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Abstract: Polyamides are often used for their superior thermal, mechanical, and chemical properties.
They form a diverse set of materials that have a large variation in properties between linear to aromatic
compounds, which renders the traditional quantitative structure–property relationship (QSPR)
challenging. We use extended connectivity fingerprints (ECFP) and traditional QSPR fingerprints to
develop machine learning models to perform high fidelity prediction of glass transition temperature
(Tg), melting temperature (Tm), density (ρ), and tensile modulus (E). The non-linear model using
random forest is in general found to be more accurate than linear regression; however, using feature
selection or regularization, the accuracy of linear models is shown to be improved significantly to
become comparable to the more complex nonlinear algorithm. We find that none of the models or
fingerprints were able to accurately predict the tensile modulus E, which we hypothesize is due to
heterogeneity in data and data sources, as well as inherent challenges in measuring it. Finally, QSPR
models revealed that the fraction of rotatable bonds, and the rotational degree of freedom affects
polyamide properties most profoundly and can be used for back of the envelope calculations for
a quick estimate of the polymer attributes (glass transition temperature, melting temperature, and
density). These QSPR models, although having slightly lower prediction accuracy, show the most
promise for the polymer chemist seeking to develop an intuition of ways to modify the chemistry to
enhance specific attributes.

Keywords: machine learning 1; polyamide 2; QSPR 3

1. Introduction

Polyamides are a family of polymers that contain repeat units linked by amide groups.
They are often prepared by hydrolytic polymerization, anionic polymerization, or solid
phase synthesis. The materials exhibit desirable properties, such as high temperature
resistance, high strength, good fatigue resistance, water absorption, chemical stability, and
excellent wear behavior [1–4]. Silk and wool are two of the naturally occurring polyamides,
while synthetic routes have resulted in materials that are ubiquitous in our daily use
such as Kevlar, nylon, etc. The diversity and favorable properties of polyamides have
resulted in them finding applications [4] in flexible packaging, automotive industries, and
garments [5].

This diversity of attributes makes developing novel polyamides to achieve the desired
material properties a challenging task. High structural diversity of these materials, ranging
from linear or aliphatic to semi-aromatic or aromatic leads to large variation in the structural
space. Additionally, polyamides exhibit strongly non-linear and anisotropic structure
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property relations, which makes a targeted design of the experiment to systematically
study the correlations between structure and property difficult. One method that enables
modeling of high dimensional and non-linear datasets and extracting information in
machine learning is the focus of this study.

On one hand, having a diverse set of structures tests the limits of different types of
fingerprints and the algorithm’s ability to capture patterns in this wide range. On the other
hand, due to this wide range of chemical variations, there may be difficulties with finding
these patterns, especially for those properties with fewer data points, which could lead to
overfitting and poor predictive models. Additionally, subtle differences could cause some
artifacts in the predictions driven largely by a few outlying examples. Hence, the goal of
this paper is to establish robust models, including methods and hyperparameters that can
be used to predict polyamide properties with reasonable fidelity.

Cheminformatics has been extensively applied in the small molecule space, especially
for biological applications such as drug discovery [6,7]. As the bioinformatics space has
grown, the use of open databases with chemical structures and corresponding properties is
enabling development of robust predictive models, especially for small molecule discovery.

In addition, there have been seminal works in advancing chemical structure data
processing and analytics in the general materials space. For example, density functional
theory (DFT) can be used to generate a wide library of synthetic property data on which
models can be trained to predict electronic properties for high throughput screening [8].
These datasets have been used to advance understanding in molecular representations and
inverse design [9,10]. Another application is synthesis planning, where small molecule
reactions are encoded and used to either predict the outcome of reactions or find reactants
and conditions that would make the product of interest (also called retrosynthesis) [11–13].

Databases of experimentally measured polymer properties are relatively small com-
pared to other small molecules or drug molecules [14], which makes learning polymeric
properties more difficult. Nonetheless, there have been efforts toward developing machine
learning models that enable rapid prediction of various electronic, mechanical, and thermal
properties of polymers. For example, some early work using quantitative structure prop-
erty relationship (QSPR) fingerprints that account for connection points between different
monomers have been used to build predictive models [15]. In addition, previous studies
have developed tools to allow for property prediction through online platforms [16,17].
To overcome the small dataset issue, transfer learning has recently been applied to pre-
dict thermal conductivity, where only a few experimental data were available, and this
method helped to discover new polymers of high thermal conductivity through generative
models [18,19]. Furthermore, there is work in the conjugated semiconducting polymer and
fullerene space, using machine learning and deep learning to predict properties of bulk
heterojunction solar cells [20]. This study showed applications of graph convolution neural
networks, concatenation of graph convolution fingerprints, and comparison of this method
to random forest with Morgan fingerprints.

Various combinations of molecular representations and regression models can be
used depending on the target properties; however, the effect of choosing specific molecular
representations and models is still being investigated [14]. These combinations of molecular
representations typically result in a lack of interpretability in many of the features as more
complex chemical information is encoded which focus more toward developing models
with higher accuracy. In addition, the complexity of models and fingerprints, necessitate the
use of computers and advanced algorithms to identify polymers with required properties
and rendering them inaccessible to chemists. In this work, we focus on predicting density,
tensile modulus, glass transition temperature, and melting temperature for polyamides
with a goal of providing heuristic methods for property prediction for chemists. We focus
on these properties, as they are key components of the mechanical and thermal reliability of
polyamides and have data availability in open databases. We compare effects of fingerprint
and model complexity on prediction fidelity. Following this, we identify dominating
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features of a polyamide that affects its properties by developing models with interpretable
features.

2. Materials and Methods

In this section, we describe our approach to (i) the collection of polymer data,
(ii) representation of polymer structures (SMILES, ECFP, CI, and QSPR), (iii) machine
learning algorithms used to connect the input information through the polymer representa-
tions to predict the outputs (LR, SVM, RF), and finally (iv) metrics to assess the accuracy of
these algorithms.

2.1. Data Collection

Polyamide structure and property data were manually collected from the PoLyInfo
polymer database, an open data source maintained by the National Institute for Materials
Science in Japan [21] in June 2020. The total data counts from this collection process are
shown in the Gathered Points column of Table 1.

Table 1. Data counts for each property, describing the number initially gathered from PoLyInfo and
the number remaining after processing.

Property Abbreviation Gathered Points Final Points

Density (g/cc) ρ 1248 390
Tensile modulus (GPa) E 809 306

Glass transition temperature (◦C) Tg 2072 1388
Melting temperature (◦C) Tm 1723 942

In this work, we focus on neat resins, and materials with multiple property measure-
ments were represented by a single averaged value, leading to the total data counts shown
in the Final Points column of Table 1. Details of this can be found in the Supplementary
Information. This work focuses on four different properties: density in g/cc (ρ), tensile
modulus in GPa (E), glass transition temperature in ◦C (Tg), and melting temperature in
◦C (Tm). The values of E and ρ in PoLyInfo are mostly measured at temperatures between
20−30◦C, so the temperature dependence may not account for large discrepancies found
in certain data.

2.2. Polymer Representation

Here, we describe one qualitative method for describing polymers and four quantita-
tive descriptors of the polymer.

2.2.1. Simplified Molecular-Input Line-Entry System (SMILES)

Polymer structure data were transcribed from images into a simplified molecular-input
line-entry system (SMILES) strings for each structural repeating unit, each with 2 dummy
atoms indicated the head and tail where the chain would continue (labeled as *) [22]. For
use as inputs into predictive models, SMILES strings were translated into four distinct
numerical representations.

2.2.2. Extended Connectivity Fingerprint (ECFP)

The most commonly used numerical representation type of fingerprints used in the
literature, and a focus of this paper, is the extended connectivity fingerprint (ECFP) [23].
ECFP, also known as the Morgan fingerprint, is a form of circular fingerprint that considers
each atom’s properties and its neighboring environment up to r atoms away for a defined
radius r. The radius here refers to the number of nearest neighbors, based on bonds, away
from each atom, an illustration of this is provided in Figure 1a. For this study, we chose
radius 2 and radius 10, later referred to as ECFP2 and ECFP10, respectively. Radius 2 was
chosen because it is the convention used in most studies. Radius 10 was chosen because it
was the value at which the fingerprint uniqueness was no longer increasing with increasing
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radius and will be addressed in Section 3.2. This uniqueness was calculated for each
property as the number of unique fingerprints divided by the total number of data points
(Final Points in Table 1). For each structure, the monomer is capped with a hydrogen atom
at the * locations prior to calculation of the ECFP vector, shown in Figure 1b. The resulting
ECFP is a 2048-bit vector; in this work, we calculate ECFPs using the RDKit software
tool [24].
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Figure 1. (a) Example of a chlorine atom in chlorobenzene finding its neighboring atoms to define
chemical environment for an ECFP with radius 2. Reproduced from Lee [20]. (b) Example of
hydrogen capping a monomer prior to calculating its ECFP.

2.2.3. Connectivity Indices

We use the connectivity indices (CI), as described by Bicerano in his seminal polymer
quantitative structure–property relation work [15]. These indices are a basic embodiment
of graph theory that describe the electronic environment and bonding configuration of the
heavy (non-hydrogen) atoms in each repeating unit. Bicerano extended the connectivity
indices for small molecules to describe polymers by providing information about atoms in
neighboring units. The result is a set of four indices based on simple descriptors, such as
atomic numbers, bond degrees, and numbers of valence electrons.

2.2.4. QSPR Descriptors

The final numerical representation used in this work are these descriptors, which have
the advantage of interpretability, and the ones we explored in this work are detailed in
the Supplementary Information. Some examples include number of heavy atoms, number
of hydrogen bonding groups, and the number of aromatic rings. These descriptors were
calculated using RDKit, whether directly as a counter (e.g., for aromatic rings) or as an
enabler for a self-coded counter (e.g., for Bicerano’s definition of rotational degrees of
freedom, abbreviated as rotational DOFs). These descriptors account for the continuity
of the polymer chain at the ends of the monomer structure. The resulting fingerprint is a
one-hot encoded vector of these descriptors. These vectors can be further manipulated by
encoding information about the CI and/or normalization of the descriptors. We normalize
these descriptors by dividing the values by the number of heavy atoms; in the normalized
feature set, the feature that is the number of heavy atoms is omitted, as all of them would
have a value of 1. We expect these fingerprints to be less descriptive than ECFP; however,
they are easily interpretable and can lead to back of the envelope calculations for properties,
and hence, can help a polymer chemist develop an intuition for structural changes that
lead to desired attributes.

2.3. Machine Learning Algorithms

In this section, we describe the algorithms used to establish the mapping between the
input polymer representations described in Section 2.2 with the output polymer attributes
of interest (density, glass transition temperature, melting temperature and modulus).
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A few different machine learning algorithms, as implemented in the scikit-learn set of
tools [25], are used to build models for polymer property prediction.

2.3.1. Multiple Linear Regression (LR)

Multiple Linear Regression (LR) based on ordinary least squares, is used for the
comparison as the baseline benchmark. This algorithm takes each feature independently
and assigns coefficients. This work uses the Linear Regression function within scikit-learn
to build the models. The default parameters are used.

2.3.2. Support Vector Machine (SVM) Regression

Support Vector Machine (SVM) Regression is a method that uses decision boundaries
to find an optimal hyperplane in the feature space [26]. This work uses the SVR function
within scikit-learn to build the models. Most of the default parameters are used (e.g., radial
basis function kernel), except for C = 20.0 and epsilon = 0.2. This C parameter is set to a
higher value than the default (1.0) to increase the accuracy of the models, but not too high
as to overfit more compared to that of the default value.

2.3.3. Random Forest (RF)

Random Forest (RF), a method relying on an ensemble of predictions from various
decision trees, is used [27]. This work uses the Random Forest Regressor function within
scikit-learn to build the models. Most of the default parameters are used, except for the
number of estimators (n_estimators), which is set to 10.

2.4. Machine Learning Accuracy Metrics

To assess the accuracy and generalizability of the models, we use k-fold cross-validation
with k = 5 [28]. This means that 80% of the input data is used for training and 20% is used
for testing in 5 different runs, with each test set containing unique set of data points each
time. Each model will yield an R2 and an RMSE for its train and test sets. For method
comparison, R2 and RMSE values for the test sets were averaged over these 5 models.
The KFold function in scikit-learn was used to create the folds, and the r2_score and
mean_squared_error functions were used to calculate R2 and RMSE values, respectively
(RMSE is calculated as the positive square root of the result of mean_squared_error).

3. Results and Discussions

Our results in this section are organized as follows: (i) using the ECFP2 representa-
tion in conjunction with the SVM, LR, RF algorithms, (ii) comparing ECFP2 and ECFP10
for predicting properties (iii) shedding light on issues with predicting tensile modulus,
(iv) enhancing interpretability of features using QSPR. This text will focus on presenting
data for Tg and the corresponding details for Tm, ρ, and E can be found in the Supplemen-
tary Information.

3.1. ECFP2 Representation Models

We implement ECFP2 in conjunction with LR, SVM, and RF to model polyamide
properties. Through comparison of the RMSEs of model predictions of Tg, depicted in
Figure 2a, we first observe that simple linear regression results in large RMSE, error that is
several orders of magnitude larger than the property values (e.g., >1010 ◦C for Tg, which
are typically <103 ◦C); these are likely based on the limitation of the software. Upon using
SVM, the RMSE is lower than for linear regression, but is still significant. Finally, leveraging
RF, an intrinsically non-linear algorithm, provides the lowest RMSE and an accurate model.
We hypothesize that this result is not due to the non-linear nature of the property, rather
due to the large dimensionality of ECFP2, which leads to difficulties in using them as inputs
for LR or SVM models. For ECFP2, the number of features (2048) is much greater than the
number of data points for any of the properties. Meanwhile, RF models overcome this by
selecting a subset of features while also providing estimates of variable importance based
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on the splitting done by its trees [27]. To use ECFP2 more effectively with LR and SVM,
we first train a set of 5 RF models (80% train, 20% test) for a given property and record the
top 50 most important features from each one; in this case, the features are indices within
the ECFP2 bit vectors. We then take the intersections and unions of these top 50 lists to
construct final index lists for use in feature selection prior to use as input into LR and SVM
(Figure 3). The final number of features used in each case is listed in Table 2.
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Figure 3. Process for random forest (RF) feature selection, starting by finding 50 out of 2048 most
important indices of ECFP using 5 different RF models and returning the intersection and union sets
of the pooled indices.

Alternatively, to enhance the accuracy of LR with ECFP, we use Least Absolute Shrink-
age and Selection Operator (LASSO) LR [29] and Ridge regression [30], corresponding
to LR with L1 and L2 regularization, respectively; the regularization hyperparameter
was optimized for each property/fingerprint. Regularization here helps to decrease the
coefficients associated with certain inputs to reduce the complexity of the model.
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Table 2. Number of features in the intersection (Int) and union (Uni) sets for each property after the
RF feature selection procedure.

Num of Features Int Uni

ECFP2

ρ 11 113
E 17 112
Tg 11 108
Tm 16 99

ECFP10

ρ 6 135
E 5 160
Tg 13 123
Tm 10 132

Figure 2b depicts the model RMSE for glass transition temperature post feature
selection using above mentioned methods. We observe that by using RF based feature
selection, the RMSE decreases for linear regression to ~50. For SVM, the RMSE decreases
from 85 to 40 resulting in a significantly more robust model. By utilizing regularization
methods, the RMSE is further reduced and both LASSO and Ridge regression with linear
methods result in RMSE of ~35 which is similar to that of RF method. This suggests that a
non-linear model such as RF is not necessary for an accurate Tg prediction, however, the
feature selection is critical to improve predictions when using fingerprints such as ECFP2
which results in bit vectors with large number of elements for each polymer.

3.2. Effect of Varying ECFP Radius

The number of polymers that can be mapped into unique bit-vectors depend on
the ability of the fingerprinting technique to distinguish minor variations in structure
and chemistry of the polymers. To explore this effect, we compare the effect of changing
the radius of ECFP from 0 to 10 and comparing model accuracies. Figure 4 depicts the
fraction of polyamides in the density dataset that are uniquely represented by ECFP for the
corresponding radius. For a radius of 0; only 30% are represented, this rises quickly and at
a radius of 2, 70% of the polyamide’s chemistries are captured. Upon extending the radius
to 8, close to 100% of the polyamides are unique expressed using ECFP. At low values
of ECFP radii, the two most common polymers that are hard to distinguish are (1) those
differing by length of an alkyl chain, and (2) those differing by repeating ring patterns.
Figure 5 depicts examples of two of the polyamides that cannot be distinguished by small
radius of ECFP and need radii of 8 to discern as the difference in structure is minor.

To compare effect of ECFP radius, we train the RF model and compare the test R2

values. The details of this are shown in Table S4. For smaller radii, we average our
properties of polyamides that are not differentiable by ECFP of that corresponding radius.
Table S4 in Supplementary includes data to compare prediction accuracies for ECFP radii 2
and 10 and we find that the two cases do not show much difference; hence, we conclude
that ECFP2 is capable of accurately predicting Tg, Tm, and ρ when combined with feature
selection and focus on ECFP2 for the remainder of the discussion. Next, we turn our
attention to tensile modulus predictions.
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3.3. Inability to Accurately Predict Tensile Modulus

When training models to predict E for polyamides, we find that none of the models
and none of the descriptors lead to accurate predictions with RMSE being larger than
1 GPa. This is puzzling, as ECFP can predict static properties fairly accurately such as
density and material properties such as Tg and Tm. Varying fingerprints, machine learning
models, and feature selection did not result in more accurate models. This could be due
to critical information regarding the gradient of internal energy not being captured by
either fingerprints or models. Alternately, we hypothesize that this critical result could be
due to variation in testing methods, anomalous properties of some polyamides such as
Kevlar, or microphase separation which can result in heterogeneity resulting in data not
being fit for machine learning. One such example could be variability in temperature and
strain rates when performing the test which has been demonstrated to have significant
effect on fiber filled polyamide modulus [31]. In addition, the hierarchical structures of
the polymer samples may impact their ultimate measured properties [32,33], which can
lead to difficulties when predicting such properties. This highlights the need for consistent
standards for data storage, exhaustive metadata, novel fingerprints, or machine learning
methods that could capture such properties.
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In the remainder of the paper, we will focus on Tg, Tm, and ρ for polyamides and iden-
tify molecular features of polyamide that would enable back of the envelope calculations
for properties.

3.4. QSPR Models for Interpretability

A primary goal of this work is to develop interpretable models that can serve as a
guide to polymer chemists. ECFP due to its complex nature, is challenging to interpret and
therefore cannot provide guides to visual distinction of polymers. To develop such models,
we leverage physically interpretable QSPR descriptors as mentioned in the methods section.
Furthermore, we can add connectivity indices (CI) and/or normalize the QSPR descriptors
to increase accuracy while maintaining interpretability.

First, comparing models for Tg, RF with QSPR fingerprints gives an RMSE of 39.6
when compared to 33 for ECFP. The marginally higher RMSE suggests that this simplistic
QSPR representation, which lacks the structural detail of ECFP, can predict glass transition
temperatures with decent accuracy. Upon addition of CI and normalization, the RMSE
decreases to 39.3 giving marginally better models. When using SVM; the RMSE is found to
be 44 and is 33% higher than ECFP with RF. This does not improve further upon addition
of CI and normalization. Finally, linear regression models, which are most attractive for
interpretability, are less accurate with RMSE of ~50 when using QSPR, QSPR with CI, or
normalized QSPR + CI. This suggests that a simple QSPR feature set with a non-linear RF
model can be used to predict glass transition temperature for polyamides with relatively
high accuracy. Upon using SVM and linear regression, the RMSE is higher; however, they
still result in usable models.

We find similar trends for predictions of Tm and ρ. QSPR models result in higher
RMSE when compared to ECFP, with Tm having 27% higher RMSE, and ρ being fairly
accurate with only a 10% higher RMSE. RF gives the lowest RMSE, followed by SVM, and
finally LR. Upon addition of CI fingerprints and normalization, the RMSE decreases by
a minimal amount. A comparison of the RMSE between QSPR and ECFP is depicted in
Figure 6, with the RMSEs normalized to those of ECFP models with lowest error. Table 3
further details the RMSE and R2 of the various models developed using QSPR, QSPR
with CI, and normalized QSPR with CI. The overall comparison of all combinations of
fingerprints and algorithms for each property can be found in the Supplementary Table S4.
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Table 3. The model fit data and the most important features for each of the properties using
interpretable QSPR fingerprints. The most important features are based on normalized feature sets.

Method Metric (Test) ρ E Tg (◦C) Tm (◦C)

LR
R2 0.720 0.231 0.755 0.411

RMSE 0.073 1.12 48.62 66.78

SVM
R2 0.479 0.216 0.799 0.448

RMSE 0.100 1.10 43.92 64.4

RF

R2 0.721 0.194 0.833 0.421

RMSE 0.073 1.15 40.03 65.94

most
important
features

rot bonds
rot dofs

hbond units
rot bonds

rot bonds
rot dofs

rot dofs
rot bonds

3.5. Feature Importance and Examples

We next leverage the QSPR models to identify what features are most critical to impart
properties to polyamides by analyzing Gini feature importance using random forest. Here,
we discuss examples for models with normalized QSPR features, as it is more evident which
features are most important compared to models with unnormalized features. Figure 7
depicts these features for all properties; the bars correspond to mean values and the error
bars correspond to the standard deviation, both results of aggregating multiple models
from 5-fold cross validation. In the following examples, the unnormalized values are
presented as well for clarity and ease of replication.
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For glass transition temperature, we find that the number of rotatable bonds has a
feature importance of 0.764 and is at least 12 times more important than the next feature,
which is rotational DOFs at 0.06. This is an important result and suggests that polyamides
with a larger number of rotatable bonds will have lower Tg, and for quick prediction,
the number of rotatable bonds can be used to differentiate polyamides. An example of
this is shown in Figure 8. Here, the first molecule P430092 contains 0.150 rotatable bonds
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per heavy atom while P433123 contains 0.196. Due to the correlation demonstrated in
this paper, a reasonable guess would be that Tg of the first molecule is higher than the
second. This in indeed the case with the glass transition temperature being 290◦C and
229◦C, respectively.
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Figure 8. Example of two polyamides, with IDs P430092 and P433123, for which the number of
rotatable bonds can be used to predict the trend of Tg accurately.

For melting temperature, we find that rotational DOFs of a molecule has a feature
importance of 0.44, a correlation weaker than what was found for Tg, nonetheless fairly
significant. The melting temperature is found to decrease with increasing rotational DOFs.
Next, rotatable bonds also show a negative correlation with a feature importance of 0.22
with other features being less than 0.1. An example of using this is shown in Figure 9.
In this case, P430447 has 0.207 rotational DOFs per heavy atom while P372811 has 0.328;
hence, we expect the former to have higher melting temperature. This is indeed the case as
the former has a Tm of 460◦C while the latter has a Tm of 315◦C.
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Finally, for density, rotatable bonds have the highest feature importance of 0.54 and
decreases density, followed by rotational DOFs with 0.18 and increases density, all other
feature importance was less than 0.1. An example of leveraging this is depicted in Figure 10.
In this case, P432192 has 0.115 rotatable bonds per heavy atom while P373465 has 0.197.
Therefore, we can predict that the latter molecule has lower density owing to the higher
proportion of rotatable bonds. This is indeed the case with the densities being 1.36 g/cc
and 1.21 g/cc, respectively.

Polymers 2021, 13, x FOR PEER REVIEW 13 of 17 
 

 
 

P433123 30 (0.280) 21 (0.196) 229.0 

Figure 8. Example of two polyamides, with IDs P430092 and P433123, for which the 
number of rotatable bonds can be used to predict the trend of ࢍࢀ accurately. 

For melting temperature, we find that rotational DOFs of a molecule has a feature 
importance of 0.44, a correlation weaker than what was found for ܶ, nonetheless fairly 
significant. The melting temperature is found to decrease with increasing rotational DOFs. 
Next, rotatable bonds also show a negative correlation with a feature importance of 0.22 
with other features being less than 0.1. An example of using this is shown in Figure 9. In 
this case, P430447 has 0.207 rotational DOFs per heavy atom while P372811 has 0.328; 
hence, we expect the former to have higher melting temperature. This is indeed the case 
as the former has a ܶ of 460°C while the latter has a ܶ of 315°C. 

 

PID 
Rot DOFs 

(normalized) 
Rot Bonds 

(normalized) ࢀ (°C) 

P430447 12 (0.207) 9 (0.155) 460.0 
P372811 19 (0.328) 14 (0.241) 315.0 

Figure 9. Example of two polyamides, with IDs P430447 and P3272811, whose melting temperatures 
can be predicted using trend in rotational DOFs. 

Finally, for density, rotatable bonds have the highest feature importance of 0.54 and 
decreases density, followed by rotational DOFs with 0.18 and increases density, all other 
feature importance was less than 0.1. An example of leveraging this is depicted in Figure 
10. In this case, P432192 has 0.115 rotatable bonds per heavy atom while P373465 has 0.197. 
Therefore, we can predict that the latter molecule has lower density owing to the higher 
proportion of rotatable bonds. This is indeed the case with the densities being 1.36 g/cc 
and 1.21 g/cc, respectively. 

 

PID 
Rot DOFs 

(normalized) 
Rot Bonds 

(normalized) ࣋ (g/cc) 

P432192 14 (0.230) 7 (0.115) 1.36 
P373465 15 (0.246) 12 (0.197) 1.21 

Figure 10. Example of two polyamides, with IDs P432192 and P373465, whose densities can be 
predicted using trend in rotatable bonds. 

Figure 11 combines the results from this work to predict the trends of ܶ, ܶ, and ߩ 
for P100101, P100127 and P100172. The table provides the rotational DOFs and rotatable 
bonds, which are the important features for these properties. We expect that due to higher 

Figure 10. Example of two polyamides, with IDs P432192 and P373465, whose densities can be
predicted using trend in rotatable bonds.

Figure 11 combines the results from this work to predict the trends of Tg, Tm, and ρ for
P100101, P100127 and P100172. The table provides the rotational DOFs and rotatable bonds,
which are the important features for these properties. We expect that due to higher number
of rotatable bonds, P100172 and P100101 should have lower Tg and Tm than P100127.
As P100172 and P100101 have the same number of rotatable bonds, P100172, with more
rotational DOFs, should have lower Tg and Tm than P100101. Additionally, due to the
trend of rotational DOFs, the density of P100172 should be lowest, followed by P100101,
and finally, P100127 should be the highest. This is indeed true, as shown in the table with
Figure 11. Therefore, we can rank order three polyamides using the two most important
descriptors.
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and ρ can be predicted using trends described in this section.

Finally, studying the three properties reveals that rotatable bonds and rotational DOFs
are found as most critical parameters for predicting Tg, Tm, and ρ for polyamides. The
examples provided help us perform quick screening to rank order these chemistries to
perform rational design. For example, tuning the ratio of different components used when
synthesizing polyamides to match these structural features, such as the number of rotatable
bonds or the number of hydrogen bonding units, can lead to more advantageous properties
for specific applications [34–36].
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4. Conclusions

In this paper, we have developed machine learning models to predict Tg, Tm, and
ρ for polyamides. We compare ECFP fingerprints with QSPR, and linear models with
non-linear ones. We find that RF, a non-linear model, results in the most reliable prediction
for Tg, Tm, and ρ when feature selection is not accounted for. When using ECFP, LR and
SVM, we obtain high errors and models not useful for property predictions. However,
when either feature selection using RF or regularization (L1 or L2) are implemented, the
accuracy for ECFP LR models increases to become comparable to that of the RF model.
This suggests that identifying the right subset of fingerprint feature set or appropriate
weighting of different features even when using full feature set can lead to high fidelity
prediction without the need for complex non-linear models.

To study this further, we develop QSPR type models and find that while accuracy
decreases; these models can be used to predict properties of polyamide with high fidelity.
Furthermore, this leads to identification of interpretable features that affect polyamide
properties and develop heuristic comparison to enable rational design for chemists. Finally,
we find that number of rotatable bonds and rotational DOFs are two properties that have
the largest effect of polyamide properties. Furthermore, as this field grows and newer
QSPR features are developed, we expect the model accuracies to increase further, and
result in highly interpretable models that easy to implement and rival accuracies of more
complex algorithms.

However, none of the models were effective in predicting the tensile modulus of
polyamides; this opens questions on potential information that is not captured by simple
fingerprints that is required to predict modulus. Potential methods to bridge this gap
are multitask learning and transfer learning. Multitask learning aims to predict multiple
properties simultaneously [37]; for properties with related features, the synergy helps boost
the predictive accuracy of each property relative to many separate single task models.
Meanwhile, transfer learning leverages information from a model to predict a certain
property to help predict other properties, such as those that are more complex and/or have
less data [38,39]. These methods will be the subject of future studies.
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10.3390/polym13213653/s1, Figure S1: title, Table S1: title, Video S1: title. Figure S1: Example of
translating an image of a structural repeating unit into its corresponding SMILES string; Figure S2:
Data distribution of thermal and mechanical properties of polyamides in PoLyInfo; Table S1: 5-fold
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(e) ECFP2/Tg. (f) ECFP10/Tg. (g) ECFP2/Tm. (h) ECFP10/Tm; Figure S9. Comparison of 5-fold test
RMSE for random forest (RF) models versus for linear regression (LR) and SVM (SV) models with
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(g) ECFP2/Tm. (h) ECFP10/Tm; Table S4. Summary of the best Rˆ2 and RMSE metrics for all repre-
sentation/model/property combinations studied in this work; Spreadsheet S1: Polymer IDs and
SMILES strings for all polyamides used in this study.
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