Skip to main content
. Author manuscript; available in PMC: 2022 Jul 1.
Published in final edited form as: Chemosphere. 2021 Feb 22;275:130055. doi: 10.1016/j.chemosphere.2021.130055

Table 3.

The recent drugs and pesticide adsorption onto carbon nanotubes and graphene-based adsorbents.

Adsorbent Adsorbate Adsorption conditions Adsorption isotherm Adsorption kinetic qmax (mg g−1) Adsorption mechanism Reference
GOa Ciprofloxacin pH = 7.0
C0 = 5 mg L−1
V = 100 mL, m = 50 mg
T = 298 K, t = 50 min
Langmuir Pseudo-second-order 18.65 Hydrogen bond Yadav et al. (2018)
GO Norfloxacin pH = 7.0
C0 = 5 mg L−1
V = 100 mL, m = 50 mg
T = 298 K, t = 50 min
Langmuir Pseudo-second-order 24.93 Hydrogen bond Yadav et al. (2018)
GO Ofloxacin pH = 4.0
C0 = 5 mg L−1
V = 100 mL, m = 50 mg
T = 298 K, t = 50 min
Langmuir Pseudo-second-order 40.65 Hydrogen bond Yadav et al. (2018)
GO Ciprofloxacin pH = 6.0
C0 = − mg L−1
V = 10 mL, m = 10 mg
T = 299 K, t = 100 min
Hill Toth Elovich 173.4 Cation-π bonding π-π interaction Rostamian and Behnejad (2018)
GO Doxycycline pH = 6.0
C0 = − mg L−1
V = 10 mL, m = 10 mg
T = 299 K, t = 200 min
Hill Toth Pseudo-second-order 131.9 Cation-π bonding π-π interaction Rostamian and Behnejad (2018)
GO Tetracycline pH = 6.0
C0 = − mg L−1
V = 10 mL, m = 10 mg
T = 299 K, t = 200 min
HillToth Pseudo-second-order 96.98 Cation-π bonding π-π interaction Rostamian and Behnejad (2018)
GO Sodium diclofenac pH = 6.2
C0 = 10 mg L−1
V = − mL, m = 250 mg L−1
T = 298 K, t = 300 min
Langmuir Pseudo-second-order 128.74 Electrostatic attraction Hydrogen bond Hydrophobic interaction π-π bond Guerra et al. (2019)
GO Metformin pH = 6.26
C0 = 521 mg L−1
V = − mL, m = 126.02 mg L−1
T = 318.5 K, t = − min
SipsHill Pseudo-first-order 122.61 Van der Waals forces π-π interactions Balasubramani et al. (2020)
GO Cephalexin pH = 7.0
C0 = 100 mg L−1
V = 25 mL, m = 10 mg
T = 298 K, t = 420 min
Langmuir Pseudo-second-order 164 ____ Wernke et al. (2020)
GO Trimethoprim pH = 8.0
C0 = 50 mg L−1
V = − mL, m = 15 mg
T = 298 K, t = 60 min
Freundlich Pseudo-second-order 204.08 Cation-π and π-π dispersion interactions Çalışkan Salihi et al. (2020)
GO Isoniazid pH = 2.0
C0 = 25 mg L−1
V = − mL, m = 15 mg
T = 298 K, t = 60 min
Langmuir Intraparticle diffusion 13.89 Electrostatic attraction Çalışkan Salihi et al. (2020)
GO Norfloxacin pH = 7.0
C0 = 30 mg L−1
V = 10 mL, m = 200 mg L−1
T = 303 K, t = 30 min
Sips Pseudo-second-order 374.9 Van der Waals forces π-π interaction Hydrogen bond Moreira et al. (2020)
GO Naproxen pH = 4.0
C0 = 10 mg L−1
V = − mL, m = 30 mg
T = 298 K, t = 60 min
Dubinin-Radushkevich Pseudo-second-order 15.16 Chemical adsorption Ciğeroğlu et al. (2020)
PGb Atenolol pH = 7.5
C0 = 10 mg L−1
V = 20 mL, m = 5 mg
T = 295 K, t = 120 min
Toth Pseudo-first-order 1455.4 Physical adsorption Khalil et al. (2020)
PG Carbamazepine pH = 7.5
C0 = 10 mg L−1
V = 20 mL, m = 5 mg
T = 295 K, t = 120 min
Freundlich Pseudo-second-order 191.67 Physical adsorption Khalil et al. (2020)
PG Ciprofloxacin pH = 7.5
C0 = 10 mg L−1
V = 20 mL, m = 5 mg
T = 295 K, t = 120 min
Temkin Pseudo-second-order 409.15 Physical adsorption Khalil et al. (2020)
PG Diclofenac pH = 7.5
C0 = 10 mg L−1
V = 20 mL, m = 5 mg
T = 295 K, t = 120 min
Sips Pseudo-second-order 91.59 Physical adsorption Khalil et al. (2020)
PG Gemfibrozil pH = 7.5
C0 = 10 mg L−1
V = 20 mL, m = 5 mg
T = 295 K, t = 120 min
Sips Pseudo-second-order 160.86 Physical adsorption Khalil et al. (2020)
PG Ibuprofen pH = 7.5
C0 = 10 mg L−1
V = 20 mL, m = 5 mg
T = 295 K, t = 120 min
Langmuir Pseudo-second-order 110.30 Physical adsorption Khalil et al. (2020)
GO-ILc Sulfamethoxazole pH = 6.28
C0 = 10 mg L−1
V = 10 mL, m = 0.9 g L−1
T = 299 K, t = 60 min
Freundlich Pseudo-second-order 27.25 Hydrophobic interaction π-π interaction Hydrogen bond Electrostatic attraction Ogunleye et al. (2020)
GO Carbamazepine pH = 2.0
C0 = 50 mg L−1
V = − mL, m = 10 mg
T = 299 K, t = 30 min
Langmuir Pseudo-second-order 28.54 π-π interactions Hydrophobic interaction Lawal et al. (2020)
GO-IL Carbamazepine pH = 2.0
C0 = 50 mg L−1
V = − mL, m = 10 mg
T = 299 K, t = 10 min
Redlich-Peterson Pseudo-second-order 61.88 π-π interactions Hydrophobic interaction Lawal et al. (2020)
GO Ketoprofen pH = 4.0
C0 = 50 mg L−1
V = − mL, m = 10 mg
T = 299 K, t = 30 min
Langmuir Pseudo-second-order 16.45 π-π interactions Hydrophobic Interaction Electrostatic attraction Lawal et al. (2020)
GO-IL Ketoprofen pH = 8.0
C0 = 50 mg L−1
V = − mL, m = 10 mg
T = 299 K, t = 10 min
Redlich-Peterson Pseudo-second-order 87.88 π-π interactions Hydrophobic interaction Electrostatic attraction Lawal et al. (2020)
GO Sulfamethoxazole pH = 4.0
C0 = 50 mg L−1
V = − mL, m = 10 mg
T = 299 K, t = 30 min
Langmuir Pseudo-second-order 21.33 π-π interactions Hydrophobic Interaction Electrostatic attraction Lawal et al. (2020)
GO-IL Sulfamethoxazole pH = 6.0
C0 = 50 mg L−1
V = − mL, m = 10 mg
T = 299 K, t = 10 min
Redlich-Peterson Weber-Morris 99.16 π-π interactions Hydrophobic Interaction Electrostatic attraction Lawal et al. (2020)
MWCNTd Propranolol pH = 6.5
C0 = 25 mg L−1
V = 40 mL, m = 10 mg
T = 299 K, t = 30 min
Sips Pseudo-second-order 380.22 π-π EDA interaction Hydrophobic interaction Hydrogen bond Nie et al. (2020)
N-CNTe Dimetridazole pH = 7.0
C0 = − mg L−1
V = 40 mL, m = 10 mg
T = 299 K, t = 40 min
____ ____ 40.93 π-π dispersive interactions Electrostatic interaction hydrophobic interactions Carrales-Alvarado et al. (2020)
SWCNTf Dimetridazole pH = 7.0
C0 = − mg L−1
V = 40 mL, m = 10 mg
T = 299 K, t = 40 min
____ ____ 81.86 π-π dispersive interactions Electrostatic interaction hydrophobic interactions Carrales-Alvarado et al. (2020)
MWCNT Dimetridazole pH = 7.0
C0 = − mg L−1
V = 40 mL, m = 10 mg
T = 299 K, t = 40 min
____ ____ 45.16 π-π dispersive interactions Electrostatic interaction hydrophobic interactions Carrales-Alvarado et al. (2020)
MWCNT-COOHg Dimetridazole pH = 7.0
C0 = − mg L−1
V = 40 mL, m = 10 mg
T = 299 K, t = 40 min
____ ____ 32.46 π-π dispersive interactions Electrostatic interaction hydrophobic interactions Carrales-Alvarado et al. (2020)
N-CNT Metronidazole pH = 7.0
C0 = − mg L−1
V = 40 mL, m = 10 mg
T = 299 K, t = 40 min
____ ____ 56.49 π-π dispersive interactions Electrostatic interaction hydrophobic interactions Carrales-Alvarado et al. (2020)
SWCNT Metronidazole pH = 7.0
C0 = − mg L−1
V = 40 mL, m = 10 mg
T = 299 K, t = 40 min
____ ____ 100.98 π-π dispersive interactions Electrostatic interaction hydrophobic interactions Carrales-Alvarado et al. (2020)
MWCNT Metronidazole pH = 7.0
C0 = − mg L−1
V = 40 mL, m = 10 mg
T = 299 K, t = 40 min
____ ____ 46.21 π-π dispersive interactions Electrostatic interaction hydrophobic interactions Carrales-Alvarado et al. (2020)
MWCNT-COOH Metronidazole pH = 7.0
C0 = − mg L−1
V = 40 mL, m = 10 mg
T = 299 K, t = 40 min
____ ____ 46.21 π-π dispersive interactions Electrostatic interaction hydrophobic interactions Carrales-Alvarado et al. (2020)
MWCNT-OHh Sulfanilamide pH = 3.0
C0 = 20 mg L−1
V = 50 mL, m = 1 g L−1
T = 298 K, t = 20 min
Langmuir General order 67.15 Electrostatic attraction Hydrogen bond EDA interaction Lewis acid-base interaction Liu et al. (2020)
MWCNT-OH Sulfamerazine pH = 3.0
C0 = 20 mg L−1
V = 50 mL, m = 1 g L−1
T = 298 K, t = 20 min
Liu Pseudo-second-order 115.74 Electrostatic attraction Hydrogen bond EDA interaction Lewis acid-base interaction Liu et al. (2020)
MWCNT-OH Sulfadimethoxine pH = 3.0
C0 = 20 mg L−1
V = 50 mL, m = 1 g L−1
T = 298 K, t = 20 min
Langmuir General order 128.62 Electrostatic attraction Hydrogen bond EDA interaction Lewis acid-base interaction Liu et al. (2020)
MWCNT-OH Sulfadiazine pH = 3.0
C0 = 20 mg L−1
V = 50 mL, m = 1 g L−1
T = 298 K, t = 20 min
Langmuir General order 132.33 Electrostatic attraction Hydrogen bond EDA interaction Lewis acid-base interaction Liu et al. (2020)
MWCNT-OH Sulfamethazine pH = 3.0
C0 = 20 mg L−1
V = 50 mL, m = 1 g L−1
T = 298 K, t = 20 min
Liu Pseudo-second-order 141.55 Electrostatic attraction Hydrogen bond EDA interaction Lewis acid-base interaction Liu et al. (2020)
MWCNT-OH Sulfametoxydiazine pH = 3.0
C0 = 20 mg L−1
V = 50 mL, m = 1 g L−1
T = 298 K, t = 20 min
Liu Pseudo-second-order 177.54 Electrostatic attraction Hydrogen bond EDA interaction Lewis acid-base interaction Liu et al. (2020)
MWCNT 4-Tert-octylphenol pH = 10.0
C0 = 0.3 mg L−1
V = 5 mL, m = 2.5 mg
T = 298 K, t = 70 min
Temkin Elovich 0.178 Liquid film diffusion ALOthman et al. (2019)
MWCNT Pefloxacin pH = 7.0
C0 = 50 mg L−1
V = − mL, m = − mg
T = 298 K, t = 240 min
Langmuir Pseudo-second-order 45.16 π-π interactions Hydrogen bond Zhou et al. (2019)
O-MWCNTi Pefloxacin pH = 6.0
C0 = 50 mg L−1
V = − mL, m = − mg
T = 298 K, t = 240 min
Freundlich Pseudo-second-order 61.11 π-π interactions Hydrogen bond Electrostatic interaction Zhou et al. (2019)
MWCNT Caffeine pH = 7.0
C0 = 5 mg L−1
V = − mL, m = 50 mg
T = 298 K, t = 30 min
Toth Pseudo-second-order 10.1 Chemical adsorption Gil et al. (2018)
MWCNT Diclofenac pH = 7.0
C0 = 15 mg L−1
V = 10 mL, m = 100 mg
T = 298 K, t = 30 min
Toth Pseudo-first-order 8.5 Chemical adsorption Gil et al. (2018)
MWCNT Carbamazepine pH = 5.8
C0 = 50 mg L−1
V = 10 mL, m = 0.1 g L−1
T = 298 ± 2 K, t = 30 min
Brouers-Sotolongo ____ 224.6 Hydrophobic Interaction π-π interaction Ncibi and Sillanpää (2017)
MWCNT Dorzolamide pH = 8.1
C0 = 50 mg L−1
V = 10 mL, m = 0.1 g L−1
T = 298 ± 2 K, t = 30 min
Brouers-Sotolongo ____ 78.8 Hydrophobic Interaction π-π interaction Electrostatic attractions Ncibi and Sillanpää (2017)
F-g-CNj Diquat dibromide pH = 7.0
C0 = 40 mg L−1
V = 50 mL, m = 10 mg
T = 298 K, t = 30 min
Langmuir Pseudo-second-order 159.3 Chemical adsorption Liang et al. (2021)
NSGOk Atrazine pH = 9.0
C0 = 10 mg L−1
V = 20 mL, m = 10 mg
T = 298 K, t = 24 h
Langmuir Pseudo-second-order 23.84 Van der Waals force Hydrogen bond de Souza Antônio et al. (2021)
GO Chloridazon pH = 6.0
C0 = 125 mg L−1
V = 10 mL, m = 5 mg
T = 298 K, t = 24 h
Langmuir ____ 67.18 Hydrogen bond Hydrophobic interaction π-π interaction Yan et al. (2020)
NSGO Ametryn pH = 5.5
C0 = 10 mg L−1
V = 25 mL, m = 15 mg
T = 303 K, t = 17 min
Langmuir Pseudo-second-order 47.2 ____ Khoshnam et al. (2019)
GO Chlorpyrifos pH = 7.0
C0 = 27.96 mg L−1
V = 100 mL, m = 500 mg L−1
T = R.T., t = 15 min
Langmuir Pseudo-second-order 98.04 Hydrogen bond Yadav et al. (2019)
GO Malathion pH = 7.0
C0 = 61.5 mg L−1
V = 100 mL, m = 500 mg L−1
T = R.T., t = 30 min
Langmuir Pseudo-second-order 1666.67 Hydrogen bond Yadav et al. (2019)
MWCNT Diuron pH = 7.0
C0 = 100 μg L−1
V = 10 mL, m = 20 mg
T = 298 K, t = 60 min
Langmuir Liquid film diffusion 0.108 Hydrogen bond Hydrophobic interaction π-π interactions Al-Shaalan et al. (2019)
MWCNT Fenuron pH = 7.0
C0 = 100 μg L−1
V = − mL, m = 2 g L−1
T = 298 K, t = 60 min
Freundlich Liquid film diffusion 0.107 Physical adsorption (I. Ali et al., 2019a)
MWCNT 2,4-Dichloro phenoxyacetic acid pH = 7.0
C0 = 100 mg L−1
V = 100 mL, m = 0.1 g
T = 298 ± 2 K, t = − min
Thomas Yan Pseudo-second-order 208.19 ____ Bahrami et al. (2018)
CNT 2,4-Dichloro phenoxyacetic acid pH = −C0 = 102 mg L−1
V = − mL, m = − g
T = 283 K, t = 50 min
Langmuir Pseudo-second-order 84.03 Physical adsorption Hue et al. (2018)
CNT Diuron pH = − C0 = 20 mg L−1
V = 25 mL, m = 0.4 g L−1
T = 303 K, t = 240 min
Hill Pseudo-second-order 40.37 Physical adsorption Deokar et al. (2017)
PMWCNT Thiamethoxam pH = 9.0
C0 = 150 mg L−1
V = − mL, m = − g
T = 298 K, t = 5 min
Langmuir Pseudo-second-order 38.18 Hydrogen bond Hydrophobic interaction π-π interactions Electrostatic attractions Panic et al. (2017)
FMWCNTl Thiamethoxam pH = 9.0
C0 = 150 mg L−1
V = − mL, m = − g
T = 298 K, t = 210 min
Freundlich Pseudo-second-order 95.43 Hydrogen bond Hydrophobic interaction π-π interactions Electrostatic attractions Panic et al. (2017)
a)

GO: Graphene oxide.

b)

PG: Porous graphene.

c)

GO-IL: Graphene oxide modified with imidazolium-based ionic liquid.

d)

MWCNT: Multi-walled carbon nanotube.

e)

N-CNT: Nitrogen-doped carbon nanotube.

f)

SWCNT: Single-walled carbon nanotube.

g)

MWCNT-COOH: MWCNT functionalized with carboxylic groups.

h)

MWCNT-OH: Hydroxylated MWCNT.

i)

O-MWCNT: Oxidized MWCNT.

j)

F-g-CN: Functionalized graphite carbon nitride.

k)

NSGO: Nanosheet graphene oxide.

l)

FMWCNT: Functionalized MWCNT.