Skip to main content
. Author manuscript; available in PMC: 2021 Nov 12.
Published in final edited form as: Biometrics. 2020 Jul 25;77(2):519–532. doi: 10.1111/biom.13330

TABLE 3.

Performance of ELCIC under multiple robust estimators and WGEE estimators with an independent correlation structure: percentages of selecting six candidate models across 500 Monte Carlo data are summarized

Setups Method x 1 x1, x2, x3, x4, x5 x 2 x1, x2 x1, x2, x3 x1, x2, x4, x5
n = 400 WGEE_100 0.174 0 0.272 0.538 0.014 0.002
m = 0.3 WGEE_010 0.192 0 0.298 0.496 0.01 0.004
MULTI_100 0.142 0 0.248 0.6 0.01 0
MULTI_111 0.142 0 0.254 0.596 0.008 0
MULTI_010 0.138 0 0.256 0.596 0.01 0
MULTI_011 0.14 0 0.252 0.6 0.008 0
n = 700 WGEE_100 0.042 0 0.104 0.85 0.004 0
m = 0.3 WGEE_010 0.052 0 0.118 0.818 0.008 0.004
MULTI_100 0.018 0 0.068 0.906 0.008 0
MULTI_111 0.022 0 0.07 0.904 0.004 0
MULTI_010 0.02 0 0.068 0.908 0.004 0
MULTI_011 0.02 0 0.072 0.904 0.004 0
n = 400 WGEE_100 0.408 0 0.402 0.186 0 0.004
m = 0.5 WGEE_010 0.448 0 0.424 0.12 0.004 0.004
MULTI_100 0.276 0 0.292 0.428 0.002 0.002
MULTI_111 0.276 0 0.296 0.422 0.004 0.002
MULTI_010 0.272 0 0.302 0.422 0.002 0.002
MULTI_011 0.276 0 0.296 0.422 0.004 0.002
n = 700 WGEE_100 0.31 0.002 0.29 0.388 0.01 0
m = 0.5 WGEE_010 0.396 0.002 0.348 0.244 0.01 0
MULTI_100 0.098 0.002 0.12 0.764 0.012 0.004
MULTI_111 0.096 0.002 0.122 0.764 0.012 0.004
MULTI_010 0.102 0.002 0.114 0.762 0.016 0.004
MULTI_011 0.1 0.002 0.122 0.756 0.016 0.004

Notes. The model containing the covariates {x1, x2} is the true model.