TABLE 3.
Performance of ELCIC under multiple robust estimators and WGEE estimators with an independent correlation structure: percentages of selecting six candidate models across 500 Monte Carlo data are summarized
| Setups | Method | x 1 | x1, x2, x3, x4, x5 | x 2 | x1, x2 | x1, x2, x3 | x1, x2, x4, x5 |
|---|---|---|---|---|---|---|---|
| n = 400 | WGEE_100 | 0.174 | 0 | 0.272 | 0.538 | 0.014 | 0.002 |
| m = 0.3 | WGEE_010 | 0.192 | 0 | 0.298 | 0.496 | 0.01 | 0.004 |
| MULTI_100 | 0.142 | 0 | 0.248 | 0.6 | 0.01 | 0 | |
| MULTI_111 | 0.142 | 0 | 0.254 | 0.596 | 0.008 | 0 | |
| MULTI_010 | 0.138 | 0 | 0.256 | 0.596 | 0.01 | 0 | |
| MULTI_011 | 0.14 | 0 | 0.252 | 0.6 | 0.008 | 0 | |
| n = 700 | WGEE_100 | 0.042 | 0 | 0.104 | 0.85 | 0.004 | 0 |
| m = 0.3 | WGEE_010 | 0.052 | 0 | 0.118 | 0.818 | 0.008 | 0.004 |
| MULTI_100 | 0.018 | 0 | 0.068 | 0.906 | 0.008 | 0 | |
| MULTI_111 | 0.022 | 0 | 0.07 | 0.904 | 0.004 | 0 | |
| MULTI_010 | 0.02 | 0 | 0.068 | 0.908 | 0.004 | 0 | |
| MULTI_011 | 0.02 | 0 | 0.072 | 0.904 | 0.004 | 0 | |
| n = 400 | WGEE_100 | 0.408 | 0 | 0.402 | 0.186 | 0 | 0.004 |
| m = 0.5 | WGEE_010 | 0.448 | 0 | 0.424 | 0.12 | 0.004 | 0.004 |
| MULTI_100 | 0.276 | 0 | 0.292 | 0.428 | 0.002 | 0.002 | |
| MULTI_111 | 0.276 | 0 | 0.296 | 0.422 | 0.004 | 0.002 | |
| MULTI_010 | 0.272 | 0 | 0.302 | 0.422 | 0.002 | 0.002 | |
| MULTI_011 | 0.276 | 0 | 0.296 | 0.422 | 0.004 | 0.002 | |
| n = 700 | WGEE_100 | 0.31 | 0.002 | 0.29 | 0.388 | 0.01 | 0 |
| m = 0.5 | WGEE_010 | 0.396 | 0.002 | 0.348 | 0.244 | 0.01 | 0 |
| MULTI_100 | 0.098 | 0.002 | 0.12 | 0.764 | 0.012 | 0.004 | |
| MULTI_111 | 0.096 | 0.002 | 0.122 | 0.764 | 0.012 | 0.004 | |
| MULTI_010 | 0.102 | 0.002 | 0.114 | 0.762 | 0.016 | 0.004 | |
| MULTI_011 | 0.1 | 0.002 | 0.122 | 0.756 | 0.016 | 0.004 |
Notes. The model containing the covariates {x1, x2} is the true model.