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Abstract

Biomass burning (BB) aerosol events were characterized over the U.S. East Coast and Bermuda 

over the western North Atlantic Ocean (WNAO) between 2005 and 2018 using a combination 

of ground-based observations, satellite data, and model outputs. Days with BB influence in an 

atmospheric column (BB days) were identified using criteria biased toward larger fire events based 

on anomalously high AERONET aerosol optical depth (AOD) and MERRA-2 black carbon (BC) 

column density. BB days are present year-round with more in June–August (JJA) over the northern 

part of the East Coast, in contrast to more frequent events in March–May (MAM) over the 

southeast U.S. and Bermuda. BB source regions in MAM are southern Mexico and by the Yucatan, 

Central America, and the southeast U.S. JJA source regions are western parts of North America. 

Less than half of the BB days coincide with anomalously high PM2.5 levels in the surface layer, 

according to data from 14 IMPROVE sites over the East Coast. Profiles of aerosol extinction 

suggest that BB particles can be found in the boundary layer and into the upper troposphere with 

the potential to interact with clouds. Higher cloud drop number concentration and lower drop 

effective radius are observed during BB days. In addition, lower liquid water path is found during 

these days, especially when BB particles are present in the boundary layer. While patterns are 
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suggestive of cloud-BB aerosol interactions over the East Coast and the WNAO, additional studies 

are needed for confirmation.

1. Introduction

Wildfires, agricultural burning, and other forms of biofuel consumption represent a 

significant source of gaseous and particulate emissions that can be transported far distances 

(Akagi et al., 2011; Andreae, 2019; Cook et al., 2007; Crutzen & Andreae, 1990; Heald 

et al., 2006; Park et al., 2007; Val Martin et al., 2013) impacting surface air quality, cloud 

formation and the hydrological cycle, and climate (Ackerman et al., 2000; Hobbs et al., 

1997; Johnson et al., 2004; Malm et al., 2004; Mao et al., 2011; Martin et al., 2006; 

Park et al., 2007; Penner et al., 1992). Biomass burning (BB) research has intensified in 

recent years targeting the western United States (U.S.) owing to the increased frequency and 

intensity of wildfires as a result of climate change, land management, and fire suppression 

policies (Abatzoglou & Williams, 2016; Barbero et al., 2015; Schmidt, 2002; Westerling 

& Swetnam, 2003). In the U.S., BB accounts for up to 25% of primary PM2.5 (particulate 

matter with aerodynamic diameter ≤2.5 μm) emissions annually (U.S. EPA, 2014).

While the western U.S. has been studied extensively in connection to major summertime 

events, field campaigns such as the International Consortium for Atmospheric Research on 

Transport and Transformation (ICARTT) (Fehsenfeld et al., 2006), Two-Column Aerosol 

Project (TCAP) (Berg et al., 2016; Müller et al., 2014), the Wintertime INvestigation of 

Transport, Emissions, and Reactivity (WINTER) (Schroder et al., 2018; Sullivan et al., 

2019), and the Fire Influence on Regional to Global Environments and Air Quality (FIREX

AQ) (Junghenn Noyes et al., 2020) showed that BB emissions are an important pollution 

source over the eastern U.S. ICARTT measurements revealed the distinct influence from 

wildfires over the boreal forests of western Canada and Alaska on the eastern U.S. and 

western North Atlantic Ocean (WNAO; defined here as the marine region bounded by 25°–

50°N and 60°–85°W) (Clarke et al., 2007; de Gouw et al., 2006; Heald et al., 2006; Peltier 

et al., 2007; Sullivan et al., 2006; Thornhill et al., 2008; Warneke et al., 2006). As one 

quantitative example, as much as 30% of the observed enhancement in carbon monoxide 

(CO) over the New England area during measurement periods in summer of 2004 was from 

fires from Alaska and Canada, whereas the rest was from anthropogenic emissions (Warneke 

et al., 2006). During the wintertime, organic aerosol from BB accounts for a third of the 

boundary layer submicrometer organic aerosol mass over the northeast U.S. (Schroder et 

al., 2018), with an important fraction derived from residential wood burning (Schroder et 

al., 2018; Sullivan et al., 2019). Kaulfus et al. (2017) reported that there is frequent smoke 

occurrence over the southeastern U.S. due to both local burning and long-range transport 

assisted in part from anticyclonic circulation bringing Central American fire emissions 

toward the southeastern U.S.

In contrast to the eastern U.S., the outflow of BB emissions over the WNAO has been 

studied less, partly owing to the difficulty of conducting measurements without surface 

stations (Sorooshian et al., 2020). The PICO-NARE mountaintop site in the Azores has 

been one location over the eastern North Atlantic showing clear evidence of transported BB 
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emissions from North America (Honrath et al., 2004; Val Martín et al., 2006; Zhang et al., 

2017). Mead et al. (2013) speculated based on aerosol composition data that BB emissions 

can reach the island of Bermuda, which was more recently confirmed by Aldhaif et al. 

(2021).

Remaining knowledge gaps include the spatial, vertical, and temporal characteristics of BB 

air masses over the East Coast and WNAO, which is important for the understanding of 

vertical heating rates, thermodynamic stability in the troposphere, and potential interactions 

with clouds. Given the reduced levels of anthropogenic pollution in the U.S. linked to 

stricter regulations in recent decades (e.g., Hand et al., 2012; Jongeward et al., 2016), it is 

expected that the relative influence of BB aerosol particles will increase over the U.S. East 

Coast (Kaulfus et al., 2017) and the WNAO, with uncertain effects on air quality, clouds, and 

radiative forcing.

This work characterizes the spatiotemporal and vertical profile of BB aerosol particles, 

in addition to their potential interactions with clouds, over the U.S. East Coast and the 

WNAO region. We analyze the seasonal and interannual patterns of BB air masses over 

four different sub-regions of the U.S. East Coast in addition to a sub-region surrounding 

Bermuda, which has been long the subject of many studies examining offshore pollution 

transport from North America (e.g., Aldhaif et al., 2021; Chen & Duce, 1983; Dickerson et 

al., 1995; S. L. Huang et al., 1999; Milne et al., 2000). We subsequently examine spatial 

maps based on black carbon (BC) column density to identify transport corridors and source 

regions contributing to BB pollution over each sub-domain as a function of season. The 

impact of BB on surface air quality along the entire U.S. East Coast is assessed using surface 

aerosol data. In addition, vertical characteristics of BB air masses are analyzed with the use 

of lidar retrievals from both space and airborne platforms. Finally, relationships between BB 

particles and clouds are explored using a combination of data sets.

2. Experimental Methods

2.1. Study Region and Time Period

The study region comprises five sub-domains (Figure 1): four over the East Coast (NE 

= northeast U.S., MA-N = northern mid-Atlantic states, MA-S = southern mid-Atlantic 

states, SE = southeast U.S.) and a fifth centered over Bermuda. The latter is chosen as it is 

the only area over the remote WNAO from which surface-based data are available over a 

long-term period, whereas the former four collectively cover most of the East Coast, are of 

relatively similar areas, and offer comparable data availability. The time period evaluated is 

from January 1, 2005 through December 31, 2018, chosen based on co-availability of data 

sets analyzed in this work. A summary of data products used (e.g., product name, spatial 

and temporal resolution, download address, and references) can be found in Table S1 in 

Supporting Information S1.

2.2. Parameters Used for BB Detection

Several parameters were evaluated to develop a method for the detection of BB on a given 

day (i.e., “BB days”). BB days are defined as having smoke influence somewhere in the 
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tropospheric column and not necessarily in the surface layer. Section S1 in Supporting 

Information S1, including Tables S2–S5 and Figure S1 in Supporting Information S1, 

summarizes how we arrived at our final criteria, by comparing multiple data sets with 

the goal of selecting parameters that consistently detect smoke events. Here, we rely on 

aerosol optical depth (AOD) at 500 nm from the AErosol RObotic NETwork (AERONET) 

(Holben et al., 1998) and the NASA Modern-Era Retrospective analysis for Research 

and Applications version 2 (MERRA-2; Gelaro et al., 2017) BC column density product 

(hereafter referred to as BC). More details about AERONET and MERRA-2 are provided 

in Section S1 in Supporting Information S1. Briefly, AERONET is a ground-based aerosol 

remote sensing network allowing for determination of AOD among other optical quantities. 

MERRA-2 is a long-term atmospheric reanalysis including an aerosol transport model and 

an assimilation module to provide simulations constrained with observations. Either of 

the following conditions had to be satisfied to qualify as a BB day: (a) both parameters 

(i.e., AOD and BC) exhibited a deseasonalized sub-domain averaged value exceeding the 

90th percentile for that respective parameter on a single day; or (b) either one of the two 

parameters was above the 90th percentile for 2 consecutive days. This methodology mainly 

detects large-scale BB events and may miss smaller ones that are more local in nature. While 

methodological changes would possibly affect the analysis, consistency across different data 

sets lends confidence to the adequacy of our methodology.

2.3. Surface PM2.5 Mass and Composition

Although this study focuses on BB influence in the atmospheric column, it is still of 

interest to additionally assess the impact of BB emissions on surface air quality for the U.S. 

East Coast sub-domains. To do so, aerosol monitoring stations (shown in Figure 1) were 

selected from the Interagency Monitoring of Protected Visual Environments (IMPROVE) 

network (Malm et al., 1994). IMPROVE data are not available for Bermuda. We use 

IMPROVE stations providing data for the time period of interest between January 1, 2005 

and December 31, 2018. Details associated with each IMPROVE station are presented in 

Table S6 in Supporting Information S1.

Aerosol collection is conducted every third day for 24 hr. Total PM2.5 and PM10 mass 

concentrations are determined gravimetrically. Speciated data correspond to the PM2.5 

fraction and are based on either ion chromatography analysis (water-soluble ions), X-ray 

fluorescence and particle-induced X-ray emission (elements), or thermal optical analysis 

(OC and elemental carbon [EC]) (Chow et al., 2007, 2015; Solomon et al., 2014). Because 

of documented enhancements in BB air masses (e.g., Reid et al., 2005; Schlosser et al., 

2017), we focus on data for PM2.5, PM10, EC, OC, SO4
2−, and K.

The analysis presented in Table S13 in Supporting Information S1 and referred to in Section 

3.5 depended on identifying BB days with anomalously high PM2.5 concentrations. To 

accomplish this categorization of days, PM2.5 data were deseasonalized by subtracting the 

corresponding 30-day moving average values, similar to parameters described in Section 

S1 in Supporting Information S1. Values are considered anomalously high when the 

deseasonalized values exceed the 90th percentile of every measurement during the study 

period. PM2.5 is chosen for this calculation as it represents arguably the most important 

Mardi et al. Page 4

J Geophys Res Atmos. Author manuscript; available in PMC 2021 November 12.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



parameter for air quality monitoring purposes and was usually one of the most enhanced 

IMPROVE parameters on BB days. Other than using deseasonalized values for identification 

of special days referred to as BB + PM2.5 days in Table S13 in Supporting Information S1 

and Section 3.5, discussion of IMPROVE mass concentrations throughout this work is based 

on the raw mass concentration data.

2.4. Aerosol Extinction Profiles

All data used in this work can be found at the following sites: NASA Atmospheric 

Infrared Sounder (AIRS): http://dx.doi.org/10.5067/AQUA/AIRS/DATA202. NASA Ozone 

Monitoring Instrument (OMI): http://dx.doi.org/10.5067/MEASURES/AER/DATA203. 

NASA Modern-Era Retrospective analysis for Research and Applications, Version 

2 (MERRA-2): http://dx.doi.org/10.5067/KLICLTZ8EM9D. NASA AErosol RObotic 

NETwork (AERONET): https://aeronet.gsfc.nasa.gov/new_web/download_all_v3_aod.html. 

Interagency Monitoring of Protected Visual Environments (IMPROVE): http://

views.cira.colostate.edu/fed/SiteBrowser/Default.aspx. ACTIVATE aircraft data: https://

www-air.larc.nasa.gov/missions/activate/index.html. NASA Cloud-Aerosol Lidar with 

Orthogonal Polarization (CALIOP): https://subset.larc.nasa.gov/calipso. NASA CERES

MODIS: https://ceres.larc.nasa.gov/data/.

2.5. Airborne Case Study Flight

Data are shown from a case flight of the Aerosol Cloud meTeorology Interactions oVer 

the western ATlantic Experiment (ACTIVATE) to represent vertical characteristics of BB 

aerosol particles over the WNAO. Research Flight 28 on August 26, 2020 was comprised of 

a joint flight with the HU-25 Falcon and UC-12 King Air based out of NASA Langley 

Research Center (37.1°N, 76.4°W). The campaign concept and platform payloads are 

summarized elsewhere (Sorooshian et al., 2019). Briefly, the two planes fly in a coordinated 

way. The Falcon flies in the boundary layer for in situ sampling of gases, aerosols, clouds, 

and meteorological parameters. The King Air flies above the boundary layer and relies on 

dropsondes for measuring weather parameters, in addition to remote sensing instruments 

observing cloud and aerosol particles. This study specifically makes use of the King 

Air’s nadir-viewing High Spectral Resolution Lidar-2 (HSRL-2) data for vertically resolved 

“curtains” of aerosol extinction coefficient at 532 nm. The HSRL-2 instrument has been 

used in past airborne campaigns and readers are referred elsewhere for further information 

about its operational details (Burton et al., 2018).

To complement the analysis of the airborne data, the origin and type of the observed aerosol 

particles during the flight were identified using the combination of the NOAA Hybrid 

Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Rolph et al., 2017; 

Stein et al., 2015), MERRA-2 BC spatial data, and speciated AODs from the Navy Aerosol 

Analysis and Prediction System (NAAPS) (Lynch et al., 2016; https://www.nrlmry.navy.mil/

aerosol/). HYSPLIT 96 hr back-trajectories were obtained for different points and times in 

the flight using GDAS meteorological data and the Model Vertical Velocity method. NAAPS 

is based on meteorological data from the Navy Global Environmental Model (NAVGEM; 

Hogan et al., 2014).
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2.6. Cloud Properties

For an assessment of cloud characteristics in this study, we use properties from the 

MODerate resolution Imaging Spectroradiometer (MODIS), on Aqua, as part of the Clouds 

and the Earth’s Radiant Energy System (CERES) Edition 4 (Loeb et al., 2016), with cloud 

algorithms described in Minnis et al. (2011, 2021) and Trepte et al. (2019). Here, we 

use the Level 3 Single Scanning Footprint (SSF) cloud product, which corresponds to 

pixel-level cloud properties averaged to a spatial resolution of 1° × 1°. We further use 

the CERES-MODIS subset for grids with averaged cloud retrievals featuring cloud heights 

below 700 hPa. Cloud properties used in this study for the 2005–2018 period include: cloud 

effective radius (re), cloud fraction, liquid water path (LWP), and cloud optical depth (τ). 

Cloud droplet number concentration (Nd) was additionally calculated based on the following 

equation (Painemal & Zuidema, 2011):

Nd = 1.4067 × 10−6 cm−0.5 × τ0.5

re2.5 (1)

The 1.4067 × 10−6 constant in the equation has the parameter k (related to the width of 

the droplet size distribution) embedded as 0.8, which instead is assumed to be 0.67 here for 

the East Coast sub-domains (NE, MA-N, MA-S, SE) as this value has been suggested to be 

better suited over land (Martin et al., 1994). We still use 0.8 for the Bermuda sub-domain 

as it is over the open ocean. Data are only used when liquid cloud fraction exceeded 30% 

to reflect a balance between reliability of retrieval data and maintaining a reasonable sample 

size. MODIS cloud products can be biased when an optically thick BB layer is located above 

the cloud, as the algorithm does account for the radiative properties of the overlying aerosol 

particles. These MODIS biases have been well documented over the southeast Atlantic 

during the BB season (e.g., Meyer et al., 2013). However, these artifacts were minimized in 

our study as we used re retrievals based on the 3.78-μm, channel, which has proven to be 

nearly insensitive to the effect of absorbing particles (Haywood et al., 2004), as well as less 

affected by spatial inhomogeneities and 3-D radiative transfer effects than the commonly 

used 2.13-μm channel (e.g., Painemal et al., 2013; Zhang & Platnick, 2011). Given the 

dependence of LWP and Nd on re, it follows that our MODIS data set is less sensitive to 

artifacts associated with BB particles above clouds.

3. Results

3.1. Temporal Variations

The occurrence of BB days was examined on seasonal (Figure 2) and interannual (Figure 

3 and Figure S2 in Supporting Information S1) time scales. Each sub-domain has more 

frequent BB days in warmer months (May–September), followed by a decline in colder 

months (November–February). The June-July-August (JJA) season coincided with the 

highest frequency of BB days in sub-domains NE, MA-N, and MA-S, whereas Bermuda 

and SE regions exhibited the most BB days in the March-April-May (MAM) season (Figure 

2). The December-January-February (DJF) season had the fewest BB days of any season 
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for all sub-domains likely driven by the lack of large-scale events in source regions such as 

western North America and Mexico.

Figure 3 depicts the average monthly frequency of occurrence for BB days over each 

sub-domain for two periods: 2005–2011 and 2012–2018. Sub-domain SE exhibited more 

BB days in 2012–2018 (227) relative to 2005–2011 (162). In contrast, the number of BB 

days was more comparable between the two time periods for the other sub-domains (2005–

2011/2012–2018): NE = 178/171, MA-N = 231/230, MA-S = 258/232, Bermuda = 158/150. 

Figure S2 in Supporting Information S1 shows how the number of BB days varied by year 

from 2005 to 2018. Sub-domain SE shows the only pronounced trend over time with a 

progressive increase in BB days starting especially in 2009 (19 days) after which there is 

a near doubling of events in 2018 (36 days). The months between November and April 

were particularly influential in the enhanced frequency of BB days for sub-domain SE in 

more recent years (Figure 3); these months coincide with extensive agricultural burning 

in the southeast U.S. around Florida (Le Blond et al., 2017; Ma et al., 2014) and also 

prescribed burning (Olson & Platt, 1995; Platt et al., 2015). Using National Environmental 

Satellite Data, and Information System Hazard Mapping System (HMS) data, Brey et al. 

(2018) reported that the fire season in the southeastern U.S. is bimodal with the largest peak 

between January and April primarily due to debris burning, with a second peak in November 

also linked predominantly to human-induced burning. Kim et al. (2020) observed extensive 

fires over the southeast U.S. in November 2016, which stood out as being more extensive 

than anywhere else in the U.S. for that month. Jaffe et al. (2020) also reported extensive 

fire activity across the southeast U.S. in the winter and late fall. Although such fires in the 

southeast U.S. are smaller than wildfires over the western U.S., they significantly degrade air 

quality because of the large number of such fires (Brey et al., 2018). Furthermore, prescribed 

burning in the southeast U.S. is thought to lean more toward smoldering conditions as 

compared to other parts of the U.S., but there are conflicting views as to whether PM2.5 

emission factors are higher or lower compared to other parts of the U.S. (Jaffe et al., 2020; 

Liu et al., 2017; Prichard et al., 2020). Although not the focus of this work, future efforts 

would be worthwhile to disentangle the effects of changing emissions versus atmospheric 

transport and weather-related factors when examining interannual trends.

3.2. BB Spatial Extent

To isolate regions acting as sources and transport corridors leading to BB days for each 

receptor sub-domain, we use two types of spatial maps. We show spatial maps of BC 

anomaly, computed as the difference between the mean MERRA-2 BC value on BB days 

in a given season and the mean value of all days in that season (Figure 4). Hashed areas 

in Figure 4 indicate grids where the anomaly value is statistically significant with 95% 

confidence based on the Student’s t-test for a given season. The second type of map is for 

associated seasonal composites of BC values for BB days (Figures S3–S6 in Supporting 

Information S1). MERRA-2 BC data are advantageous for these maps owing to broad spatial 

coverage as compared to surface monitoring networks such as AERONET.

Figure 2 already showed that MAM and JJA were the two seasons with the most BB 

days, with more in JJA toward the north (sub-domains NE/MA-N/MA-S) and more over 
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Bermuda and SE in MAM. The fractional occurrence of BB days occurring in JJA/MAM 

versus BB days across the entire year are 0.54/0.23, 0.48/0.25, and 0.46/0.29 for NE, MA-N, 

and MA-S, respectively, as compared to 0.30/0.43 and 0.38/0.43 for SE and Bermuda, 

respectively. Bermuda’s position far from the East Coast with somewhat similar air patterns 

in MAM and JJA (Aldhaif et al., 2021; Corral et al., 2021) results in greater similarity in BB 

frequency in these two seasons as compared to other sub-domains. Figure 4a and Figure S3 

in Supporting Information S1 show that during MAM, concentrated areas of most enhanced 

BC were over Mexico, especially the southern part and the Yucatan peninsula, and also 

over Central America. These areas are known to be active BB sources in MAM (Gupta et 

al., 2018; Kreidenweis et al., 2001; Roy et al., 2018; Wang et al., 2006; Yokelson et al., 

2009). The hashed areas associated with the analysis for sub-domain SE suggest a transport 

corridor from Mexico and Central America toward the southeast U.S. and farther over the 

WNAO toward Bermuda. Other work has shown that agricultural burning in Meso and 

Central American countries yields extensive smoke occurrence in MAM over the Eastern 

U.S. assisted in part by the Bermuda high-pressure system southeast of Florida (Kaulfus 

et al., 2017). Florida itself is shown to have anomalously high BC values due likely to 

agricultural burning (Corral et al., 2020; Dennis et al., 2002; McCarty et al., 2007; Mendoza 

et al., 2005; Mitchell et al., 2014; Sevimoğlu & Rogge, 2019; Washenfelder et al., 2015). 

Relative to other parts of the U.S., the southeastern parts (especially Florida) exhibited the 

largest difference in mean PM2.5 between smoke-influenced and smoke-free days due to 

some presumed combination of prescribed burns and wildfires (Kaulfus et al., 2017). In their 

analysis of fires in the year 2007, Rolph et al. (2009) found that the southeast U.S. accounted 

for the majority of fires across the country due partly to unusually dry conditions. Results 

for Bermuda show that BB transport predominantly comes from the outflow of the U.S. East 

Coast and Mexico.

In sharp contrast to MAM, the JJA results (Figure 4b and Figure S4 in Supporting 

Information S1) reveal a different spatial pattern with maxima in BC mainly located in 

the western parts of Canada and northwestern parts of U.S. Extensive past works have also 

identified these areas as BB sources due to wildfires (Boulanger et al., 2017; Dadashazar et 

al., 2019; Garofalo et al., 2019; Jaffe et al., 2008; Kaulfus et al., 2017; Mardi et al., 2018, 

2019; Schlosser et al., 2017). The western U.S. appears to contribute less than Canada in 

these months, at least partly due to characteristic weather and transport patterns bringing air 

masses to the U.S. East Coast (e.g., DeBell et al., 2004; Dreessen et al., 2016; Li et al., 2005; 

Rogers et al., 2020). The analysis for sub-domain SE stands out with anomalously high 

BC values across the southeast U.S. and northwestern parts of North America, coincident 

with reduced levels over Mexico and Central America. It is not uncommon for smoke in the 

JJA season to move offshore the U.S. East Coast and then be pulled back inland owing to 

atmospheric circulations (DeBell et al., 2004).

The number of BB days during the September-October-November (SON) season expressed 

as a fraction of total BB days per year is as follows (Figure 2): 0.18 (NE), 0.22 (MA

N), 0.21 (MA-S), 0.13 (Bermuda), and 0.16 (SE). The highest numbers of BB days are 

linked to MA-N (101) and MA-S (103). In contrast, the lowest number (41 BB days) 

was for Bermuda, owing to its remote location farther away from BB sources. The spatial 
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distribution of BC (Figure 4c and Figure S5 in Supporting Information S1) is suggestive of 

influence from sources over the eastern U.S., northwestern U.S., and Canada.

The number of BB days is lowest for the DJF season, accounting for 4%–10% of total BB 

days on an annual basis for the five sub-domains (Figure 2). The peculiarly distinct and 

wide band of BC values by the U.S.-Canada border is due to the limited data points for 

this season biased by a major event stemming from western North America (Figure 4d and 

Figure S6 in Supporting Information S1). There were fewer areas of high BC as compared 

to other seasons, with regional sources over the eastern U.S. likely being influential. Based 

on analysis with the HMS fire and smoke product, widespread smoke was not observed 

in DJF over the U.S. except a few select areas including the Florida panhandle and Lake 

Okeechobee in southeastern Florida owing largely to prescribed burning (Kaulfus et al., 

2017). Jaffe et al. (2020) also concluded based on satellite data that fires are mainly found 

in the southeast U.S. during DJF as compared to the rest of the U.S. as a result of prescribed 

burning. Similar to SON, Bermuda appears to be most impacted by areas of high BC 

north of North Carolina consistent with characteristic transport trajectories in those months 

(Aldhaif et al., 2021; Painemal et al., 2021). A noteworthy and consistent result across all 

seasons is that the influence of BB is evident offshore across the WNAO.

3.3. Surface Air Quality

The impact of BB on surface air quality over the U.S. East Coast is well documented (Bein 

et al., 2008, 2020; Colarco et al., 2004; DeBell et al., 2004; Dreessen et al., 2016; Hung 

et al., 2020; Jeong et al., 2004; Rogers et al., 2020; Sapkota et al., 2005; Taubman et al., 

2004; Wotawa & Trainer, 2000; Wu et al., 2018). For example, plumes from Canadian 

wildfires can entrain into the surface layer of a wide swath of the East Coast including 

the southeastern parts (Wotawa & Trainer, 2000) and northern areas such as Washington, 

DC (Colarco et al., 2004), Maryland (Dreessen et al., 2016), New York (Hung et al., 2020; 

Rogers et al., 2020), Pennsylvania (Bein et al., 2008), Connecticut (Rogers et al., 2020), 

and Maine (DeBell et al., 2004). Northeastern U.S. surface air quality can additionally be 

impacted by air masses passing over active fires in the southeast U.S. (Rogers et al., 2020). 

The following analysis aims to examine what fraction of BB days with available IMPROVE 

data yielded anomalously high deseasonalized PM2.5 levels (called BB + PM2.5 days) for 

each surface station (shown in Figure 1; note again Bermuda does not have IMPROVE 

data and is excluded from this analysis). We additionally compare mass concentrations of 

important aerosol constituents (PM2.5, PM10, EC, OC, SO4
2−, and K) between non-BB days 

with available IMPROVE data and BB + PM2.5 days. We present results for both the full 

study period (Figure 5) and each season (Tables S7–S10 in Supporting Information S1).

For the full study period, the 14 IMPROVE stations exhibited between 22% and 42% 

agreement in terms of how many BB days with available IMPROVE data also had 

anomalously high PM2.5 based on the method described in Section 2.3. Reasons for low 

agreement include the strict criteria we use for BB days in addition to how the criteria 

are based on parameters relevant to the entire atmospheric column rather than the surface 

layer alone; however, these percentages indicate that our criteria still identified BB air 

masses sufficiently large in vertical extent to impact surface air quality. The mean (±standard 
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deviation) of agreement percentages were as follows for the sub-domains: 38 ± 2% (NE), 

31% ± 7% (MA-N), 30% ± 6% (MA-S), and 29% ± 2% (SE). There was especially good 

correspondence between IMPROVE stations in NE and SE regions for BB + PM2.5 days 

based on the smaller standard deviations; the generally low standard deviations indicate 

that the BB air masses detected with our criteria were spatially large and usually impacted 

all stations within a given sub-domain. When examined on a seasonal basis, agreement 

based on all 14 stations was as follows: 29% ± 12% (DJF), 22% ± 5% (MAM), 37% 

± 6% (JJA), and 35% ± 14% (SON). Therefore, there was no major variation based on 

season with consistent features also being the lowest standard deviations in regions NE 

and SE for the seasons with the most BB days (MAM and JJA). The BB air masses in 

DJF and SON presumably were not as large as those in MAM and JJA leading to more 

spatial heterogeneity in terms of high PM2.5 levels at different IMPROVE stations within a 

given sub-domain. For comparison, an independent study for the entire U.S. relying on the 

NOAA HMS data product found at least 20.1% of daily NAAQS exceedances (24 hr average 

NAAQS standard = 35 μg m−3) to coincide with identifiable smoke plumes aloft, with the 

majority of such days in JJA and SON, and the fewest in DJF (Kaulfus et al., 2017).

The comparison of mass concentrations between non-BB days and BB + PM2.5 days reveals, 

with two exceptions (Everglades for OC and Presque Isle for K), statistically significant 

enhancements for all species and sites on BB + PM2.5 days for the cumulative time period. 

Based on 24 h data from all stations, PM2.5 exhibited mean levels of 14.99 and 5.43 μg 

m−3 on BB + PM2.5 and non-BB days, respectively. Other studies over the U.S. East Coast 

have reported similar relative amounts of PM2.5 enhancement, including for an August 2018 

smoke event over New York resulting in PM2.5 to increase threefold from 8.4 to 24.8 μg m−3 

(Hung et al., 2020). PM2.5 increased by nearly a factor of 3 (26–71 μg m−3) for a Canadian 

forest fire episode impacting Philadelphia, Pennsylvania (Jeong et al., 2004), with OC and 

SO4
2− being significantly enhanced. PM2.5 increased from ~5 to 25–30 μg m−3 upon the 

arrival of smoke to New York City from wildfires over Alberta, Canada, with enhancements 

in OC, EC, and K+ (Wu et al., 2018). Edwards et al. (2021) showed a twofold increase in 

PM2.5 when comparing BB days (9.54 μg m−3) to background days (4.26 μg m−3) in coastal 

southeast Florida. In contrast with the previous studies, Sapkota et al. (2005) reported much 

higher PM2.5 enhancements over Baltimore (8-fold increase relative to background) during 

the arrival of BB plumes from Quebec forest fires in July 2002, with the 24 h PM2.5 

concentration reaching as high as 86 μg m−3.

Sulfate exhibited the highest mean enhancement on BB + PM2.5 days when accounting 

for all sites (304 ± 55%), followed by PM2.5 (281 ± 28%), OC (272 ± 49%), EC (230 

± 43%), PM10 (222 ± 29%), and K (200 ± 49%). The strong SO4
2− enhancement on BB 

days is noteworthy as Bian et al. (2020) previously showed that smoke in the southeast 

U.S. has a higher SO4
2− fraction than smoke over the western U.S. Furthermore, Bian et al. 

(2020) showed that southeastern U.S. smoke aerosol exhibited greater variability in optical 

properties than the western U.S. due to more varied sources (e.g., fresh and aged/transported 

smoke) as compared to fresher smoke over the western U.S.

The commonly used BB marker potassium (K) (e.g., Artaxo et al., 1994; Calloway et al., 

1989; Pósfai et al., 2003; Reid et al., 2005) was two times as abundant on BB + PM2.5 
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days (0.08 μg m−3) as compared to non-BB days (0.04 μg m−3) for the full study period 

when considering all sites together, supportive of the accurate detection of BB air masses 

with the study’s BB identification criteria. Results on a seasonal basis mostly resemble 

those of the full time period in that there were statistically significant enhancements in 

species concentrations on BB + PM2.5 days with some variability in terms of what species 

were most enhanced depending on season and sub-domain (Tables S7–S10 in Supporting 

Information S1). Varying relative levels of species such as OC, EC, SO4
2−, and K on BB 

+ PM2.5 days for different sites and seasons are expected based on different influential 

fuel types, flame conditions, and aging/transport characteristics (Akagi et al., 2011; Lee et 

al., 2010; Pratt et al., 2011). Although this section showed that BB air masses transported 

from long distances can impact the surface layer, the next section looks more closely at the 

vertical profile of aerosol on BB days in contrast to non-BB days using remote sensing data.

3.4. Vertical BB Characteristics

Seasonal mean aerosol extinction profiles for BB and non-BB days are compared for the 

period between June 2006 and December 2018 (nighttime and daytime data in Figure 6 

and Figure S7 in Supporting Information S1, respectively). Because of improved CALIOP 

signal to noise ratios at night and greater sensitivity to faint aerosol layers relative to 

daytime observations (Tackett et al., 2018), we focus the discussion below on nighttime 

observations (Figure 6), and refer interested readers to view qualitatively similar daytime 

results in Figure S7 in Supporting Information S1. The mean profiles generally reveal an 

aerosol extinction enhancement for BB days for both daytime and nighttime conditions 

up to approximately 5 km, with differences more pronounced with nighttime data. Unlike 

other seasons, DJF tended to exhibit more similar aerosol extinction values between BB and 

non-BB days, albeit with high variability indicated by the shading. Bermuda exhibited the 

lowest difference in extinction between BB and non-BB days as it is farthest away from BB 

sources.

For comparison with these results, the majority of smoke from a Canadian forest fire 

impacting the eastern U.S. was initially injected into a 2–6 km altitude band near Quebec 

and then subsided such that the plume was concentrated between 2 and 3 km over the 

Washington, DC area (Colarco et al., 2004). In a case study of BB plumes originating over 

Alaska and Yukon and being transported to Nova Scotia, aerosol layers reached up to 8 

km (Duck et al., 2007). Taubman et al. (2004) reported BB plumes between 2 and 3 km 

over Virginia and Maryland based on airborne measurements of advected BB plumes from 

Quebec forest fires in July 2002. Others have shown smoke plumes from Canada advected 

to the U.S. East Coast reside in the bottom 5 km (DeBell et al., 2004; Dreessen et al., 

2016; McKeen et al., 2002). Western North American wildfire plumes advected to New York 

resulted in BB aerosol around 2–5 km (Hung et al., 2020). BB plumes reaching New York 

in August 2018 originated near the surface (≤1.5 km) over the southeastern U.S. where there 

was likely crop burning (Rogers et al., 2020).

The MA-S sub-domain in JJA is especially of interest as it exhibited the highest aerosol 

extinction values up to 4 km on BB days based on nighttime data as compared to any other 

sub-domain or season. An example of a representative BB air mass in sub-domain MA-S 
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is shown in Figure 7, based on airborne King Air HSRL-2 data obtained in ACTIVATE’s 

Research Flight 28 on 26 August 2020. This was a ~3.8 hr flight (13:54–17:41 UTC) with 

a southeast heading from Langley Air Force Base over the WNAO, followed by a reverse 

heading to re-trace the flight track back to the airfield. The HSRL-2 data are from the second 

half of the flight on the reverse track back to the airfield. While there are appreciable aerosol 

extinction coefficient values in the marine boundary layer, there are notably high values in 

the free troposphere (>2 km), reaching up to as high as 8 km by the coastline. These results 

can help explain why IMPROVE data agreement on BB days was ≤53% depending on the 

site and season, due to BB particles residing above the surface layer. The altitudes of BB 

plumes detected in this research flight are consistent with the previous reports of BB layer 

altitudes mentioned above.

Figure 7 shows supporting evidence that the source of the enhanced aerosol extinction aloft 

in the free troposphere is transported wildfire emissions from the western U.S. based on 

smoke optical depths from NAAPS, BC from MERRA-2, and HYSPLIT back-trajectories 

from different points during the flight. Subsequent, more detailed work will examine lidar 

data from the King Air and in situ data from the HU-25 Falcon to diagnose compositional 

characteristics in different vertical layers to better constrain the layering characteristics of 

smoke. However, a key conclusion from the combined data in Figure 7 and the CALIOP 

analysis is that smoke can extend over a broad range of altitudes over the U.S. East 

Coast and WNAO with important implications for clouds extending from the boundary 

layer to the upper troposphere. More specifically, Figure 7 shows areas of enhanced 

aerosol extinction from smoke overlapping with clouds extending to around ~2.5 km. This 

case flight demonstrates that smoke particles can both directly interact with clouds (i.e., 

co-located) and potentially even indirectly when residing above clouds via their ability to 

absorb radiation, increase lower tropospheric stability, and suppress vertical entrainment of 

dry air (e.g., Ackerman et al., 2000; Brioude et al., 2009; Hansen et al., 1997; Johnson et 

al., 2004; Kaufman et al., 2005). The next section examines cloud characteristics in different 

conditions as they relate to BB influence.

3.5. Cloud Characteristics

Interactions between aerosol particles and clouds constitute the largest uncertainty 

in estimates of total anthropogenic forcing (IPCC, 2013), motivating analysis of the 

relationships between smoke particles and clouds in the study region. Interactions between 

smoke and clouds are poorly understood and are thought to vary depending on the position 

of smoke relative to clouds (Brioude et al., 2009; Johnson et al., 2004). The goal of our 

cloud analysis is to determine whether changes in cloud properties for BB events are 

potentially indicative of aerosol-cloud interactions.

Table 1 compares values of CERES-MODIS cloud fraction, LWP, and two microphysical 

variables (Nd, re) between BB and non-BB days for low-level liquid clouds for each season 

and sub-domain. We additionally examine cloud characteristics of two portions of the BB 

days, including those with anomalously high surface PM2.5 levels (called BB + PM2.5 days) 

and all the remaining BB days (called BB−PM2.5 days), as described in Section 2.3. The 

cloud statistics we report are based on entire sub-domain values, whereas IMPROVE and 
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AERONET data are at specific points and thus there could be varying degrees of smoke 

influence on clouds within a sub-domain. We speculate that BB + PM2.5 days have a 

greater likelihood of BB particles interacting with low-level liquid clouds. Table S11 in 

Supporting Information S1 reports number of points used for the analysis in Table 1, which 

is important as some categories have ≤5 data points after applying the strict criteria for BB 

+ PM2.5 days (especially DJF), including how low-level cloud fraction had to exceed 30% 

based on Section 2.6. Given the modest number of available samples for BB + PM2.5 and 

BB−PM2.5 days (Table S11 in Supporting Information S1), we focus most of the discussion 

on comparing non-BB and BB days irrespective of PM2.5 (Table 1), and interested readers 

can view results for BB + PM2.5 and BB−PM2.5 in Table S12 in Supporting Information S1. 

Moreover, we focus most of our attention on the All category (i.e., all seasons combined) to 

circumvent the limited seasonal sampling, especially in DJF.

Keeping in mind that our method applied a minimum threshold of 30%, mean cloud 

fractions were between 38% and 48% depending on the sub-domain and air mass category, 

constraining the range of cloud cover variability. Both cloud fraction and LWP are generally 

higher for non-BB days, with statistically significant results observed over the NE and 

Bermuda regions for both cloud variables. The NE region also had a significant reduction 

in LWP for BB + PM2.5 days (73 g m−2) as compared to non-BB days (120 g m−2), with 

BB−PM2.5 days having an intermediate mean value (97 g m−2) (Table S12 in Supporting 

Information S1). While meteorological factors have not been held fixed, this result of 

lower LWP and cloud fraction on BB days is at least consistent with the expectation that 

smoke particles containing soot readily absorb sunlight, with the radiative heating ultimately 

leading to cloud thinning and dissipation (e.g., Ackerman et al., 2000). Nd is next analyzed 

to assess if an enhancement was observed on BB days as this parameter represents the 

most direct microphysical response of clouds to aerosol perturbations. Nd values were 

significantly higher on BB days versus non-BB days, except for MA-S where there was an 

enhancement but not at a 95% confidence level. Moreover, the Nd enhancement on BB days 

is consistently observed for all seasons but with smaller differences in JJA as the region 

features an Nd annual minimum in summer (Dadashazar, Painemal, et al., 2021; Painemal 

et al., 2021). While the analysis suggests a tie between BB days and cloud microphysics, 

co-variability between BC and other species cannot be fully disentangled. As already shown, 

BB days feature high surface concentrations of species such as OC and SO4
2− (Figure 5), 

suggesting the presence of CCN originating from different precursors.

Higher values of Nd at fixed LWP generally are expected to result in reductions in re 

(Twomey, 1977). Owing to the limited sample size of BB days, re values are first examined 

without binning by LWP. Values of re agree with Nd in that BB days are associated with 

a significant decrease (increase) in re (Nd), with the exception of the SE region where 

the re reduction was not significant at the 95% confidence level. We further examined 

differences in Nd and re in three bins of LWP (80–110, 110–170, and 170–270 g m−2) 

(Table S13 in Supporting Information S1), with results from Table 1 for Nd and re generally 

preserved, including lower re and higher Nd on BB days, regardless of LWP value. An 

aspect unexplored in this study is the role of precipitation, which could be responsible for 

aerosol scavenging under the presence of large droplet sizes, and possibly explaining part 

of the relationships in Table 1. Based on the precipitation analysis in Kawamoto and Suzuki 
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(2013), moderate precipitation typically occurs for LWP > 200 g m−2, and drizzle for LWP > 

100 g m−2 and Nd < 50 cm−3. It follows that for the clouds analyzed here (Table 1), drizzle 

and non-precipitating clouds were likely dominant, thus making it less plausible that aerosol 

scavenging by precipitation is the dominant factor explaining differences in cloud properties 

between BB and non-BB days.

This analysis leaves open questions to address with future data sets and analyses grounded 

on more statistics and resolution to examine processes near and around clouds such as with 

airborne measurements. The cloud property analysis was limited in that the data set was 

not sufficiently large to allow for detailed analysis of the impact of various meteorological 

influences such as (but not limited to): subsidence and boundary-layer stability (Klein & 

Hartmann, 1993; Kubar et al., 2012; Myers & Norris, 2013; Naud et al., 2016), sea surface 

temperature and surface heat fluxes (Painemal et al., 2021), and atmospheric circulation 

patterns (Li et al., 2005; Painemal et al., 2021). Motivated by the contrast between cloud 

parameters on non-BB and BB days between coastal and offshore areas, it is of interest 

to examine whether aerosol-cloud interaction signatures are weakened farther offshore over 

the WNAO (e.g., Bermuda) due to the presence of dissimilar meteorological regimes and 

aerosol scavenging (Dadashazar, Alipanah, et al., 2021) as the plumes move more than 1,000 

km away from the continent.

4. Conclusions

This study used a combination of data sets to examine characteristics of BB air masses 

over the U.S. East Coast and the WNAO between 2005 and 2018. Using anomalously 

high deseasonalized values (upper decile) of AERONET AOD and MERRA-2 BC column 

density on a given day as criteria to detect BB days over five individual sub-domains, the 

following selected results emerged:

1. JJA and MAM had the most BB days, regardless of region, with more such cases 

to the north (sub-domains NE, MA-N, MA-S) in JJA and more over SE and 

Bermuda in MAM. In contrast, DJF exhibited the fewest BB days due to reduced 

influence from large-scale events that our classification methodology is biased 

toward.

2. For the seasons with most BB days, the most impactful source regions were 

either Mexico, Central America, and the southeast U.S. (MAM), or western 

North America (JJA). Noteworthy is that Bermuda had BB days in each season 

indicating that there is year-round influence from sources over North and Central 

America.

3. Although our classification criteria were biased toward large-scale events with 

high potential to reside aloft in the free troposphere, it was shown that 

for 14 IMPROVE sites across the U.S. East Coast there was 22%–42% 

agreement in terms of how many BB days with available IMPROVE data 

also had anomalously high PM2.5 in the surface layer. A comparison of mass 

concentrations for selected IMPROVE parameters (PM2.5, PM10, SO4
2−, OC, 

EC, and K) on those surface-impacted days relative to non-BB days revealed 
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enhancements between 200% and 304% based on all sites and the full study 

period.

4. The combination of both CALIOP and airborne HSRL-2 data confirms that 

smoke can impact the troposphere from the boundary layer to the upper 

troposphere (~8 km). A case flight from ACTIVATE on 26 August 2020 

shows that smoke in the free troposphere originated over the western U.S. and 

interacted with clouds both directly by mixing and potentially indirectly with 

layers residing above clouds

5. Aerosol-cloud interactions were probed by binning data into separate categories 

based on non-BB days and BB days in each sub-domain on the East Coast and 

over Bermuda. Our results indicate there is a possible signature of aerosol-cloud 

interactions over the U.S. East Coast and the WNAO owing to appreciable Nd 

enhancement (and re reduction) on BB days and that smoke can likely impact 

clouds either if above them or entrained into them. Unfortunately, separating the 

contribution of boundary layer and free tropospheric aerosol particles cannot be 

achieved with our data set. In addition, reductions in LWP and cloud fraction on 

BB days are possibly linked to the heating effect of absorbing aerosol particles, 

contributing to cloud thinning and dissipation. However, testing this hypothesis 

will require a careful analysis of the meteorological factors associated with 

BB events, aided with numerical models, and more accurate observations from 

airborne in-situ probes
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Key Points:

• Biomass burning (BB) particles over U.S. East Coast and Bermuda are 

common year-round with varying sources and at altitudes impacting clouds

• Smoke-cloud interactions are likely based on higher cloud drop number 

concentration and lower drop effective radius on BB days

• A significant reduction in cloud liquid water path was noted on days with 

enhanced columnar and surface smoke over the study region
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Figure 1. 
A map of the study region showing the five sub-domains of interest in red boxes: NE, 

northeast U.S.; MA-N, northern mid-Atlantic states; MA-S, southern mid-Atlantic states; 

SE, southeast U.S. Red dots denote IMPROVE stations from which data were used.
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Figure 2. 
Number of BB days in each sub-domain for December–February (DJF), March–May 

(MAM), June–August (JJA), and September–November (SON). This analysis applies to 

1 January 2005 through 31 December 2018. Total number of BB days including all seasons 

for the studied time period are as follows: NE = 349; MA-N = 461; MA-S = 490; Bermuda = 

308; SE = 389.
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Figure 3. 
Mean-annual frequency of occurrence of BB days in each month for 2005–2011 (red) and 

2012–2018 (black) over each sub-domain. The ends of the whiskers denote minimum and 

maximum values.
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Figure 4. 
Spatial maps of black carbon column density anomaly (kg m−2) for each respective sub

domain for (a) March–May (MAM), (b) June–August (JJA), (c) September–November 

(SON), and (d) December–February (DJF), computed as the difference between the mean 

MERRA-2 BC value on BB days and the mean value of all days in each respective set of 

months. Hashed areas denote grids where the anomaly value is statistically significant with 

95% confidence based on the Student’s t-test. The black box denotes the sub-domain that the 

analysis was conducted for in each composite map.
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Figure 5. 
The average mass concentrations of IMPROVE species (μg m−3) for BB-impacted days 

(in blue) with anomalously high deseasonalized PM2.5 levels (>90th percentile) (called 

BB + PM2.5) and non-BB days (in red) with available IMPROVE data for the study 

period (January 1, 2005 through December 31, 2018). Numbers in parenthesis after each 

IMPROVE site label represents: # of days with available IMPROVE data that qualified 

as a BB day and also exhibited anomalously high deseasonalized PM2.5 levels (>90th 

percentile)/# of days with available IMPROVE data that qualified as a BB day. For each 

box-plot, 25th percentile, the median, and 75th percentile are denoted with the bottom, 

middle, and top lines of the box, respectively. Extreme values are presented as colored 

circles, based on a distance of 1.5 × interquartile range from the top of each box. Maximum 

and minimum values are depicted by whiskers, not including the extreme values. Boxes with 

notches and shaded regions that do not overlap have statistically different medians with 95% 

confidence. Seasonal results are in Tables S7–S10 in Supporting Information S1.
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Figure 6. 
Mean aerosol extinction coefficient at 532 nm from CALIOP over each sub-domain for 

June 2006 – December 2018 for BB and non-BB days for nighttime observations. Shading 

represents the 95% confidence interval of the mean profile estimated based on bootstrapping 

(n = 10,000). Analogous results for daytime conditions are in Figure S7 in Supporting 

Information S1.
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Figure 7. 
HSRL-2 curtain of aerosol extinction (532 nm) during ACTIVATE’s Research Flight 28 

on 26 August 2020. Shown in the peripheral panels are spatial maps of NAAPS speciated 

optical depths and MERRA-2 BC column density, and representative NOAA HYSPLIT 

back-trajectories from points during the flight. Gray arrows point to two subsets of cloud 

tops with higher clouds to the left and lower clouds in the boundary layer to the right.
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Table 1

Seasonal (and “All” for All Data) Mean Values of Liquid Cloud Parameters From CERES-MODIS Edition 4 

Single Scanning Footprint (SSF) Data for Non-BB and BB Days

Cloud fraction (%) LWP (g m−2) Cloud Nd (cm−3) Cloud re (μm)

Non-BB BB Non-BB BB Non-BB BB Non-BB BB

DJF NE 50 56 135 148 69 111 13.9 12.6

MA-N 48 57 130 153 92 104 13.2 12.5

MA-S 45 40 118 87 104 123 11.8 11.5

SE 42 37 60 64 80 110 11.5 10.9

Bermuda 51 46 65 41 37 44 14.0 12.5

MAM NE 48 45 118 129 81 96 13.1 12.7

MA-N 47 45 112 141 105 133 11.7 11.3

MA-S 44 45 90 101 111 124 10.9 10.7

SE 40 39 43 51 78 86 11.5 11.7

Bermuda 46 45 48 45 39 49 13.5 12.8

JJA NE 45 40 94 67 86 79 11.6 11.6

MA-N 43 39 89 71 97 82 10.8 11.2

MA-S 40 38 57 44 85 72 10.6 10.9

SE 35 31 56 43 58 61 12.3 12.1

Bermuda 38 39 32 31 34 51 13.6 12.5

SON NE 49 51 121 90 73 112 12.8 11.1

MA-N 48 44 121 87 94 103 11.6 11.0

MA-S 46 42 104 70 90 104 11.3 10.8

SE 40 33 55 37 62 70 12.5 11.6

Bermuda 46 47 54 36 29 19 14.3 15.4

All NE 48 44 120 93 76 91 13.0 11.9

MA-N 47 44 118 108 96 107 12.1 11.3

MA-S 44 42 99 75 99 104 11.3 10.8

SE 41 38 54 51 74 89 11.8 11.5

Bermuda 48 45 57 42 36 48 13.9 12.8

Note. Numbers in bold denote a statistical significance between the pair of values at the 95% confidence level based on the Student’s t-test. This 
analysis applies to January 1, 2005 through December 31, 2018, and applies to low-level liquid clouds when cloud fraction exceeds 30%, as 
described in Section 2.6.
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