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Abstract: Since students and teachers spend much of their time in educational buildings, it is critical
to provide good levels of indoor environmental quality (IEQ). The current COVID-19 pandemic
has shown that maintaining a good indoor air quality level is an effective measure to control the
transmission of the SARS-CoV-2 virus. This study used sensors to monitor key IEQ factors and assess
several natural ventilation scenarios in a classroom of the University of Granada. Subsequently,
the IEQ factors (temperature, relative humidity, CO2 concentration, acoustic environment, and air
velocity) were evaluated for the selected ventilation scenarios in the occupied classroom, and the field
monitoring was carried out in two different assessment periods, winter and summer. The obtained
results show that the CO2 concentration levels were well below the recommended limits. However,
the maintenance of the recommended thermal and acoustic IEQ factors was significantly affected
by the natural ventilation strategies (temperature and relative humidity values were very close to
the outside values, and the background sound pressure level was over 35 dBA during the entire
assessment). The proper measurements and careful selection of the appropriate ventilation scenarios
become of utmost importance to ensure that the ventilation rates required by the health authorities
are achieved.

Keywords: indoor environmental quality; buildings; natural ventilation; COVID-19; IEQ; educational
buildings; construction

1. Introduction

Nowadays, the global energy scenario shows that buildings consume more than
twice as much energy as they did in 1970 and account for 40% of the energy consumed
at present [1,2]. The increase in global energy demand, along with the climate crisis, has
become a major public concern. This situation has led to a focus on research and policy
efforts to ensure environmental and energy efficiency [3], as well as wellbeing and health
conditions [4]. In this context, the building sector faces the challenge of reducing energy
consumption and greenhouse gas emissions, thereby minimising the environmental impact
of buildings whilst maintaining indoor environmental conditions that are suitable to the
health and safety of users [5]. The environmental performance of buildings depends, among
other factors, on the interface between the occupants and the physical environment [6].

As part of the building stock, educational buildings represent a noteworthy part of
the total energy use [7]. In fact, providing adequate indoor environmental conditions in
educational buildings requires extensive energy consumption. If the building is not able to
maintain adequate indoor thermal conditions to achieve thermal comfort (TC), this results
in an increase in energy demand [8]. As public buildings, this characteristic gives them a
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major social responsibility. Thus, the energy performance and appropriate levels of indoor
environmental quality (IEQ) (such as TC, indoor air quality (IAQ), and acoustic comfort
(AC)) in these buildings are of great importance [9]. Buildings not only have to meet the
standards required for an indoor environment but it is also essential that they ensure the
health and comfort of their occupants [6].

In this regard, it is worth mentioning that IEQ has attracted the attention of researchers
as one of the characteristics of sustainable buildings and the environment as the behaviour
of the occupants and users of the building are seriously affected by it [6]. Previous research
has shown strong evidence that relates inadequate IEQ with adverse health effects, illness,
wellbeing, and reduced productivity [10]. Since students and teachers spend much of their
time in educational buildings, it is critical to provide good TC, AC, and IAQ levels. Poor
indoor TC can create unsatisfactory conditions, and it may have a negative influence on
students’ learning and performance [11–13]. In this regard, thermal discomfort can influ-
ence students’ capacity to learn [14]. Indeed, previous research has shown that increases in
classroom temperature significantly decrease the performance levels of students [15,16],
resulting in a negative impact on students’ ability to complete tasks and their ability to
learn [17]. AC is also essential in learning spaces. A poor acoustic environment in class-
rooms can affect students’ academic, psychosocial, and psycho-educational achievement.
However, it does not only affect students but can also cause voice problems [18] and physi-
cal stress for the teacher [19]. In addition, many research studies highlight that poor IAQ
may affect the comfort, productivity, and academic achievement of students [20–22]. The
exposure to air pollutants may cause many diseases, such as irritated eyes or nose, blocked
nose, headache and so forth [23], cardiovascular disease [24], and several respiratory
diseases [25,26].

Therefore, evidence from previous studies highlights the relevance of the indoor
environmental conditions in learning spaces. However, the achievement of a good envi-
ronment is often not considered a priority in the design of educational buildings [27]. In
this endeavour of ensuring adequate IAQ inside classrooms, the renewal of indoor air
through ventilation is required. However, as stated by Becker et al. [28], the ventilation
of educational buildings in warm climates has a dilemma between the IAQ and TC on
one hand and energy efficiency on the other. A sufficiently high ventilation rate (VR) with
outdoor air is needed so as to not compromise the IAQ and to remove pollutants emitted
from indoor sources [29]. If the VRs are reduced, the IAQ deteriorates but energy is saved
simultaneously [30]. Given the relevance of both criteria, previous studies have analysed
strategies to improve their energy and environmental efficiencies whilst ensuring health
conditions [31].

Nevertheless, the current circumstances arising from the COVID-19 health crisis have
meant that ensuring that spaces are safe, and health is a priority over comfort or energy
efficiency. The growing concern over the indoor environmental conditions inside buildings,
with a particular focus on teaching–learning spaces [32], has led governments to take
action in these buildings through the provision of adequate IAQ. The partial and full
closures of educational buildings and the limited access to learning spaces (classrooms,
laboratories, and related spaces) are factors that have conditioned the learning process.
The IEQ conditions, especially with respect to the IAQ, have been particularly important
aspects regarding the reopening of these spaces in the context of the COVID-19 pandemic.

In this context, the Ministry of Health of the Spanish Government stated that the
proper ventilation of indoor spaces is a measure to minimise the transmission of SARS-
CoV-2 through aerosols [33]. The recommendations and preventive measures include,
among others, that the VR should be ~5–6 air change per hour (ACH) in order not to
compromise good air quality. This VR value can be achieved by increasing the flow of
outside air provided by either natural means (opening windows and doors for the time
deemed necessary according to the characteristics of each space) or mechanical means. In
those classrooms that do not have a mechanical ventilation system, the Contingency and
Action Plan for COVID-19 [34] drawn up by the University of Granada (which is similar to
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other action plans in Europe) establishes that “even if the weather conditions are adverse,
ventilation must be carried out by means of natural ventilation through open windows
and doors”, which is one of the necessary measures of ventilation and air conditioning
requirements for the reopening of educational centres. In addition, the classroom must
be naturally ventilated at least 1 h before and after the teaching activity takes place. In
this sense, the correct selection of the window and door opening configuration in teaching
spaces is crucial to achieve a balance between optimal ventilation conditions and comfort
for the users who occupy the spaces. Nevertheless, previous research has shown that
natural ventilation strategies that provide the required VR may have a high impact on
other variables, such as indoor acoustic comfort [35]. The developed tests in [35] were
conducted in unoccupied classrooms, and the impact on the acoustic quality of the interior
space in several classrooms was analysed.

This research is framed in the above context, and, even though many studies have
reported on the impact of natural ventilation on building performance, there has been
very little research reported on the impact of implementing the recommended VR through
natural ventilation strategies to prevent air-borne disease transmission. The purpose
of the present study is, therefore, to assess the impact of those measured states by the
Spanish government in the IEQ of educational buildings by using environmental sensors to
monitor relevant IEQ factors (temperature, relative humidity, CO2 concentration, acoustic
environment, and air velocity). Unlike previous studies, such as in De la Hoz-Torres et, al,
2021 [35], the classroom is monitored “in use”, and, more specifically, during examination
periods. Since poor environmental condition exposure is associated with a reduction of
cognitive performance and deterioration of physical and mental health [36], the monitoring
in scenarios where students are taking exams can provide valuable information to assess
the potential impact on their performance. In this way, the results obtained in this case
study can support the decision-making process of building managers in managing the best
suitable natural ventilation strategies.

To achieve this goal, this study includes both an experimental part of sensor data
collection and a subsequent analysis section. This work aims to measure and assess
ventilation rates (VR) in addition to other factors, such as air temperature, relative humidity,
air velocity, and CO2 concentration, in several different scenarios in a classroom with VR
conditions recommended by Spanish public guidelines. The acquired data and their
analysis are the contribution of this work, and the proposal will contribute as a basis
to defining guidelines regarding ventilation strategies that meet the established safety
standards against airborne disease transmission and improve the IAQ in learning spaces.
Moreover, and in a second instance, the data can also be used to analyse the level of IEQ and
as a basis for future research to propose optimised systems in terms of natural ventilation
and user safety and comfort.

2. Materials and Methods

As noted in the previous section, this research deals with indoor environmental
conditions in teaching–learning spaces. Specifically, the present study aims to investigate
how the Spanish government requirements on ventilation strategies will affect indoor
environmental conditions, to assess their impact, and establish appropriate actions. In this
sense, for the assessment of the impact on the IEQ due to increased ventilation at the rates
required by the public health recommendations, experimental tests were carried out in
different natural ventilation scenarios. Subsequently, the field measurements were carried
out in two assessment periods: winter and summer.

2.1. Description of Case Study Area and Climatic Conditions

For the purposes of the current study, teaching spaces of the Fuentenueva campus
of the University of Granada were investigated. This campus is located in the urban
area of Granada (37◦11′ N, 3◦36′ W). This Spanish city, located in the southeast of the
peninsula, has a Mediterranean climate with hot and dry summers and cool damp winters.
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It is also characterised by strong daily and seasonal variations of temperature [37]. The
daily temperatures average 34 ◦C in the hottest month of the year (July) and 13 ◦C in the
coldest (January). However, the temperatures during the night can drop to ~1 ◦C in the
coldest month.

Since on-campus and face-to-face educational provisions were not possible from
October to January due to the health crisis caused by COVID-19, extraordinary measures
for off-campus teaching and learning were adopted. After the state of health emergency
ended, and with the aim of providing safe and healthy spaces for the return to campus, the
University of Granada developed the COVID-19 Action Plan [34]. The measures defined
in the plan include mandatory masks indoors, physical distancing (1.5 m at least), and
capacity limited to 50%. In this sense, in order to implement these measures for the return
to face-to-face teaching, it is necessary to use sufficiently large spaces to guarantee these
requirements. In addition, the plan states that natural ventilation will be maintained via
open windows and doors even if the weather conditions are adverse. Therefore, health
criteria take precedence above energy efficiency and conditions of comfort [34].

In this context, a typical classroom was selected from those that met the requirements
set out in the COVID-19 Action Plan, i.e., a classroom located in the Advanced Technical
School for Building Engineering (Figure 1). This classroom is a representative case study of
the classrooms used after returning to the campus due to its typical characteristics in terms
of geometry, equipment, and capacity. The tests were all conducted in this classroom.
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Figure 1. Location of case study.

The classroom does not have a mechanical ventilation system; therefore, natural
ventilation is the only possible mechanism for exchanging the air inside the room (Figure 2).
The area and volume of the classroom are 175 m2 and 524 m3, respectively. It contains five
windows in the northeast façade, with dimensions of 1.80 m × 2.00 m. In addition, there
are two windows in the southwest façade, with dimensions of 2.50 m × 2.10 m. The access
to the classroom is through a main door, with dimensions of 1.50 m × 2.00 m.
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Different window and door opening configurations were defined to assess the VR
in the classroom. The different opening configurations of northeast-facing windows,
southwest-facing windows, and the main door provide three natural cross-ventilation
scenarios defined for this research: (1) Ventilation Scenario 1 was constructed with five
northeast-facing windows open and two southwest-facing windows open. (2) Ventilation
Scenario 2 was constructed with two windows open on both the northeast and southwest
façades. (3) Ventilation Scenario 3 was constructed with two northeast-facing windows
open and only one southwest-facing window open. In all three ventilation scenarios, the
main door was open.

2.2. Sensor Location and Data Collection: Natural Ventilation Strategies Setup

In order to quantify the natural VR under different configuration of doors and/or
windows opening conditions, the tracer gas decay method was used [38,39]. Since this
method can only be applied to unoccupied spaces using a tracer gas (e.g., CO2), it was
convenient to use it in an off-campus period and, therefore, the educational buildings were
unoccupied. This decay method is used as a tracer-gas technique to carry out ventilation
measurements, and, in this technique, the CO2 concentration is increased, emitting this
gas into the room and mixing it with the air in the room. Once a sufficient concentration
is reached and it is uniform, the decrease of CO2 concentration begins, and it is recorded
during a given period [40]. The HOBO® MX1102 loggers were the sensors used to measure
the CO2 concentrations in the field tests. Five CO2 concentration measurement sensors
were distributed throughout the room during the tests (see Appendix A, Figure A1). These
sensors are characterised by a measurement range from 0 to 5000 ppm (accuracy ± 50 ppm
±5% of reading at 25 ◦C, less than 90% RH non-condensing and 1013 mbar). The sensing
method is non-dispersive infrared absorption.

The data obtained from the field measurements were used to estimate the ACH using
Equation (1):

ACH =
−1 ∗ ln

(
Cend−Coutdoor
Cstart−Coutdoor

)
tend − tstart

(1)

where Cend is the measured CO2 concentrations at the end of the decay curve, tend is the
end time of the decay curve, Cstart is the measured CO2 concentrations at the start of the
decay curve, tstart is the end time of the decay curve, and Coutdoor is the measured CO2
concentrations outside of building. The results allow for a comparison of the ACH provided
by the different configurations.

In addition, since a VR of 6 ACH (corresponding to ~12.5 L/s per person) is the value
recommended by the re-opening guidelines [33] to achieve good IAQ, the results obtained
after applying this method were used to select the door and window opening configuration
that provides the required ACH value. The location of the sensors (sensor 1–sensor 5) in
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the classroom during the data collection process is shown in Figure A1, and they were
selected to characterise the rooms appropriately.

2.3. Monitoring Indoor Environmental Factors under the Selected Ventilation Strategy

Once the process of characterising the different natural ventilation configurations was
completed and the windows and door opening configuration that provides the required
VR was selected, indoor environmental conditions were monitored during face-to-face
teaching activities with the selected natural ventilation configuration.

Data collection was carried out on two different time periods representative of the
room use in quite different conditions: one day in the summer season and the other in the
winter season. The duration of the monitoring was adjusted to the teaching activity, which
was an exam lasting at least 100 min in both cases. The measurement day, period, duration,
and classroom occupancy are shown in Table 1.

Table 1. Field monitoring experimental data obtained in the selected classroom.

Measurement Day Season Period Duration Classroom Occupancy

01/02/2021 Winter 16:00–17:40 100 min 21 (19 students + 2 teachers)
08/07/2021 Summer 10:00–11:40 100 min 17 (15 students + 2 teachers)

In the winter period, the measurement was carried out with 19 students and 2 teachers
inside the classroom. In the case of the summer measurement, there were 15 students
and 2 teachers. The age range of the student group was between 19 and 27 years old
in both cases. All the participants wore clinical or surgical mask during the period of
data acquisition. In addition, in order to comply with the COVID-19 Action Plan, class
occupancy was limited to 50% and students were seated in their pre-assigned positions
to take the exam, keeping the recommended security distance of 1.5 m from each other.
So, the students were distributed in the room in such a way as to maximise the distance
between them, ensuring a minimum distance of 1.5 m. Moreover, the protocols defined in
the plan include that the windows must be open before and after the teaching activity. This
IAQ management measure aims to dilute any pollutants present in the air before and after
the activity through indoor air renewal.

During the field measurements, data on CO2 concentration, air velocity, temperature,
and relative humidity were collected. Three of the five HOBO® MX1102 loggers were
used for this purpose (Sensors 1, 2, and 3). In addition to the CO2 sensors, this instrument
contains a temperature sensor, which ranges from 0 to 50 ◦C, with an accuracy of ±0.21 ◦C
from 0 to 50 ◦C. The humidity sensor measurements range from 1% to 90% RH (non-
condensing) with an error±2% from 20% to 80% typical to a maximum of±4.5%, including
hysteresis at 25 ◦C, below 20%, and above 80 ± 6% typical. A hotwire air speed transmitter
was used for measuring the indoor air speed with a measuring range from 0.1 to 5 m/s
(HD403TS2, Delta OHM, Italy).

The sound pressure level of background noise was measured using an Imperum-R
recorder and omnidirectional microphone provided by TECNITAX® Ingeniería (range:
35–115 dBA and frequency from 31.5 Hz to 12.5 kHz). All the IEQ parameters were
collected at one-minute sampling intervals during the field monitoring. Figure 3 shows the
sensors used in the field monitoring. The locations of the five HOBO® MX1102 loggers, air
speed sensor, and acoustic sensor in the classroom during the data collection process are
shown in Appendix A (Figure A1).
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3. Results and Discussion
3.1. Natural VR with Different Windows and Door Opening Configuration

The results obtained in the three cross-natural ventilation scenarios are shown in
Figure 4 and Table 2. The tests were carried out on the same date (in January), and the
VRs were quantified with the same outdoor environmental conditions (the outdoor air
temperature, RH, and wind speed were 18.5 ◦C, 47%, and 1.85 Km/h SO-NO, respectively).
The tests were carried out during this period following the IAQ recommendations and
protocols set out in the Contingency and Action Plan for COVID-19, with the aim of
assessing which of the window and door opening configurations provide the required VR.

The duration of the tests depended on the time required for the decrease of the CO2
concentration in each tested configuration. This time interval can be seen in Figure 4; the
configuration with the shortest decay time provides the highest VR value. In addition,
Figure 4 shows the differences between the data recorded in each position by the CO2
dataloggers (Figure A1 in Appendix A shows the location of the sensors). The differences
observed for those data obtained from each sensor for all the tested configuration scenarios
can be explained by their different relative position on the windows and doors for each
sensor and the indoor air currents.

Then, from the CO2 concentration data recorded on time and after applying the decay
method, the VR was calculated for each one of the sensors in all the configurations. The
mean VR ((ACH)) value was then estimated from the average of the RVs obtained from
the sensors in each tested configuration scenario. The average VRs obtained in Ventilation
Scenarios 1, 2, and 3 are 7.9, 5.7, and 4.7 ACH, respectively. The windows and door
opening scenario that provides the highest ACH is Ventilation Scenario 1. In fact, this
scenario is the only one that provides an ACH value that meets the recommendations set
out in the guidelines (i.e., 6 ACH). In the other windows and door opening configurations
(Ventilation Scenarios 2 and 3), a sufficient ACH value is not achieved at all measurement
points in the classroom. Consequently, the window and door opening configuration of
Ventilation Scenario 1 was selected for monitoring the indoor environmental conditions in
the next phase.

It should be taken into account that this study follows the IAQ management protocols
implemented as a result of the Contingency and Action Plan for COVID-19 [34]. Conse-
quently, the conditioning factors of this study include the effect of local indoor and outdoor
environmental conditions, which are affected by the IAQ protocols. In this regard, since
classrooms have to be naturally ventilated before and after the teaching activities (at least
for 1 h), the air temperature and relative humidity levels inside the classrooms are similar
to those levels outside them. Therefore, the effect and influence of these factors should be
considered if different environmental conditions were applicable on a case-by-case basis
for each classroom.
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Table 2. ACH results obtained in each cross-natural ventilation scenario.

Scenario Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 ACH σ

Scenario 1 8.6 7.6 8.2 7.7 7.5 7.9 0.47
Scenario 2 6.3 6.2 5.8 5.0 5.1 5.7 0.61
Scenario 3 5.1 4.4 5.5 4.2 4.4 4.7 0.55

3.2. Indoor Environmental Conditions

This section shows the data obtained from monitoring the teaching activities with the
selected natural ventilation strategy. The results are shown below, differentiating be-tween
the data collected in the winter and summer seasons. With regard to the temperature and
relative humidity measurements, Figure 5 shows the data obtained on both days. The aver-
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age temperature, RH, and air velocity during the measurement period were 18.9 ◦C, 50%,
and 0.08 m/s in winter, and 28.1 ◦C, 25.1%, and 0.13 m/s in summer, respectively. These
values are representative of the average values in these seasons during the teaching period.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 16 
 

 

least for 1 h), the air temperature and relative humidity levels inside the classrooms are 
similar to those levels outside them. Therefore, the effect and influence of these factors 
should be considered if different environmental conditions were applicable on a case-by-
case basis for each classroom. 

3.2. Indoor Environmental Conditions 
This section shows the data obtained from monitoring the teaching activities with the 

selected natural ventilation strategy. The results are shown below, differentiating be-
tween the data collected in the winter and summer seasons. With regard to the tempera-
ture and relative humidity measurements, Figure 5 shows the data obtained on both days. 
The average temperature, RH, and air velocity during the measurement period were 18.9 
°C, 50%, and 0.08 m/s in winter, and 28.1 °C, 25.1%, and 0.13 m/s in summer, respectively. 
These values are representative of the average values in these seasons during the teaching 
period. 

 
Figure 5. Temperature and humidity data obtained in both winter and summer assessment periods. 

It should be noted that the ventilation protocol of opening the windows before and 
after teaching activities is critical since it dilutes the pollutant concentration, thus lowering 
any subsequent dose inhaled by the occupants. However, this procedure also results in 
indoor temperatures and humidity levels similar to the outdoor environment. The out-
door temperatures during the field measurement periods were 16 °C and 55% HR in win-
ter and 30 °C and 22% HR in summer. Therefore, it can be seen that the outdoor tempera-
ture and HR values are not really far from the values measured indoors. 

Comparing the temperature values obtained with those recommended by the 
SINPHONIE guidelines [41], which state that a physically comfortable operating temper-
ature of ~20–26 °C should be maintained in classrooms throughout the year (depending 
on the season and the outside air temperature), it can be observed that the values obtained 
are far from the recommended range in both cases. The RH values obtained also fall out-
side of the reference comfort recommended (42–50% HR) [41]. In both the winter and 
summer periods, increasing or decreasing the classroom temperature to achieve thermal 
comfort would require additional energy inputs into heating and/or air conditioning sys-
tems. 

If these results are compared with other previous related research, it can be observed 
that these conclusions are in good agreement with those ones. Alonso et al. [42] evaluated 

Figure 5. Temperature and humidity data obtained in both winter and summer assessment periods.

It should be noted that the ventilation protocol of opening the windows before and
after teaching activities is critical since it dilutes the pollutant concentration, thus lowering
any subsequent dose inhaled by the occupants. However, this procedure also results in
indoor temperatures and humidity levels similar to the outdoor environment. The outdoor
temperatures during the field measurement periods were 16 ◦C and 55% HR in winter and
30 ◦C and 22% HR in summer. Therefore, it can be seen that the outdoor temperature and
HR values are not really far from the values measured indoors.

Comparing the temperature values obtained with those recommended by the SIN-
PHONIE guidelines [41], which state that a physically comfortable operating temperature
of ~20–26 ◦C should be maintained in classrooms throughout the year (depending on the
season and the outside air temperature), it can be observed that the values obtained are far
from the recommended range in both cases. The RH values obtained also fall outside of
the reference comfort recommended (42–50% HR) [41]. In both the winter and summer
periods, increasing or decreasing the classroom temperature to achieve thermal comfort
would require additional energy inputs into heating and/or air conditioning systems.

If these results are compared with other previous related research, it can be observed
that these conclusions are in good agreement with those ones. Alonso et al. [42] evaluated
the COVID-19 protocol effects on thermal comfort in primary schools in winter in a Mediter-
ranean climate. In their study, Alonso et al. (2021) concluded that the total percentage of
discomfort weekly hours will exceed the 80% value, evaluated using various models in
naturally ventilated classrooms. This value is above that reported in the year prior to the
COVID-19 disease, where the total percentage of discomfort weekly hours was between 50
and 60%.

Regarding the obtained CO2 concentration values, Figure 6 shows the data collected in
both field measurements. It is worth noting that the previously selected natural ventilation
strategy (i.e., ventilation Scenario 3 that provides a VR of 6 ACH) resulted in concentration
levels of CO2 below 600 ppm throughout the teaching activity. The average concentration
values were 476 and 430 ppm in the summer and winter field measurements, respectively.
Although the average CO2 concentration level obtained was higher in the winter measure-
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ment than in the summer data set, it is mainly due to fact that the number of occupants in
the classroom during the winter field measurement was higher than in summer.
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It should be noted that, if both average CO2 concentration levels are compared with
the World Health Organization recommended limit (1000 ppm) [43] and REVHA limit (800
ppm) [44], the measured concentration levels were both below the limits.

As expected, occupant density and the type of activity affect the concentration of
CO2. In this case, the maximum capacity of the classroom was 48 occupants after applying
the protocols stated in the COVID-19 Action Plan. Since the occupation during the two
field measurements was lower than this value (there was 21 occupants in winter and
17 occupants in summer), the CO2 concentration values measured were much lower
than the limits. Comparing the occupation ratio per student minimum recommended
(i.e., 3.6 m2/student), in both scenarios, it was higher: the occupation rate was 9.2 and
11.7 m2/student, respectively.

In this context, recent studies on the analysis of natural ventilation strategies show
good agreement with those results obtained in this research. Villanueva et al. [45] assessed
CO2 concentrations in reopening schools and high schools after the lockdown and con-
cluded that the ventilation strategies adopted because of COVID-19 led to substantially
improved CO2 concentrations compared to previous reports. Specifically, concentrations
above 700 ppm were only found in 26% of the classrooms.

Similar conclusions were drawn in the research conducted in kindergartens by Lovec
et al. [46]. In their study, their results showed a 30% improvement in the daily average
CO2 concentration compared to the values measured before the COVID-19 disease. In
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addition, the research conducted by Meiss et al. [47] on natural ventilation strategies in
classrooms concluded that continuous natural cross-ventilation ensured the lowest CO2
levels compared to the other scenarios studied. Therefore, cross-ventilation with opening
windows and doors is recommended for health emergency situations.

With respect to the acoustic environment, the background noise levels measured in the
winter and summer seasons are shown in Figure 7. In both cases, the continuous equivalent
sound pressure level (LAeq) value obtained in the winter assessment period (56.5 dBA) and
in the summer assessment period (55.4 dBA) exceed the recommended LAeq of 35.0 dBA
for educational spaces [48,49]. In this case, the obtained LAeq values are similar in the
winter and summer periods; therefore, the period in which the measurements were taken
did not significantly influence the obtained results. In the case under study, the location of
the classroom did have a great influence on the acoustic environment (since it is close to a
main street with a high traffic rate). In this sense, high values of background noise levels
may cause disruption and loss of concentration among students, but it is due to the specific
location of the room.
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Regarding this issue, previous studies have shown that noise pollution is a great
environmental problem in big cities and results in external noise problems in educational
buildings [50–54]. The protocols defined in the COVID-19 Action Plan ensure good air
quality by increasing the required VR through the opening of doors and windows, i.e.,
natural ventilation. However, this measure also results in the background noise level inside
the classroom increasing due to external sources (noise outside the building and sources
from other areas of the building). In this sense, noise pollution becomes a major concern
given that, in cases such as the one analysed in this study, a high SPL of environmental noise
has a significant impact on students’ reading and mathematics ability [55–57]. Furthermore,
if the classroom activity is a process of assessing student learning, as it was during the
measurement period, this physical agent may influence the results obtained by the students.
Consequently, given the high impact that noise can have on teaching activity, the guidelines
for action and adaptation of spaces must consider the impact of this environmental factor.

It is also noteworthy that this research was performed in a case study in a higher
education building located in the city of Granada. Therefore, evaluating the effects of other
COVID-19-based natural ventilation protocols for other buildings and scenarios (different
climates, building locations, etc.) is beyond the scope of this research, and it would be
necessary to perform this study with a larger sample.
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4. Conclusions

The recent global health crisis has led to an increasing concern regarding IEQ, with a
particular focus on educational buildings. Indeed, IAQ is an essential factor in the control
of the transmission of SARS-CoV-2 within indoor spaces. In this context, educational
building administrators face the challenge of managing the IAQ to ensure that indoor
spaces are healthy and safe. Therefore, some public guidelines have been established
for the reopening of educational buildings. These guidelines recommend implementing
natural ventilation strategies that provide a VR of at least 6 ACH. In this research, the impact
of the implementation of the COVID-19 protocols was analysed. The field measurements
were taken in an educational building in southwest Europe during two periods of the year
(winter and summer). As the building has no mechanical ventilation, the required VR can
only be achieved through natural ventilation. The strategy for locating the sensors and
data collection is described in this research, and the data analysis was performed in three
different ventilation scenarios (Ventilation Scenarios 1, 2, and 3) and two different seasonal
weather conditions.

Once the window and door opening configuration (VS 1) was selected as the only one
that provides an ACH value that meets the recommendations set out in the guidelines for
monitoring indoor environmental conditions, the measurements were performed for the
next research phase. From the obtained data and as a summary of the main results, it can
be observed that the temperature and RH show very different values in both measurement
periods. In the winter assessment period, the temperature ranged between 17.8 and 19.5 ◦C,
and between 25.2 and 29.7 ◦C in the summer assessment period. In the case of the RH, it
ranged from 47.3% to 53.1% and from 21.2% to 29.5% in the winter and summer periods,
respectively. Note that these values were close to the outdoor values. In the case of the
indoor CO2 concentrations, they were below 600 ppm in both the summer and winter
assessment periods. Given that the recommendations set out in the COVID-19 Action Plan
were followed (a VR of 6 ACH was provided naturally through open doors and windows,
and the windows were opened before and after the teaching activity), the values obtained
were well below the recommended limits. In addition, in terms of acoustic environments,
both assessment periods showed a high level of SPL background noise. The SPL values
were well above 35 dBA during the entire assessment period on both dates.

This analysis led us to the four following conclusions:

(a) The ventilation scenarios have to be carefully analysed to ensure that they meet the
recommendations set out in the guidelines (i.e., 6 ACH). In our study, only Scenario
1 achieved a sufficient ACH value. Thus, it is strongly recommended to perform
measurements to set up the correct ventilation scenario.

(b) The public guidelines established in the context of the transmission of SARS-CoV-
2 within indoor spaces have an impact on the indoor environmental conditions.
Although the CO2 concentration levels remained well below the limit during the
entire teaching activities, the results from this work show that the impact of the
implementation of the COVID-19 protocols on the indoor environmental conditions
is significant in regard to thermal and acoustic comfort.

(c) The natural ventilation strategy adopted during the classroom activities significantly
affects the thermal and acoustic comfort in the classroom. In this sense, it is clear
that it is necessary to keep in mind that indoor spaces must be kept safe and healthy,
but strategies must also be provided to ensure this while minimising the impact
on the other IEQ factors. Increasing or decreasing the classroom temperature to
achieve thermal comfort with the VR recommended by the Spanish government
would require additional energy inputs into heating and air conditioning systems.

(d) Educational buildings need to establish a set of preferred ventilation schemes that
ensure an adequate IAQ without reducing other performance levels, such as thermal
comfort and acoustic environment. Adapting the strategies not only to the character-
istics of the classroom but also to the characteristics of the activity will ensure that
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spaces are used safely and provide equal opportunities for students to continue their
education in an appropriate environment.

Finally, it should be noted that it is a critical issue to ensure a good IEQ in order to
avoid the further closure of educational buildings in the face of new pandemics. The study
of different action scenarios, as well as redesigning or modifying the configurations and
systems of buildings, is necessary in order to incorporate new healthier building strategies
in the future. The process of redesigning interior spaces and adapting them to new needs
will lead to more resilient and efficient buildings, and it will provide a safe environment
for teachers and students. This is a further area of research that appears to be necessary in
this new context.
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Appendix A

Figure A1 shows the location of the sensor during the VR analysis and the subsequent
field measurement in the winter and summer periods.
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