index of
transformer oil based on multiple inputs.
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