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Abstract: Atrial fibrillation (AF) is a type of cardiac arrhythmia affecting millions of people every
year. This disease increases the likelihood of strokes, heart failure, and even death. While dedicated
medical-grade electrocardiogram (ECG) devices can enable gold-standard analysis, these devices
are expensive and require clinical settings. Recent advances in the capabilities of general-purpose
smartphones and wearable technology equipped with photoplethysmography (PPG) sensors increase
diagnostic accessibility for most populations. This work aims to develop a single model that can
generalize AF classification across the modalities of ECG and PPG with a unified knowledge repre-
sentation. This is enabled by approximating the transformation of signals obtained from low-cost
wearable PPG sensors in terms of Pulse Rate Variability (PRV) to temporal Heart Rate Variability
(HRV) features extracted from medical-grade ECG. This paper proposes a one-dimensional deep
convolutional neural network that uses HRV-derived features for classifying 30-s heart rhythms as
normal sinus rhythm or atrial fibrillation from both ECG and PPG-based sensors. The model is trained
with three MIT-BIH ECG databases and is assessed on a dataset of unseen PPG signals acquired from
wrist-worn wearable devices through transfer learning. The model achieved the aggregate binary
classification performance measures of accuracy: 95.50%, sensitivity: 94.50%, and specificity: 96.00%
across a five-fold cross-validation strategy on the ECG datasets. It also achieved 95.10% accuracy,
94.60% sensitivity, 95.20% specificity on an unseen PPG dataset. The results show considerable
promise towards seamless adaptation of gold-standard ECG trained models for non-ambulatory AF
detection with consumer wearable devices through HRV-based knowledge transfer.

Keywords: biomedical informatics; cardiovascular disease; deep learning; ECG; heart rate variability;
machine learning; PPG; smartphones; smart wearables

1. Introduction

Cardiovascular diseases (CVD) are the leading cause of death worldwide, with the
World Health Organization (WHO) in 2016 estimated 17.9 million deaths annually [1].
CVD is a group of conditions that affect the heart’s rhythm mechanical function, and
electrical activity [2]. This is associated with an increased likelihood of strokes and heart
failure. Timely detection through regular monitoring of CVD is necessary to improve
the treatment process for heart conditions and lower the risk of mortality [3]. Cardiac
arrhythmia is categorized under CVD and is characterized by the disordered electrical
activity of the heart. An arrhythmia can manifest as irregularly rapid heart rhythms
(tachycardia) or anomalous slow heart rhythms (bradycardia). AF is one of the most
common types of cardiac arrhythmia. In this work, the focus is on the classification
of (i) normal sinus rhythm (NSR), and (ii) atrial fibrillation (AF). Goldberger et al. [4]
defines NSR as a rhythm with normal (1:1) atrioventricular conduction and a normal PR
interval (the interval between atrial depolarization and ventricular depolarization) at a
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heart rate between 60 and 100 beats/min, although normal heart rates may vary between
individuals. The work reported in [5] defines AF as an arrhythmia with uncoordinated
atrial activation and characteristics of irregular beat-to-beat intervals, absence of repeating
P waves (indicates atrial depolarization), and irregular atrial activity.

The common technique for the clinical diagnosis of cardiac arrhythmia is based on
the electrocardiogram (ECG). The ECG is a test that uses skin level electrodes with built-in
sensors to measure the heart’s electrical activity and identify abnormal heart rhythms
and additional pathological conditions [6]. However, despite the multi-faceted diagnostic
nature of ECG, most dedicated ECG devices available currently are expensive and are
typically used within clinical or limited ambulatory settings [7]. While wearable ECG
devices are emerging commercially, individuals gravitate towards smart wearables that
can serve general functions and are not only intended for health monitoring. Off-the-
shelf smartphones and wearable devices that use photoplethysmography (PPG) sensors
can serve as an affordable alternative to existing ECG devices, albeit as a supplementary
approach for screening and not for conclusive diagnosis. PPG sensors are optical light
sensors that record blood volume variations at sensitive peripheral sites of the human
body, such as fingertips, wrist, and earlobes [8]. Moreover, PPG sensors are currently used
extensively by fitness tracking applications to estimate the physiological events of heart rate
and heart rate variability (HRV) [9]. PPG signals differ morphologically from ECG signals
but exhibit similar characteristics as the HRV. This is termed as pulse rate variability (PRV).
The advantages of PPG sensor-based consumer devices for cardiac arrhythmia monitoring
are that they are relatively less obtrusive than their ECG counterparts. Their ubiquitous
nature facilitates higher adoption by the general population. Despite these advantages,
PPG recordings are more susceptible to noise saturation and variations in signal quality
caused by user movement and skin tones [10].

The data features extracted from ECG and PPG heart signals to develop learning
algorithms can be categorized as temporal or morphological [11]. Temporal features are
the time-domain metrics such as the time between heartbeats. Many deep learning works
in this area pursue the development of morphology-based models using the PPG segments
or corresponding images to leverage the robustness and have generally superior perfor-
mance in classification problems. However, there are significant challenges in developing
PPG-based analytical models due to the limited public availability of universally reviewed
benchmark databases, as opposed to the abundant ECG signals databases. Moreover, signal
quality and noise saturation can corrupt the performance of the developed models. The
manual annotation process for creating labeled datasets is complex and has the consistency
issue of interrater variability [3]. Interrater variability arises when multiple expert annota-
tors are involved in labeling heart rhythms manually. Different labels are assigned to the
same data instance due to differences in their specific experiences. In practice, it is difficult
to reach an agreement across multiple experts if the data are not ideally preprocessed and
motion artifacts are not eliminated. This is the case with the PPG signal annotation efforts
in most of the literature. Moreover, most developed algorithms in the literature are only
applicable in controlled clinical settings, which hinders early prognosis accessibility to the
general population.

Although there are inherent morphological differences between ECG and PPG-based
signals, the studies reported in [12,13] have exhibited a high degree of correlation between
the signals, especially their corresponding temporal HRV features. HRV measures the
variation in terms of time between consecutive instantaneous heartbeats, measured through
the ECG [9].

The PRV and HRV parameters, derived from ECG and PPG, respectively, exhibit
similar properties under certain conditions. The properties have higher levels of agree-
ment/equivalence when the PPG signals are not excessively situated with motion artifacts.
Various predictive and detection models have been implemented using different HRV met-
rics with standard statistical and machine learning approaches [14–19]. However, there are
considerably fewer deep learning-based models oriented towards usage in smartphones
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and wearable devices. Deep learning has recently emerged as an effective methodology
for cardiac classification tasks [20]. The experiments reported in [21–24] have achieved
successful ECG signal classification using ECG databases by implementing convolutional
neural networks. However, the existing approaches are designed for use in controlled
hospital settings.

This research addresses the scarcity of publicly available PPG datasets, limited repro-
ducible approaches in the existing literature, and varying sensor specifications. This work
proposes implementing a deep learning approach that utilizes the knowledge transfer
paradigm for cross-domain generalizability by training a model on ECG databases and
adapting the developed model for PPG signals-based AF classification. The commonal-
ity in the distribution of temporal features derived from HRV (ECG) and PRV (PPG) is
leveraged as input features to implement a one-dimensional convolutional neural network
for classifying NSR and AF rhythms. The motivation for this approach is to introduce
generalizable deep learning models that can mitigate the challenges associated with purely
PPG- based analytical models and facilitate close to real-time AF detection.

The contributions of this work are as follows:

• The incorporation of the state-of-the-art methods for ECG and PPG signal processing
and HRV feature extraction from short length signals;

• The development of a deep learning model trained on HRV features derived from
on gold standard ECG for classification of AF with PRV derived from PPG features
through transfer learning;

• The evaluation of the developed model performance on three ECG datasets and a PPG
dataset composed of wrist-worn wearable signals which achieved competitive results
when compared to the recent literature;

• The implementation of a cloud-based platform and the evaluation of the developed
model performance on PPG signals acquired from live subjects via smartphones.

This paper is organized as follows: Section 2 introduces the background of the concepts
used in the analysis of this work, Section 3 details the proposed approach, Section 4 presents
the obtained results of the model, Section 5 discusses the results, and is followed by the
conclusion and future work in Section 6.

2. Background
2.1. Heart Activity Measures

The entire sequence of a single heartbeat, beginning with the initial atrial excitation
and concluding with the exit from the ventricular chambers, is called PQRST and is shown
in Figure 1. An electrical impulse travels through the heart during each heartbeat, causing
the heart muscles to pump blood. After a flat line driven by the impulse traveling to the
bottom heart chambers, the right and left atria (upper heart chambers) create the first
wave, called P wave. The right and left ventricles (bottom chambers) make the next wave
called the QRS complex, and the final T wave indicates the repolarization of the ventricles.
The QRS complex is the peak shown in Figure 1. Variations in parameters obtained from
ECG and PPG, such as the duration and rate of heartbeats, can help detect abnormal heart
activity [6].

PPG is an optical light-based technique to measure the volumetric change of the heart.
As the heart contracts, blood pressure in the left ventricle (bottom chambers) increases.
This is reflected by an increased pressurized pulse of blood into the capillaries and arteries
of the body, indicated by discoloration of the skin. An LED light measures the difference
in the amount of light reflected from sensitive areas, where the arteries are close to the
skin, such as fingertips or earlobes, which is then used to measure an individual’s heart
rate [25]. A typical waveform of the PPG signal and its characteristic parameters are shown
in Figure 2, which are the systolic peak, pulse with and diastolic peak, and dicrotic notch.
Smartphones and wearable devices are generally accurate in acquiring PPG signals when
the user is at rest, but potential inaccuracies are introduced because of motion artifacts and
diverse skin tones. Motion artifacts typically occur due to misplacement of sensors such
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that it does not make sufficient contact with the measurement site. Various skin tones affect
the reflective properties of the optical light differently and therefore affect the accurate
assessing of the changes in blood volume under the skin [26].

Sensors 2021, 21, x FOR PEER REVIEW 4 of 25 
 

 

 
Figure 1. Single heartbeat sample with the QRS complex [4]. 

PPG is an optical light-based technique to measure the volumetric change of the 
heart. As the heart contracts, blood pressure in the left ventricle (bottom chambers) in-
creases. This is reflected by an increased pressurized pulse of blood into the capillaries 
and arteries of the body, indicated by discoloration of the skin. An LED light measures 
the difference in the amount of light reflected from sensitive areas, where the arteries are 
close to the skin, such as fingertips or earlobes, which is then used to measure an individ-
ual’s heart rate [25]. A typical waveform of the PPG signal and its characteristic parame-
ters are shown in Figure 2, which are the systolic peak, pulse with and diastolic peak, and 
dicrotic notch. Smartphones and wearable devices are generally accurate in acquiring PPG 
signals when the user is at rest, but potential inaccuracies are introduced because of mo-
tion artifacts and diverse skin tones. Motion artifacts typically occur due to misplacement 
of sensors such that it does not make sufficient contact with the measurement site. Various 
skin tones affect the reflective properties of the optical light differently and therefore affect 
the accurate assessing of the changes in blood volume under the skin [26]. 

 
Figure 2. PPG waveform characteristics [3]. 

PPG has two peaks corresponding to the blood volume changes in the microvascular 
bed of tissue around the physical measurement site of the fingertips, earlobes, wrists, etc. 
Systolic peak is caused by the direct pressure wave traveling from the left ventricle to the 
body periphery (heart contraction). The diastolic peak reflects the pressure wave by arter-
ies in the lower body (heart relaxation). The pulse width correlates with systemic vascular 
resistance, and the dicrotic notch reflects a transient increase in aortic pressure [27]. Alt-
hough PPG is an indirect way to record the heart’s activity, it has a high correlation with 

Figure 1. Single heartbeat sample with the QRS complex [4].

Sensors 2021, 21, x FOR PEER REVIEW 4 of 25 
 

 

 
Figure 1. Single heartbeat sample with the QRS complex [4]. 

PPG is an optical light-based technique to measure the volumetric change of the 
heart. As the heart contracts, blood pressure in the left ventricle (bottom chambers) in-
creases. This is reflected by an increased pressurized pulse of blood into the capillaries 
and arteries of the body, indicated by discoloration of the skin. An LED light measures 
the difference in the amount of light reflected from sensitive areas, where the arteries are 
close to the skin, such as fingertips or earlobes, which is then used to measure an individ-
ual’s heart rate [25]. A typical waveform of the PPG signal and its characteristic parame-
ters are shown in Figure 2, which are the systolic peak, pulse with and diastolic peak, and 
dicrotic notch. Smartphones and wearable devices are generally accurate in acquiring PPG 
signals when the user is at rest, but potential inaccuracies are introduced because of mo-
tion artifacts and diverse skin tones. Motion artifacts typically occur due to misplacement 
of sensors such that it does not make sufficient contact with the measurement site. Various 
skin tones affect the reflective properties of the optical light differently and therefore affect 
the accurate assessing of the changes in blood volume under the skin [26]. 

 
Figure 2. PPG waveform characteristics [3]. 

PPG has two peaks corresponding to the blood volume changes in the microvascular 
bed of tissue around the physical measurement site of the fingertips, earlobes, wrists, etc. 
Systolic peak is caused by the direct pressure wave traveling from the left ventricle to the 
body periphery (heart contraction). The diastolic peak reflects the pressure wave by arter-
ies in the lower body (heart relaxation). The pulse width correlates with systemic vascular 
resistance, and the dicrotic notch reflects a transient increase in aortic pressure [27]. Alt-
hough PPG is an indirect way to record the heart’s activity, it has a high correlation with 

Figure 2. PPG waveform characteristics [3].

PPG has two peaks corresponding to the blood volume changes in the microvascular
bed of tissue around the physical measurement site of the fingertips, earlobes, wrists, etc.
Systolic peak is caused by the direct pressure wave traveling from the left ventricle to
the body periphery (heart contraction). The diastolic peak reflects the pressure wave by
arteries in the lower body (heart relaxation). The pulse width correlates with systemic
vascular resistance, and the dicrotic notch reflects a transient increase in aortic pressure [27].
Although PPG is an indirect way to record the heart’s activity, it has a high correlation with
ECG signals. Its portability and relatively inexpensiveness make it a valuable alternative
method to monitor cardiac activity [8].

2.2. Heartrate Variability

The HRV phenomenon is controlled by the Autonomous Nervous System (ANS) and
is a direct result of the behavior of the primitive part: the parasympathetic nervous system.
The brain processes information in the hypothalamus region, and the ANS sends signals
to the rest of the body to either stimulate or relax different functions. Auto-responses
from the ANS are elicited in the event of stress, fragmented sleep, unhealthy diets and
other chemical or neural factors affecting a person’s resting state. HRV is a non-invasive
way to identify ANS imbalances, as when the nervous system is behaving unusually, the
variation in the heartbeats is relatively more erratic. A higher HRV score generally indicates
better cardiovascular fitness and resilience to stress. In comparison, a lower HRV score is
associated with an increased risk of cardiovascular health and mental health concerns [9].
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The primary feature used in HRV calculations is the time between each successive
heartbeats, or the time between successive normal or abnormal QRS complexes/peaks in
milliseconds, defined as the R-R peak interval. Estimation of the R-R interval involves
first detecting the QRS complexes/peaks and subtracting the observed times of successive
peaks. It should be noted that a distinction is made between R-R intervals, and the typically
synonymous N-N interval, as the latter only accounts for normal-normal beats, while the
former accounts for normal-normal, normal-abnormal, or abnormal-abnormal cases.

PRV is used to measure the similar inter-beat variation property with PPG signals,
and this denotes the pulse-to-pulse variation in time. PRV quantifies approximately the
same behavior as the intervals between successive R peaks or QRS complex observed in
ECG with the systolic peak-to-systolic peak or diastolic peak-to-diastolic peak intervals.

Malik et al. [28] observed the potential of HRV in assessing the role of ANS fluctuations
in normal healthy individuals and those with diseases. Relevant measures were selected
from the previous research and used as HRV features for the scope of this work.

This work primarily uses the formulas shown by Equations (1) and (2) to calculate
Root Mean Square of Successive Differences between the R-R intervals (rMSSD) [28] and
Standard Deviation of RR intervals (SDRR) [28]:

rMSSD =

√
∑N−1

i=1 (RRi − RRi+1)
2

N − 1
(1)

From Equation (1), N is the number of R-R intervals and RRi is the location of the ith
QRS complex/peak observed at a time in milliseconds.

SDRR =

√√√√ 1
N − 1

∗
N

∑
j=1

(RRj − RR)2 (2)

From Equation (2), N is the number of R-R intervals, RRj is the location of the jth QRS
complex/peak observed at a time in milliseconds.

The features of rMSSD and SDRR respectively reflect the number of fluctuations in
heart rhythms and the degree of variation between heart beats. Hence, both are vital
features to consider when aiming to predict the cardiovascular state. Various cardiac
conditions were detected using short-term HRV features, with rMSSD, SDRR, and pRR50
being the most useful in predicting changes in parasympathetic activity and even being
a possible indicator of cardiac mortality [29]. Additional HRV features are also included
in Table 1 and used in this work. Those additional features include the coefficient of
variation in R-R intervals (CVRR) and coefficient of variation in the differences of successive
R-R intervals (CVSD), as they are features that improve the classification of CVD [30].
Researchers recorded PPG signals from the fingertips of subjects extracted PRV features,
such as rMSSD, SDRR, and pRR50, compared them with the same features obtained from
ECG to validate the accuracy, and found that the average error rate was less than 6% [30].
Another study used wearables to compare the time domain features (rMSSD, SDRR) of
HRV extracted from ECG and PRV extracted from PPG signals and found that PPG signals
can be used as an alternative source for HRV measurement [31]. The features used in this
work are presented in Table 1.
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Table 1. A summary of the HRV feature characteristics used in this work.

Feature Domain Description

R-R
interval Time Times between each successive heartbeat, measured from one

normal or abnormal R peak/QRS to the next in milliseconds.

rMSSD Time Square root of the mean of the sum of the squares between adjacent
R-R intervals.

SDRR Time Standard deviation of R-R intervals in milliseconds.
meanRR Time Average value of the R-R interval in milliseconds.
CVRR Time Coefficient of variation in R-R intervals.
CVSD Time Coefficient of variation between successive R-R interval differences.
medianRR Time Median value in R-R intervals in milliseconds.
madRR Time Median value of R-R interval deviation in milliseconds.
mcvRR Time Median value of the coefficient of variation.

RR20 Time Number of pairs of adjacent R-R intervals differing by more than
20 milliseconds.

pRR20 Time Count of RR20 over a total number of R-R intervals.

RR50 Time Number of pairs of adjacent R-R intervals differing by more than
50 milliseconds.

pRR50 Time Count of RR50 over the total number of R-R intervals.

This relationship can be utilized to monitor individuals’ cardiovascular health with
off-the-shelf sensors for classifications and early detection of diseases. The commonality
between the behavior of the HRV and PRV parameters can be utilized to enable generalized
detection of AF across two different modalities: ECG and PPG. The model is trained on
HRV features derived from ECG signals within the three ambulatory datasets. The model is
tested and finetuned on PRV features derived from PPG signals within the wearable dataset.

For verification of the created dataset and its respective HRV values for different R-R
interval measures, it was compared to the short-term normative values reported in [32],
and the reference ranges for HRV from ECG recordings [33]. The HRV features of NN
intervals, rMSSD, and SDRR were the most reported along with their normative ranges,
and it is shown in Table 2. This comparison ensured that the extracted PRV features for
real-time samples from the low-cost PPG sensors from wearables were within reasonable
bounds of the ground truth cases and should remain valid for this experimentation.

Table 2. HRV Reference Ranges.

Feature Range Mean ± SD

RR interval (ms) 785–1160 926 ± 90
rMSSD (ms) 19–75 42 ± 15
SDRR (ms) 32–93 50 ± 16

3. Proposed Approach

The proposed approach has three main stages after the initial acquisition of datasets,
as shown in Figure 3. The first stage involves preprocessing the signals in terms of filtering,
peak detection, and feature extraction. The second involves the one-dimensional convolu-
tional neural network (CNN) model development for binary classification between NSR
and AF with temporal HRV features, and trained with the ECG datasets. The third stage
involves model evaluation. The model evaluation is done on both the holdout testing on a
subset from the ECG datasets and out-of-sample cross-domain testing instances from the
PPG datasets. Each stage is detailed in the following subsections.
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3.1. ECG Datasets

NSR and AF rhythms are collected from three datasets [34]: MIT-BIH Normal Si-
nus Rhythm (NSR-DB), MIT-BIH Atrial Fibrillation (AF-DB), and MIT-BIH Arrhythmia
(ARR-DB).

Using ambulatory ECG recorders, each record was acquired from patients referred to
the Arrhythmia Laboratory at the Beth Israel Deaconess Medical Center, Massachusetts
Institute of Technology. They are accessible via the Physiobank repository, a digital archive
of well-characterized biomedical signals created by the United States National Institutes of
Health for use by the research community [35].

AF-DB consists of 23 two-channel ECG recordings (sampled at 250 Hz), from subjects
with paroxysmal atrial fibrillation, atrial flutter, AV junctional rhythm, and normal rhythms,
with a typical recording bandwidth of approximately 0.1 to 40 Hz. NSR-DB consists of
18 two-channel ECG recordings (sampled at 128 Hz) from subjects with no significant
arrhythmia or heart abnormalities. ARR-DB consists of 48 records, each containing two-
channel ambulatory ECG signals of 30-min duration. Lead 1 channel ECG signals, which
record the right ventricle and right atrium, are used in this work.

The signals in AF-DB have rhythm annotations indicating NSR and AF. Meanwhile, the
signals in NSR-DB and ARR-DB have heartbeat annotations as well, in addition to rhythm
annotations for AF and NSR. The annotations are provided in terms of a distinct beginning
and end label pertaining to particular regions of the signals. The heartbeats in NSR-DB
and ARR-DB follow the recommended standards of the Association for the Advancement
of Medical Instrumentation [36]. Hence, the annotations/labels for each heartbeat in the
NSR-DB and ARR-DB fall into multiple categories [37]. The beat superclasses and their
corresponding beat annotations of interest in this work are N: (N, L, R, B) and S: A, a, J,
S, j, e, n. While the primary focus is on heart rhythm classification, specific samples in
the dataset are considered on a heartbeat segment basis for incorporating cases of atrial
premature complexes (APC) [38]. The rationale for incorporating heart rhythms with high
saturation levels of anomalous heartbeats is to contribute stochasticity (diversity) to the
AF class. The expectation is that the dataset consisting of contiguous AF rhythms and AF
rhythms interspersed with normal and other types of beats will allow for the eventual
detection of varying anomalous rhythms that differ considerably from the purely NSR
training samples [39,40].

3.2. PPG Dataset

The privately held UMass PPG database (UMass-DB) [41] collected by the University
of Massachusetts Medical School was used for further testing to discover the strengths and
weaknesses of the model. The authors of [42] granted access to this dataset and consists of
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37 subjects, with 10 having AF. The PPG signals were recorded at a sampling frequency
of 128 Hz from the Simband, smart wristwatch provided by Samsung, which has 8 PPG
sensors, a triaxial accelerometer, an ECG lead, and a temperature sensor [42].

Figure 4 presents the typical characteristic heart rate rhythm samples from both
datasets reflecting NSR and AF, respectively, across the ECG and PPG modalities. As
observed from Figure 4a,c,e, NSR instance is a normal heart rhythm that maintains a steady
rate with no irregularities. From Figure 4b,d,f, the AF instance is a sustained unsteady
heart rhythm with rapid fluctuations.
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Figure 4. Sample 30-s heart rhythm instances represented as raw amplitude (y-axis) against time (x-axis) from ECG datasets;
(a) NSR ECG from AF-DB (Patient 4015); (b) AF ECG from AF-DB (Patient 4043); (c) NSR ECG from ARR-DB (Patient 100);
(d) AF ECG from ARR-DB (Patient 222) and PPG dataset; (e) NSR PPG (Patient 4002); (f) AF PPG (Patient 4012).

3.3. Preprocessing

Initially, the signals with rhythm annotations of NSR and AF from AF-DB, ARR-
DB, and NSR-DB were divided into 30-s samples with no-overlapping windows. The
segmented 30-s signals retained the respective label of NSR or AF as multiple 30-s samples
can be obtained from a single longer signal with the same annotation. In the case of ARR-
DB, all signals with annotations corresponding to non-atrial complications, such as paced
rhythms, ventricular bigeminy, trigeminy, tachycardia, were ignored.

Most AF contiguous data samples originated from the AF-DB, with approximately
3.6% being from the ARR-DB dataset. From the NSR database, 15% of the total NSR rhythm
records were arbitrarily selected. Most NSR data originated from NSR-DB, followed by
ARR-DB while AF-DB contributed only 5% of the total NSR samples. All the signals
accounted for had the highest resolution in terms of QRS complex certainty.

In addition, signals with ARR-DB were examined further in terms of heartbeat satura-
tion to determine the presence of excessive supraventricular activity, which is associated
with an increased risk of developing atrial fibrillation [43]. The examined signals were
annotated with APC, supraventricular tachyarrhythmia (SVTA), atrial couplets, or atrial
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flutter. As per AAMI standards, all considered heartbeats in the 30-s window derived
from these signals belonged to the class N or S. The beats denoted by S can be referred to
as supraventricular ectopic beats or premature beats. Although ectopic beats are mostly
harmless, recent studies have shown that frequent repetitions of supraventricular ectopic
behavior can indicate the presence of potential atrial abnormalities [44].

The criteria for judging the label of a 30-s rhythm are based on the saturation level of
class S beats. If zero S beats are present, then it is ignored, and if over 50% of the beats are
S with an annotation of a, J, A, S, j, e, or n, it is treated as an AF rhythm. The passage from
heartbeat types to heart rhythms is not necessarily direct. Thus, this rule is to ensure that
only segments consisting of non-isolated beats are treated as AF samples.

Individuals in real scenarios may not always exhibit signs of sustained arrhythmia. It is
possible for a fluctuating pattern between normal rhythms, where relatively shorter (<30 s)
intermittent periods of abnormal heart behavior associated with AF can be observed,
and thereby contributing to AF risk stratification. Excessive ectopic activity can cause
palpitations, light-headedness, and increased awareness of heartbeats [45]. For instance,
patient 232 does not have any AF rhythm annotations, but has frequent ectopic runs. The
cardiologists’ notes associated with the annotated record of patient 232 report the presence
of sick sinus syndrome, which is an abnormality in the right atrium of the heart. To address
this case of potential variability in patients and boost the robustness in classification
performance of the developed model, instances that are not solely NSR but anomalous to a
considerable degree were treated as an AF class instance.

As per the findings of [27,46], a second-order Butterworth filter was applied with
the bandpass frequencies of 8Hz–20Hz for removing baseline drift, motion artifacts and
minimizing other ECG features such as the P and T waves. The signals of the MIT-BIH
Arrhythmia, MIT-BIH NSR, and MIT-BIH AF databases have sampling rates of 360 Hz,
128 Hz, 250 Hz, respectively. Fast Fourier (FFT) resampling is applied to down-sample
the signals to 50 Hz, as the signals from the three MIT-BIH databases have different
original sampling rates. It, therefore, must have the same frequency before any further
processing. The method reported in [46] achieves the highest signal-to-noise ratio and
optimal QRS complex detection on the MIT-BIH databases instead of techniques such as
the Pan Tompkins algorithm [47], and the former method is utilized to produce a list of the
peaks necessary to derive the time-domain HRV features.

PPG signal filtering was conducted with a 3rd order Butterworth filter with 0.5 Hz
and 8 Hz cutoffs to remove powerline interference, motion artifacts, and other saturated
noise [48]. The UMass dataset signals were down-sampled from 128 Hz to 50 Hz using FFT
resampling, similar to the approach executed in [42]. Systolic peak detection in the PPG
signals utilized the algorithm outlined in [49], where two event-related moving averages
with an offset threshold empirically yielded higher accuracy than the alternative techniques
of Billauer [50], Li [48], and Zong [51].

The decision for down-sampling all signals to 50 Hz, instead of up-sampling any
acquired signals to 128 Hz is based on two key factors. Firstly, most PPG based devices
do not have a high sampling rate (~128 Hz), and vary from 60 Hz to 100 Hz based on
the quality of the sensor and the battery levels of the device the sensor is embedded
in. However, the minimum sampling frequency required is 50 Hz to derive reasonably
accurate HRV and PRV parameters with a low margin of error from ECG and PPG signals,
respectively [52,53]. Secondly, the computational overhead is reduced without a significant
effect on the signal acquisition or processing aspects, which can extend the deployment of
the proposed model in this work to resource-constrained wearable devices.

It is to be noted that the systolic peak detection algorithm for PPG signals proposed
in [48] is a modified variant of the QRS peak detection algorithm for MIT-BIH database
ECG signals proposed in [46]. This work performed filtering as per the recommended
cutoff frequencies before applying the algorithm, as mentioned previously in this section.
The general description of the algorithm reported in [46,48] is as follows:
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(i) Consider a filtered signal S[n], consisting of a sequence of n samples over a sampling
period T = 30 s, as input to either the ECG variant of the algorithm or the PPG variant
of the algorithm;

(ii) Detect R peaks in the ECG signals and systolic peaks in the PPG signals through a
combination of potential block generation and thresholding;

(iii) Preprocess PPG systolic peak detection (step skipped for ECG R peak detection in
the squaring phase), where large differences resulting from the systolic peak are
emphasized, while the small differences caused by the diastolic peak, dicrotic notch,
and saturated noise are suppressed;

(iv) In the potential block generation phase, regions of the signal S[n] where peaks are
likely to occur are demarcated in terms of the onset and offset points by two moving
averages MApeak and MAbeat;

(v) MApeak estimates the possible regions of R peak or systolic peak amplitude and
MAbeat represents the amplitude in regions of a full heartbeat (RR peak, or systolic
peak-to-systolic peak);

(vi) The window size W1 of the MApeak is selected based on a healthy adult’s average
duration of a QRS complex (100 milliseconds) or systolic peak (111 milliseconds)
depending on the signal modality. The window size W2 for the MAbeat is selected
based on the average duration of one full heartbeat (525 ms) or systolic peak (667 ms)
in a healthy adult [49]. The defined windows W1 and W2 bound the lower limit TH1
and upper limits of the generated blocks, respectively;

(vii) The specific windowed regions where the amplitude values of MApeak are greater
than MAbeat, are selected as blocks of interest;

(viii) As a signal S[n] can be saturated with noise and motion artifacts during acquisition,
the thresholding phase eliminates blocks that are likely to hinder accurate peak
detection. The threshold α specifies the anticipated width of a block, and any detected
QRS complex or systolic peaks with width less than this threshold is rejected. An
optional parameter β can be added to the threshold to consider minor deviations in
peak width and either tighten or loosen the constraints on a rejected block;

(ix) The output of the algorithm is a list of peak locations and their corresponding times
in milliseconds.

After performing the peak detection algorithm summarized in Algorithm 1, a list of
peak locations and their occurrence times enables the estimation of RR intervals or systolic
peak-to-systolic peak intervals. From the intervals, the time-domain HRV and PRV features
are derived in terms of their statistical characteristics as described in Table 1.

Algorithm 1. Pseudocode of peak detection algorithm and feature detection for dataset D.

FOR xi in D (ECG or PPG data instance from dataset, where i = {0 . . . size(D))
Filtered signal S[n] = BandpassFilter(xi)
Let peaklist = {} (Peak amplitudes)
Let timelist = {} (Peak times)
Let BlocksO f Interest = {}
Let yi = {}
Set W1 = Average ECG or PPG peak duration
Set W2 = Average ECG or PPG beat duration
Set MApeak = MovingAverage(S[n], W1)
Set MAbeat = MovingAverage(S[n], W2)
Set threshold α = W1 + β

FOR n = 1 to length(MApeak)
IF MApeak[n] > MAbeat[n] THEN

BlocksO f Interest[n] = 1
ELSE

BlocksO f Interest[n] = 0
END IF
END FOR
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FOR j = 0 to length(BlocksOfInterest)
IF width(BlocksO f Interest[j]) ≥ α THEN
peaklist[j] = max(BlockOfInterest[j])
timelist[j] = time(BlockOfInterest[j])
ELSE;

reject block
END IF
END FOR
{rMSSD, . . . , pRR50} = Calculate HRV/PRV (peaklist, timelist)
Transformed data instance yi = {rMSSD, . . . , pRR50 }
Save yi to updated dataset D
END FOR

Finally, Z-score normalization is performed on the derived features. All ECG and PPG
datasets signal instances are fixed with zero mean (µ = 0), and unit standard deviation
(σ = 1.) This step mitigates amplitude scaling issues, offset effects, and reduces drastic
variability in the signal values. Table 3 presents total data samples of NSR and AF classes
after pre-processing.

Table 3. Total data Samples of NSR and AF classes after preprocessing.

Dataset NSR AF

ARR-DB(ECG) 2365 190

NSR-DB (ECG) 7736

AF-DB (ECG) 83 5060

Total (ECG) 10,184 5250

UMass-DB (PPG) 192 54

3.4. Model Development

The model developed in this work is a one-dimensional 12-layer CNN for the clas-
sification of NSR and AF. The proposed architecture for the CNN is depicted in Figure 5,
outlining the input tier, model tier, and output tier. The model receives temporal HRV
features extracted from ECG signals as input, propagates them through the neural network,
and outputs a single output indicating whether the input instance belongs to NSR or AF
class. A detailed summary of the CNN properties and parameters is listed in Table 4. The
configuration of the layers and their respective parameters reported were attained after
hyperparameter tuning through GridSearch.

A single model is selected after training and evaluation. It is trained and tested
using the HRV features derived from ECG, and finetuned to classify AF with PRV features
derived from PPG. Due to the inherent similarities between the statistical properties of
HRV and PRV, this approximation makes it possible for a unified AF representation across
two wearable modalities.

There are three types of layers within a CNN: convolutional, pooling, and fully
connected layers. An instantiated convolutional layer detects local conjunctions of features
from a preceding layer which can be either an input layer or another convolutional layer.
The convolutional layer merges semantically similar input features into a single learned
representation. It is to be noted that features in the context of the neural network imply
semantic similarities or overarching patterns detected across the provided inputs (a unified
vector of HRV features). Receptive fields in each convolutional layer focus on different
aspects of the derived features to create their internal representation of the inputs. The
property of shared weights ensures that general features common to all data samples are
learned once and shared with the other convolutional layers in the network. Subsampling
reduces the dimensionality of the data to identify the most significant features. This can
be related to size (spatial) or time sequence (temporal). A set of weighted vectors known
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as a filter/kernel outputs feature maps based on local receptive fields at each layer. These
feature maps usually hold general characteristic information inferred from input feature
data samples at a particular layer by the neural network [54].
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Table 4. Summary of properties for the proposed CNN model.

Layers Type No. of Kernels Kernel Size Parameters

0—1 Conv1D 256 3 Activation = ReLU,
Strides = 1

1–2 BatchNormalization – – –

2–3 Conv1D 128 3 Activation = ReLU,
Strides = 1

3–4 BatchNormalization – – -

4–5 Conv1D 64 3 Activation = ReLU,
Strides = 1

5–6 BatchNormalization – – –

6–7 Conv1D 32 3 Activation = ReLU,
Strides = 1

7–8 BatchNormalization – – –

8–9 Dropout – – Rate = 0.2

9–10 MaxPooling1D – – Pooling Size = 2

– Flatten – – –

10–11 Dense 8 – Activation = ReLU

11–12 Dense 1 – Activation = Sigmoid

Each layer of the proposed CNN architecture and the components of activation and
regularization presented in Figure 5 are described as follows:
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1. Convolutional Layer (Conv1D): In this layer, a convolution operation using Equa-
tion (3) is performed by sliding the filter/kernel over the input features to obtain a
feature map as the output.

cm =
N−1

∑
n=0

fnkm−n (3)

From Equation (3), k, c, f, and N denote the inputs, filter/kernel, the output feature
map, and the number of elements in input k, respectively. In the CNN model devel-
oped for this work, there are four convolutional layers with 256, 128, 64 and 32 filters,
respectively. The filter dimensions used in this layer are 5 × 5, which yielded the
best result.

2. Fully Connected Layer (FC): This layer compiles the results obtained from the preced-
ing convolution and pooling layers to estimate an output classification label using
Equation (4) [55]:

xi = ∑
j

wjiyj + bi (4)

From Equation (4), w and b denote weights and biases, respectively. Here, y is the
output from a previous layer j and x is the output of the current layer i. In the
CNN model developed in this work, there are two fully connected layers, with 8 and
1 neurons, respectively.

3. Pooling Layer (MaxPooling1D): In this layer, the maxpooling operation is a type of
spatial sub-sampling method that decreases the size of the feature maps derived by
the convolutional layers. This is performed to retain only the features contributing
significantly to the internal knowledge representation of the CNN, which is learned
through the training process. In the CNN model developed for this work, there is
1 pooling layer, with 32 filters after the final convolutional layer and the following
dropout layer. The filter dimensions of the pooling size used in this layer are 2 × 2.

4. Activation Functions: This determines the firing threshold of neurons in the hidden
layer based on the weighted sum of input and biases.

• Rectified Linear Unit (ReLU) [56]: This is the activation function that is used in
all three convolutional layers of the network. The Rectified Linear Unit produces
0, as an output x < 0, and then produces a linear output with slope 1, when
x > 0. It introduces non-linearity and mitigates the vanishing gradient problem,
which is where the lower layers of the network train slowly as the gradient of
optimization decreases exponentially. This leads to sparse neuron activation,
more straightforward output, and makes computations easier while preserving
the significant receptive fields of the convolution layers.

• Sigmoid [57]: An activation function used in the second fully connected layer,
with 1 neuron. Sigmoid activation functions are monotonic and differentiable.
Their mathematical property maps real number values to the [0, 1] range to
render the output as a probability, given the particular set of transformed input
HRV features. In this work, the binary classification output of 0 indicates that an
instance belongs to the NSR class, and 1 means that it belongs to the AF class.

5. Regularization [58]: This is a technique to prevent overfitting. Overfitting limits
the ability of the model to predict new data, which means the network has learned
only the specific features of the training set, like memorization, and cannot perform
generalization on similar data. To mitigate this, the following two methods were used
after all four convolutional layers.

• Batch Normalization (BN) [59]: This technique reduces the covariance shift,
meaning that minor features differences that do not contribute heavily to the
overall model performance will not be considered with high priority. Therefore,
minor changes between the ranges of training data, validation data, or unseen
data will not affect the classification performance and allow each layer to be
more independent about certain input features.
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• Dropout (DP) [60]: This technique randomly drops neurons and their connections
to prevent neurons from co-adapting. This makes each neuron more responsible
for capturing the overall data representation and contributing to the final output.
The dropout rate, which reflects the percentage of random neurons to be dropped,
was set to 0.2.

3.5. Training and Testing

The CNN model is trained with the back-propagation algorithm [54] with a mini-
batch of 16. According to [61], taking a subset of the entire data for each epoch improved
generalization performance and had a smaller memory footprint. An epoch is the number
of times the training set passes through a neural network completing a feed-forward and
back-propagation phase. In this work, the total number of epochs was 50. The Adaptive
Moment Estimation (ADAM) [62] optimizer was used for effective training convergence.

From the dataset, 80% was randomly divided for training and validation, and 20%
was used as the test set. The Stratified k-fold cross-validation strategy was implemented
with k = 5 [63]. In each fold, the training and validation subset is randomly divided into
5 equal parts, where with cross-validation, each data instance is used for both training and
validation. Stratified k-fold cross-validation ensures that the class distribution in each of
the five equal parts remains consistent across iterations to address potential biases. This
was conducted to observe the generalizability and variability of the developed model to
reflect its performance with new data. The 20% testing subset serves as the holdout data
that the model has not been trained/validated with.

4. Results

This section describes the environment setting, reports the achieved diagnostic perfor-
mance measures of the proposed convolutional model neural network on the ECG training
data and unseen PPG data. To assess the implementation feasibility of the developed
model, it was interfaced with a smartphone application and integrated within a health
monitoring context.

4.1. Implementation Environment

The proposed CNN algorithm was implemented on a workstation with Windows OS,
an Intel Kabylake 2.80GHz processor (i7-7700HQ), and 16 GB of RAM. The time required
for training and testing the CNN model with 50 epochs was approximately 4420.67 s. The
deep learning platform employed in this work was Keras [64], a high-level neural networks
framework with a Tensorflow backend [65]. The Waveform-Database Package (WFDB)
published by Physionet was used to directly access the MIT-BIH Arrhythmia dataset [35],
consisting of heart rhythm samples and their respective annotations. The Sklearn module
was used for data preprocessing and normalization operations [66]. Neurokit (NK), a
toolbox for statistics and neurophysiological signal processing, was used to extract the
ECG and PPG time-series features [67].

4.2. Model Evaluation on ECG Datasets

The diagnostic performance measures of accuracy, sensitivity, specificity, F1-score,
and AUC are evaluated on a holdout test set in each of the five folds. Accuracy is the
proportion of true outputs with respect to all data instances. Sensitivity is the model’s
ability to classify data instances belonging to a certain class correctly. Specificity is the
model’s ability to correctly distinguish data instances that do not belong to specific classes.
F1-score is the harmonic mean between precision (ratio of correctly distinguished positives
over all predicted positive) and recall (sensitivity), and the area under the curve (AUC)
measures the quality of binary classification outputs in terms of sensitivity against false
positive rate. To develop high-fidelity biomedical models as the proposed approach, high
sensitivity and specificity are vital. They gauge the model’s ability to correctly detect
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patients with a certain cardiac arrhythmia and correctly detect patients without cardiac
arrythmia [68].

To calculate the measures as in Equation (5), the model classification outputs must be
quantified in terms of True Positives (TP), False Positives (FP), False Negatives (FN) and
True Negatives (TN) [69].

Accuracy = TPNSR+TNNSR
TPNSR+TNNSR+FPNSR+FNNSR

Sensitivity = TPNSR
TPNSR+FNNSR

Speci f icity = TNNSR
TNNSR+FPNSR

F1Score = TPNSR
TPNSR+(0.5∗(FPNSR+FNNSR))

(5)

Let Yi
j be the data instances where i is the true class, j is the predicted class, and

i, j ∈ {NSR, AF}. Consider the class AF signifying atrial fibrillation rhythms, and then, its
outputs are defined as follows:

• TPAF = YAF
AF , denotes data instances correctly classified as AF;

• FPAF = YNSR
AF , denotes data instances incorrectly classified as AF;

• FNAF = YAF
NSR, denotes data instances incorrectly classified as non-AF classes;

• TNAF = Yij, denotes i, j 6= AF, denotes data instances correctly classified as non-
AF classes.

The aggregated scores across all 5 folds are summarized in Table 5, and exhibit a
high AF classification performance. The true positive (TPAF) rate is 96.90%, and the true
negative TNAF rate is 95.13%.

Table 5. Aggregated classification metrics across five-folds expressed as mean and standard deviation.

Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%) AUC (%)

95.50 ± 0.2 94.50 ± 1.8 96.00 ± 0.7 93.36 ± 0.4 95.3 ± 0.5

4.3. Model Evaluation on PPG Dataset

While evaluating the model on the PPG dataset, two scenarios are considered. In the
first scenario, the weights of the pre-trained model were not updated through transfer
learning. In the second scenario, the model was finetuned by retraining the PPG signals.

In the first scenario, the model correctly classified 170 out of 192 samples of NSR, and
42 out of 54 samples as AF. The true positive (TPAF) rate is 77.80%, and the true negative
(TNAF) rate is 88.54%. The measures reported in Table 6 serves as an initial benchmark
test to gauge the performance of the ECG HRV trained on PPG data that have not been
encountered during training or validation by the CNN model.

Table 6. Performance measures of the ECG-trained model on the complete UMass-DB PPG signals
before transfer learning.

Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%) AUC (%)

86.00 77.80 88.54 72.00 83.16

In the second scenario, the learned weights of the model are updated by using 75% of
UMass-DB for (60%) training and (15%) validation, with 25% for holdout testing, following
the Stratified k-fold cross-validation with k = 4. By employing this approach, the intention
is to adapt the weights of the pre-trained CNN model with 75% of the PPG data instances,
test its performance on the remaining 25% of the untrained PPG data instances. This
was applied four separate times, such that every instance is used for training, validation,
and testing independently without data leakage between the training/validation and the
testing sets. The aggregated testing performance is reported in Table 7, where the model
makes predictions on all instances fairly.
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Table 7. Performance measures of the ECG-trained model on UMass-DB PPG signals after transfer
learning folds expressed as mean and standard deviation.

Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%) AUC (%)

95.10 ± 2.9 94.6 ± 2.4 95.20 ± 6.5 89.34 ± 1.8 94.9 ± 4.10

After retraining, the average true positive (TPAF) rate is 94.33% and the average true
negative TNAF rate is 95.20%.

This performance is considerably high as the model classifies instances from a different
input modality (PPG), when it was trained using only ECG signals. A marginal increase
in performance is observed when transfer learning is implemented. Type I and type II
errors were also observed, at a lower degree, resulting in AF false positives and AF false
negatives, as shown by the results in Tables 6 and 7. This indicates that the boundaries
between the NSR and AF to a certain extent are not clearly distinct in both the ECG and
PPG recordings. Factors, such as PPG sensor specifications, reliability, and quality, may
contribute to the decreased classification measures compared to the training performance.
It is to be noted that both the ECG training samples and the PPG samples were resampled
using FFT at 50 Hz, 100 Hz, 128 Hz, 250 Hz and 360 Hz, corresponding to the different
sampling rates of the original dataset recordings to see the differences in the achieved
results. The conducted empirical experiments found that 50 Hz for all recordings yielded
relatively similar performance when classifying PPG signals as ~128 Hz (the minimum
sampling rate across all datasets).

4.4. Implementation and Testing

In addition to the validation conducted in Section 4.3, a prototype implementation was
further developed and tested on live human subjects. The developed model was integrated
within a health monitoring platform to test and ascertain its real-world performance. A
smartphone application was designed to acquire PPG recordings, interface with the model,
and retrieve predictions of AF from human subjects.

The system that implements the proposed CNN model presented in this work was
realized by following the three-tier architecture for modularity, scalability, and testing. The
model was deployed via a Python Flask [70] server with a Google Firestore [71] database
on the same workstation. Figure 6 presents the smartphone application collecting the input
from the sensor, i.e., raw PPG heart rhythm values and sending an HTTP POST request to
the REST API server containing the recorded heart rhythm values. The smartphone appli-
cation receives a response from the server (end-to-end response time ≈ 1.25 s) indicating
whether the recording was NSR or AF.
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The PPG signals from most variations of optical sensors available in general-purpose
smartphones and wearable devices can be used in the classification of AF after applying
the techniques of filtering, down-sampling, peak detection, PRV extraction as outlined
in Section 3.3. The specifications of the particular sensor used in this implementation are
listed in Table 8 and have a maximum frequency of 100.0 Hz. The sensor type is 65,572 and
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is manufactured by MAXIM. The heart rate monitor LED measures the magnitude of the
red light reflected from an individual’s blood vessels at the measurement location, in the
range of 0–350,000 (unitless). It operates on a 3.0 V to 5.5 V single supply voltage, with
dimensions of 2.9 mm × 4.3 mm × 1.4 mm, and is integrated into portable or wearable
devices. The devices used in the experiments were the Samsung S9, Samsung Note 8, and
Samsung Note 9. M. Elgendi et al. [72] used Samsung 9th generation smartphones, the
same ones used in this work.

Table 8. Sensor specifications for the smartphones used in this experiment.

Name Vendor Range Voltage (V) Type

HRMLED RED MAXIM 0–350,000 3.0 V–5.5 V 65,572

The prototype implementation was successfully verified on the human subjects with
the complete flow from signal acquisition to live AF classification following the same
preprocessing techniques for filtering and resampling used for the UMass-DB PPG signals.

The human subjects were classified into healthy human subjects with no reported
medical conditions, while the other was a heart patient from the Welcare Hospital Ernaku-
lam, India. To record the heart rhythm, the subject is required to position their fingertip
on the smartphone’s heart rate sensor. Upon the detection of the PPG input signal, the
smartphone application initiates the PPG value acquisition process. The healthy subject
continues to hold their fingertip in place for 30 s, and then, the signal is transmitted to
the server. The model classified one of the short length heart rhythms obtained at rest as
NSR, as shown in Figure 7a. The heart patients’ vitals are supervised through a bedside
monitor by the doctor. Upon detecting an oncoming abnormality on the monitor, the
patient is asked to place their finger on the smartphone and record a PPG signal. The result
is shown in Figure 7b. The classification is saved in the cloud database under a specific
entry for each subject, and the REST API server processes and responds to each acquired
signal. This allows subjects and doctors to access historical records of the subject heart
activity regularly.
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The healthy subject underwent a Treadmill Stress Test in the clinical laboratory to
observe the similarity in heartbeats and peak formations between an ECG and the PPG
peak detection algorithm used in this work. The Treadmill Stress Test uses medical-grade
multi-lead ECG to capture heart activity to measure cardiovascular health. A reference
ECG signal was simultaneously collected to validate the PPG signal obtained from the
smartphone sensors for the same 30 s. The resulting waveforms are shown in Figure 8a,b.
Both Figure 8a,b estimate the same BPM, indicating potential consistency in the number of
detected peaks.
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5. Discussion

This study explored the efficiency of using convolutional neural networks to classify
short-length heart rhythms using the concept of HRV-derived features to generalize AF
representation across both the ECG and PPG modality. In this paper, the proposed model
is compared and contrasted with similar works in the literature. The primary contributions
of this research are highlighted in the following subsections.

5.1. Comparison with Existing Works

Table 9 presents recent advances in the literature for short-length cardiac arrhythmia
detection using one or more HRV features with applicability in portable devices.

Zhou et al. [17] employed a modified version of the Shannon entropy algorithm
for AF detection by constructing symbolic sequences and probability distributions using
ECG-based R-R intervals from the MIT AF database. This statistical approach was one
of the first studies to discuss the possibility of deploying such approaches in portable
devices. Islam et al. [73] presented a rhythm-based heartbeat normalization technique
for improved ECG-based AF detection by measuring irregularities in a specified window
of heartbeats. The datasets used for training and testing were the MIT-BIH AF database
and MIT-BIH Arrhythmia, respectively. Cui et al. [18] proposed a similarity analysis and
ensemble scheme that maps R-R intervals to binary symbolic sequences and compares
the rank-frequencies to quantify the differences between AF and NSR using the ECG-
based MIT-BIH AF database. Shashikumar et al. [74] presented one of the first and few
works proposing cross-domain generalizability of cardiac arrhythmia models and used
Bidirectional Recurrent Neural Network for AF detection from a single lead ECG. The
researchers collected the ECG dataset from the University of Virginia Heart Station, United
States, for training and collected the PPG dataset from the Emory Hospital and Grady
Memorial Hospital, Atlanta, United States, for testing. They reported high classification
performance for the cross-domain application using spectral features and R-R time series
features with wavelet decomposition. Bashar et al. [75] utilized support vector machines
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on 30-s-long PPG signals for AF and NSR detection. They trained and tested on a custom-
made PPG dataset and addressed noise saturation by using Butterworth filters. Tarniceriu
et al. [76] implemented Markov models to detect AF and NSR by using R-R intervals as
features and collected a dataset with a custom wearable prototype. Aliamiri et al. [77]
employed an end-end deep learning PPG-based AF detection system that filters poor
quality signals. They developed a convolution-recurrent hybrid model using waveform
features on a custom-made PPG dataset that could effectively distinguish between AF and
NSR. Tison et al. [78] conducted one of the first large-scale studies for passive AF detection
using PPG-enabled smartwatches in collaboration with the University of California, San
Francisco and Cardiogram. Cardiogram is an Apple watch application used to obtain heart
rate data. The researchers used these collected data to implement a deep neural network
with heuristic pretraining and R-R intervals as a feature set. Fallet et al. [79] utilized
decision trees with waveform features and RR-intervals to classify AF and ventricular
arrhythmia in 10-s-long PPG signals. The researchers created a PPG signal dataset from
Lausanne University Hospital Switzerland and used a custom wearable prototype to test
their results. Kwon et al. [80] employed a 1D CNN to process 30-s-long PPG signals to
classify AF and NSR with a custom-made dataset.

Table 9. A comparison of recent works developed for CVD detection with machine learning and portable devices.

Author (Year) Features Approach Modality Accuracy (%) Sensitivity (%) Specificity (%)

This work Temporal HRV Convolutional
Neural Networks

ECG; PPG ECG = 95.50 ECG = 94.50 ECG = 96.00
PPG = 95.10 PPG = 94.60 PPG = 95.20

Zhou et al. [17]
(2015) R-R intervals Shannon Entropy ECG 97.89 97.37 98.44

Cui et al. [18] (2017) R-R intervals Ensemble Model ECG 97.78 97.04 96.97

Shashikumar et al.
[74] (2018)

R-R Intervals and
waveform features

Bidirectional
Recurrent Neural

Networks
ECG; PPG ECG = 94.00

PPG = 95.00 - ECG = 95.00
PPG = 100.00

Bashar et al. [75]
(2018)

R-R intervals and
waveform features

Support Vector
Machines PPG 91.16 - -

Tarniceriu et al. [76]
(2018) R-R Intervals Markov Model PPG - 98.45 99.13

Aliamiri et al. [77]
(2018) Waveform features

Convolutional
Recurrent Neural

Networks
PPG 98.19 - -

Tison et al. [78]
(2018) R-R Intervals Neural Network PPG - 98.00 90.20

Fallet et al. [79]
(2019)

R-R intervals and
waveform features Decision Trees PPG 95.00 92.90 96.20

Kwon et al. [80]
(2019) R-R intervals Convolutional

Neural Network PPG 97.58 99.32 95.85

The performance measures obtained in this work are competitive with the works
reported previously. The existing research has achieved successful results in the domain,
however, has a few limitations that the proposed approach in this paper addresses. Firstly,
the PPG datasets are not gold-standard and are not publicly accessible to reproducible and
further testing. In this work, the reputed MIT-BIH datasets are utilized for implementing
a cross-domain generalizable model. The input features of HRV captures a holistic rep-
resentation of cardiac activity, as they are the most consistent medium of commonality
between ECG and the PRV aspect of PPG signals. Secondly, existing models trained on
ECG signals cannot be applied to predict PPG directly due to the differences in their mor-
phology. In most of the works, ECG-based models can only work with portable devices
having ECG sensors, and the PPG based-models require custom wearable prototypes
or hospital settings, except in [78]. Thirdly, the developed models are not trained with
multiple datasets or assessed on unseen data, lowering the likelihood of being applicable
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in non-ambulatory settings. Lastly, this work provides a supplementary approach, wherein
the time-domain HRV representations are extracted from larger public datasets instead of
raw signals, which extends the applicability to both ECG and PPG derived from clinical
devices or consumer wearables.

5.2. Research Impact

This work presents a generalizable approach that has the potential for sensor agnostic
CVD classification. The model is trained on data acquired from the source ECG modality
and finetuned by updating the learned parameters using data from the target PPG modality.
There were 15,434 instances from the ECG datasets of both NSR and AF for training the
model, while there were only 192 total instances from the PPG dataset. Through the
development of models with large cohorts of data in the related domain of ECG and the use
of transfer learning, the issue of limited, gold-standard data accessibility from consumer
wearable devices can be resolved. This can enable healthcare providers to leverage such
devices in conjunction with cardiac arrhythmia classification models for non-ambulatory
cardiovascular prognosis in the general population.

Smart healthcare platforms are holistic systems that enable disease prevention, moni-
toring, diagnosis, and treatment and connect patients with medical professionals. These
are significant risk factors for the progression of CVD in patients. Repeated detection of
any cardiovascular impairments as indicated by the AF in this work can prompt a clinical
checkup, thereby allowing for early treatment and outcome improvement. A systematic
survey by Majumder et al. [81] of 11 smartphone cardiac monitoring applications showed
that the majority of them used simple, static heart rate threshold-based risk stratification.
Furthermore, the existing solutions were not designed to be part of a monitoring system
that can interface with clinicians but rather limited to the device only within the scope
of the testing setting. Kakria et al. [82] proposed a real-time cardiac health monitoring
system with a patient and doctor portal for effective monitoring using a custom Bluetooth
wearable device and smartphone. However, medical alerts sent to patients and users lacked
specificity, as any heartbeat above or below a threshold is flagged as abnormal. Moreover,
there were no considerations for noise saturation or adaptability to signals other than PPG.
In resource-constrained settings such as inexpensive fitness bands, extracting only the
features necessary instead of complete raw signal samples can prove to be more efficient,
as demonstrated in this work.

A possible limitation stems from the fact that there appears to be an overlap between
the samples of each class. This could be due to the differences in resting heart rates across
individuals, general fitness levels, and the influence of underlying health conditions. A
direct approach to boost the model’s performance is to incorporate additional real ECG
samples from more reputable datasets. Finally, spectral and non-linear HRV measures [83]
can be added to the feature space to capture more robust representations of each class.

6. Conclusions

This work proposed a design and implementation of an explainable deep learning
1D-CNN model for use in smart healthcare systems with general-purpose devices such
as smart wearables and smartphones. The 1D-CNN model classifies the NSR and AF
from short length ECG or PPG signals using HRV features as inputs with the MIT-BIH
ECG datasets.

The 1D-CNN model achieved overall classification performances with accuracy of
95.50%, sensitivity: 94.50%, specificity: 96.00%, F1-score: 93.40%, and AUC: 95.30% across
a five-fold cross-validation approach. In comparison to other works in the literature, these
performance measures are highly competitive and can be integrated into mobile health
monitoring platforms with general-purpose devices. Thereby, the proposed approach
is one of the first works to develop a cross-domain generalizable ECG-based model for
deployment in smartphones and wearable devices.
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Furthermore, the proposed methodology removes noise and motion artifacts from
commercial PPG-sensors within a framework for health monitoring, thereby making early
detection systems accessible for the general public. This approach brings to the forefront
the applicability of ECG databases to enable machine learning to transform the PPG sensor
readings from commercial devices. This can mitigate the issues of developing classification
models that can only be used in controlled settings as well as increase the types of cardiac
arrhythmia that can be observed from general-purpose devices and eliminate difficulties
associated with creating custom PPG datasets for each study.

Subsequent research directions involve conducting a longitudinal study for exhaus-
tive testing with users to attain additional empirical evidence supporting the real-world
applicability of this approach, benchmarking the model against further gold-standard
datasets, and extending the scope of the health monitoring framework.
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