Skip to main content
. 2021 Oct 20;21(21):6962. doi: 10.3390/s21216962
Algorithm 1: Clustering Guided Hierarchical Activity Recognition Framework.
Input: Training set D and labels L for activities, Threshold θ, test set tx
Output: The prediction of activity with label LA of tx
// TRAINING STAGE
1. Divide D into groups CLU; // Component #1
2. calculate the activity confusion matrix CM of CLU by applying (1) and (2);
3. Construct cls_all to identify all activities; // Component #2
4. for each activity LA of L do
   (4.1) S(LA) = { }; // initialization of LA
5. for each activity LA of L do
   (5.1) for each activity LB of L do
      obtain η(LB, LA) by applying (3);
      if LA != LB and η(LB, LA) ≥ θ do
        S(LA).add(LB);
   (5.2) if not_empty(S(LA)) do
        construct a cls_LA to distinguish LA and S(LA);
// PREDICTION STAGE
6. LA = cls_all (tx); // infer the label of tx by applying the top-level classifier
7. if not_empty(S(LA)) do
    LA = cls_LA(tx); // infer the label of tx by applying the second-level classifier
8. return LA