Skip to main content
. 2021 Oct 22;26(21):6392. doi: 10.3390/molecules26216392

Table 3.

The application of polymeric nanoparticles for antibiofilm treatment.

Nanoparticle Type Average Size Infection Model The Microorganisms Tested Antibiofilm Efficacy Reference
Algal polysaccharides About 10 nm P. aeruginosa infection in rat skin P. aeruginosa, S. aureus, S. mutans, and S. enterica Biofilm elimination by 60% El-Deeb et al. [140]
PLGA 151 nm Biofilm under the flow condition E. coli A 20-fold reduction of bacterial colony Zhang et al. [141]
PLGA 240 nm Biofilm-infected skin wound in diabetic mice MRSA Elimination of biomass by 67% Hasan et al. [143]
Hyaluronic acid 174−194 nm P. aeruginosa abscess model in mice P. aeruginosa A 4-fold reduction of bacterial colony in abscess Kłodzińska et al. [145]
PLGA and chitosan 230 nm MRSA-infected full-thickness wound in mice MRSA A 80% reduction of bacterial colony in skin wound Wu et al. [146]
PLGA, PCL, and chitosan 217−263 nm Ex vivo model of biofilm on pig skin P. aeruginosa and S. aureus More than 99% of bacteria is killed Permana et al. [149]
PCL 199 nm Ex vivo model of biofilm on pig skin P. aeruginosa, S. aureus and MRSA A 88−100% killing of bacterial aamount Mir et al. [150]
Alginate 179 nm Ex vivo model of biofilm on pig skin P. aeruginosa A reduction of bacterial viability in biofilm Singh et al. [152]

MRSA, methicillin-resistant Staphylococcus aureus; PCL, poly(ε-caprolactone); PLGA, poly(lactic-co-glycolic) acid.