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Abstract: Research focused on signals derived from the human organism is becoming increasingly
popular. In this field, a special role is played by brain-computer interfaces based on brainwaves.
They are becoming increasingly popular due to the downsizing of EEG signal recording devices and
ever-lower set prices. Unfortunately, such systems are substantially limited in terms of the number
of generated commands. This especially applies to sets that are not medical devices. This article
proposes a hybrid brain-computer system based on the Steady-State Visual Evoked Potential (SSVEP),
EOG, eye tracking, and force feedback system. Such an expanded system eliminates many of the
particular system shortcomings and provides much better results. The first part of the paper presents
information on the methods applied in the hybrid brain-computer system. The presented system was
tested in terms of the ability of the operator to place the robot’s tip to a designated position. A virtual
model of an industrial robot was proposed, which was used in the testing. The tests were repeated
on a real-life industrial robot. Positioning accuracy of system was verified with the feedback system
both enabled and disabled. The results of tests conducted both on the model and on the real object
clearly demonstrate that force feedback improves the positioning accuracy of the robot’s tip when
controlled by the operator. In addition, the results for the model and the real-life industrial model are
very similar. In the next stage, research was carried out on the possibility of sorting items using the
BCI system. The research was carried out on a model and a real robot. The results show that it is
possible to sort using bio signals from the human body.

Keywords: electroencephalography; EEG; electrooculography; EOG; steady-state visual evoked
potential; SSVEP; eye tracking; force feedback

1. Introduction

Electroencephalography is currently becoming increasingly common. Scientific re-
search features a trend of attempts to not only use it for studying the brain, but also for
control. Brain-computer interfaces (BCIs) are used for this purpose and are becoming
increasingly popular in scientific research. These interfaces can recognize certain com-
mands directly from the brain [1] and perform intended, predefined actions. This allows
for controlling objects, such as Personal Care Robots [2]. EEG-based interfaces are quickly
developing thanks to the declining prices of headsets [3]. EEG is a noninvasive method
intended for registering brain activity on the skull’s surface with the use of electrodes.
The number of possible commands and the effectiveness of their detection for a single
BCI method are limited. Hence, hybrid BCIs are becoming increasingly popular [4]. Their
classification is presented in Figure 1.
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Figure 1. Classification of hybrid BCIs. 

The number of classification commands is increased thanks to the use of a larger 
number of interfaces. In reality, BCIs are becoming increasingly combined with other in-
terfaces, such as voice recognition or electromyography (EMG) [5–9]. It is possible to com-
bine the Steady-State Visual Evoked Potential (SSVEP) with the P300 event-related poten-
tial [4], electromyography (EMG) with electroencephalographic activity (EEG) [10–13], or 
SSVEP with the ERD/ERS method [14–16]. An increasing number of hybrid BCI system 
solutions currently go beyond combining solely EEG-based systems or other signals de-
rived from the human organism. The hybrid systems are being combined, for example, 
with visual systems [17]. There are also systems based on the recognition of artifacts de-
rived from facial expressions and the movement of the eyeballs [18]. Such systems are 
most often used for controlling external devices. In the study [19], it is proposed control-
ling the wheelchair by means of a brain-computer interface based on the P300. They 
achieved a control efficiency of over 99%. The authors in the article [20] created a virtual 
platform for training disabled people. They were supposed to move a virtual wheelchair 
in the environment using the interface-brain-computer. In the study [21] it is presented an 
environment based on the ROS system for controlling a wheelchair. Using the SSVEP 
method, they controlled the movements of the cart. In this case, the trolley was an auton-
omous element. Using 6 blinking fields, the user selected a previously saved destination 
on the map generated with the Simultaneous localization and mapping (SLAM) algo-
rithm. The algorithm is responsible for creating and updating the map and tracking the 
agent. In the study [22] it is presented controlling a virtual robot around a virtual apart-
ment with a system based on P-300. The stimulators were two tactile actuators. It is not 
only wheelchairs that are the target of BCI control. In the article [23] it is proposed a sys-
tem based on SSVEP for controlling a mobile car. They presented car steering at a distance 
of 15 m. A similar brain-computer interface was presented by the authors of the article 
[24]. They also controlled a mobile car. This time the car was controlled via WiFi. The car 
was based on the Arduino kit. In the study [25], it is presented the control of a mobile car 
by means of a brain-computer interface based on artifact recognition. Other vehicles con-
trolled by brain-computer interfaces are flying vehicles. The authors of the article [26] 
were interested in the problem of loss of attention while controlling an unmanned aerial 
vehicle. They built a system based on a brain-computer interface that prevents the opera-
tor from falling into a state of inattention. At this point, the system informs by restoring 
the state of attention. Christensen et al. [27] developed a drone control system based on 
Five Class MI and Filter Bank CSP. The article [28] shows various interfaces for controlling 
unmanned aerial vehicles in recent years. They show that the control of such vehicles is 
most often carried out using MI Tasks. Not only are vehicles controlled via brain-com-
puter interfaces. Increasingly, the controlled element is a robotic arm [29]. In the article 
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The number of classification commands is increased thanks to the use of a larger num-
ber of interfaces. In reality, BCIs are becoming increasingly combined with other interfaces,
such as voice recognition or electromyography (EMG) [5–9]. It is possible to combine the
Steady-State Visual Evoked Potential (SSVEP) with the P300 event-related potential [4],
electromyography (EMG) with electroencephalographic activity (EEG) [10–13], or SSVEP
with the ERD/ERS method [14–16]. An increasing number of hybrid BCI system solutions
currently go beyond combining solely EEG-based systems or other signals derived from
the human organism. The hybrid systems are being combined, for example, with visual
systems [17]. There are also systems based on the recognition of artifacts derived from
facial expressions and the movement of the eyeballs [18]. Such systems are most often
used for controlling external devices. In the study [19], it is proposed controlling the
wheelchair by means of a brain-computer interface based on the P300. They achieved a
control efficiency of over 99%. The authors in the article [20] created a virtual platform
for training disabled people. They were supposed to move a virtual wheelchair in the
environment using the interface-brain-computer. In the study [21] it is presented an envi-
ronment based on the ROS system for controlling a wheelchair. Using the SSVEP method,
they controlled the movements of the cart. In this case, the trolley was an autonomous
element. Using 6 blinking fields, the user selected a previously saved destination on
the map generated with the Simultaneous localization and mapping (SLAM) algorithm.
The algorithm is responsible for creating and updating the map and tracking the agent.
In the study [22] it is presented controlling a virtual robot around a virtual apartment
with a system based on P-300. The stimulators were two tactile actuators. It is not only
wheelchairs that are the target of BCI control. In the article [23] it is proposed a system
based on SSVEP for controlling a mobile car. They presented car steering at a distance of
15 m. A similar brain-computer interface was presented by the authors of the article [24].
They also controlled a mobile car. This time the car was controlled via WiFi. The car
was based on the Arduino kit. In the study [25], it is presented the control of a mobile
car by means of a brain-computer interface based on artifact recognition. Other vehicles
controlled by brain-computer interfaces are flying vehicles. The authors of the article [26]
were interested in the problem of loss of attention while controlling an unmanned aerial
vehicle. They built a system based on a brain-computer interface that prevents the operator
from falling into a state of inattention. At this point, the system informs by restoring the
state of attention. Christensen et al. [27] developed a drone control system based on Five
Class MI and Filter Bank CSP. The article [28] shows various interfaces for controlling
unmanned aerial vehicles in recent years. They show that the control of such vehicles is
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most often carried out using MI Tasks. Not only are vehicles controlled via brain-computer
interfaces. Increasingly, the controlled element is a robotic arm [29]. In the article [30] the
Achic et al. presented a system based on SSVEP for controlling an assistive robot arm. The
robot arm was mounted on a wheelchair. In the study [31], it is presented a system based
on Mi tasks and SSVEP for 3DOF robot control. In the article [32], the authors presented a
system based on SSVEP, eye blinking for Real-Life Meal-Assist Robot Control. Steady-state
visual evoked potentials (SSVEPs) from occipital channels were used to select the food
per the user’s intention. Athanasiou et al. [33] presented the system for controlling an
anthropomorphic robotic arm using MI tasks. The problem with such interfaces is the lack
of assurance feedback. Much information can be displayed on a monitor, but this may
disrupt the operation of SSVEP-based interfaces. When used in hybrid interfaces, sound
signals can be burdensome for users in the long-term. In this paper, the author proposed a
solution based on force feedback. The novelty presented in this article is the construction
of a hybrid brain-computer system based on SSVEP, EOG, eye tracking, and force feedback.
The additional feedback significantly improves the results.

2. Materials and Methods
2.1. System Overview

The author built a hybrid brain-computer interface for controlling a six-axis industrial
robot. The system is based on an EEG set and a visual system. Additional novelty was
introduced with the use of force feedback on the robot’s position. The feedback module is
described in the latter part of the paper. The robot’s movement takes place in three axes.
Electrooculography (EOG) is used to move the robot, whereas the signals are collected
from the EEG set. EOG is a noninvasive method of acquiring information about the resting
potential near the eyeballs. Due to its structure, an eye is an electric dipole, consequently, it
is possible to test such potentials in its vicinity.

Only EOG-based systems exist. In the article [34], Wang et al. proposed a system for
controlling a wheelchair based on this system and new model of electrode. A leftward
eyeball motion caused the robot arm to move in a positive direction in the given axis. A
rightward eyeball motion caused the robot arm to move in a negative direction. Switching
the selected axis was implemented using one of two methods studied in the latter part of the
paper, i.e., by blinking twice and via a method based on the Steady-State Visually Evoked
Potential (SSVEP). The diagram of the entire hybrid interface is presented in Figure 2. The
hybrid brain-computer system is an online system. The program responsible for connecting
all elements was written in C++. The program is responsible both for collecting information
from other systems and for operating a feedback device. It implements API support from
Emotiv EPOC+. The same program sends and receives information about the position
of the robot’s tip. It communicates with the openVibe software via the VRPN server. In
this way, it sends information about the start and end of the test, and receives information
about the detection of one of the lamps blinking. Using Shered Memory, it communicates
with the software responsible for operating the camera with the implemented eyeLike
library. As in the previous case, the program sends information about the start and end of
the test, and receives information about the current location of the eyeball centers. Also,
through Shared Memory, it communicates with the software responsible for operating the
industrial robot. Information is exchanged about the current position of the robot’s tip and
the given position. The written program also communicates via UART with the controller
of the feedback device. The software block diagram is presented in Figure 3.
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2.2. EEG System

The tests were conducted with the use of the EPOC+ EEG set from Emotiv. The cap
features 14 built-in electrodes + 2 reference electrodes. The electrodes are soaked in a saline
solution before testing. A 16-bit ADC transducer is responsible for changing the electric
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signal into digital information. The frequency response is in the range from 0.16 to 43 Hz.
In addition, a filter is implemented at 50 and 60 Hz. The EEG artefacts deriving from
eyeball movement were detected by using a built-in smart module implemented in the API
provided by the manufacturer based on a simplified EOG test. The author wrote software
that implemented axis selection via the SSVEP.

2.3. Steady-State Visual Evoked Potential (SSVEP)

Steady-State Visual Evoked Potential (SSVEP) is a method used in brain-computer
interfaces. It relies on a periodic measurement of evoked potentials generated by a human
in response to recurring visual stimulation. When using a brain-computer interface based
on such stimulation, the EEG displays a signal with a frequency corresponding to the
excitement and its harmonics [35]. It is assumed that the frequency should be higher than
10 Hz [36]. The commonly used stimulating elements include devices relying on flashing
light, such as an LED diode, flashing markers, or monitors with flashing chessboard
patterns [37]. This method can be used on a person tested without prior training. The
preliminary tests featured verification of the correct performance of the SSVEP method.
Figure 2 presents the Fast Fourier Transform (FFT) of a signal collected from an electrode
named Oz. Figure 4a presents the FFT when the LED diode is not flashing. Figure 4b
presents the FFT of an output signal for the same electrode when the white LED diode is
flashing with the frequency of 15 Hz.
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The program to handle SSVEP was written in the openVibe software. The algorithm
uses a spatial filter to select electrodes. The signal then passes through the Bandpass
Butterworth 4th order filter. The time-based epoching block breaks the signal into blocks.
The signal then goes to the feature aggregator block. A previously trained SVM was used as
the classifier. The same algorithm was used to learn the classifier. The signal flow diagram
is shown in Figure 5
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The SSVEP Signal Model can be represented as:

yi(t) =
Nh

∑
k=1

(ai,k sin 2πk f t + bi,k cos sin 2πk f t) + Ei,k (1)
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where f is the frequency, k is the harmonics, ai,k and bi,k is the amplitude and Ei,k is the
noise and artifacts.

2.4. Force Feedback Device

Since the robot’s tip is controlled via eyeballs, it is not always within the user’s field
of view. The related errors are especially visible when manipulating the robot’s tip near the
obstacle. The author decided to introduce force feedback. Power feedback is applicable
in other areas [38]. The purpose of the device was to invoke the impression of force
proportional to the signal from the robot’s tip. The signal can be derived from a force
sensor, if the test requires the recognition of force at the robot’s tip or from a distance sensor,
if the test requires the robot to be positioned without touching the surrounding elements.
The microcontroller collects data from the strain gauge bridge or distance sensor mounted
at the robot’s tip and it controls the servo in such a way that it moves the moving block.
Pulling out the block causes pressure on the skin of the examined person.

The developed system also enables using the current position collected from the
robot’s controller. For this purpose, a prototype force feedback device mounted on the
user’s shoulder was designed and built (Figure 6). In the case of this article, the pressure of
the movable block on the user’s skin is inversely proportional to the distance between the
robot tip and the obstacle (Figure 7). The closer the tip is to the obstacle, the more pressure
the device exerts on the user’s skin.
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2.5. Mitsubishi RV-12sl Industrial Robot in the Simulation Environment

The mathematical and graphical model was implemented in a Unity 3D environment.
Mitsubishi RV-12sl is a six-axis industrial robot. A table of parameters D-H, presented
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in Table 1, was developed for the implementation of inverse kinematics. The parameters
specifying the robot’s overall dimensions are presented in Figure 8.

Table 1. Table specifying Mitsubishi RV-12sl industrial robot’s parameters D-H.

i a [mm] α [rad] d [mm] θ [rad]

0 150 0 - -
1 0 π

2 −450 θ1
2 560 0 0 −π

2 + θ2
3 80 π

2 0 θ3
4 0 −π

2 −670 π + θ4
5 0 π

2 0 π + θ5
6 - - 97 θ6
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The inverse kinematics model was presented by the author in a previous article [39].

2.6. Changing the Robot’s Active Axis with Methods Utilising EEG and SSVEP Artefacts

The axle was changed using the SSVEP system. It utilized 3 lamps flashing at the
frequency of 15 Hz for axis X, 17 Hz for axis Y and 19 Hz for axis Z. Changing the active
axis is separate from the movement of the robot arm. In this version, the system cannot
simultaneously control the robot arm and change the active axis. It is impossible to select
the active axis and see the working area and vice versa at the same time. To change the axis
after the move was made, the user had to turn his head to the panel with the flashing lights.
An alternative to this solution was to blink the eyeballs to change the axis to the next one.
Tests showed, however, that this method is failing to detect errors caused by involuntary
blinking of the subjects.

2.7. Comparison of the Accuracy of Robot Model Tip Positioning with and without Feedback

Test featured a comparison of the accuracy of the Mitsubishi RV-12sl virtual robot tip
positioning with the use of feedback. Three people aged 30–40 took part in the research.
All of the test takers do not have problems with the brain or diseases. On the day of the
examination, they were refreshed and felt no discomfort. The test site was separated from
the noise. The test subject was instructed to move the tip towards the tip of a virtual
box within the shortest time possible. A combined 50 attempts were conducted for the
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enabled and disabled feedback module. The test station consisted of the Emotiv EPOC+
cap specified in the previous paragraph, feedback module mounted on the test subject’s
shoulder, and the kinematic model of the Mitsubishi RV-12sl industrial robot. A module
mounted on the test subject’s shoulder was used to obtain feedback. The robot’s graphical
model and inverse kinematics were implemented in the Unity environment. The software
transmitted information about the robot’s tip distance from the target cube to the feedback
module via a RS-232 interface. This allowed for the simulation of the distance sensor’s
operation in 3 axles. The virtual test station’s view in the program is presented in Figure 9.
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Figure 9. Sample robot movement in simulation environment during one of attempts.

The next test featured a comparison of the accuracy of the Mitsubishi RV-12sl real-life
robot tip positioning with the use of feedback (Figure 10) as well as its comparison with
the model’s results. Also, 50 attempts for the enabled and disabled feedback module
were conducted.
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Figure 10. Sample robot movement in real-life station for force feedback testing during one
of attempts.

2.8. Sort Items Using a Hybrid Brain-Computer Interface with Force Feedback Enabled

In the next test, the test person was tasked with sorting the balls using the tip of the
robot. The box was randomly selected by the system. The selected box was marked with a
green LED. In each sample, the test person was asked to sort 20 balls. A total of 60 trials
were conducted. The lowering of the ball was done by blinking the eyelids twice. Correct
and incorrect attempts were counted separately. In the case of incorrect attempts, the ball
missed the box, and the boxes were mixed up. The tests were carried out on a robot model
and then confirmed on a real robot. The robot was controlled in the same way as in the
previous point. Two scenarios were created. In the first one, all the boxes were on the same
height. The boxes were placed 0.7 m from the base of the robot. The distance between the
centers of the boxes was 0.37 m. The size of the boxes is 0.1 × 0.1 × 0.1 m. There were no
obstacles between the boxes. In the second scenario, the boxes were at different heights.
The first box is 0.45 m high, the second is 0.7 m, and the third is 0.5 m. Additionally, there
were obstacles above boxes 1 and 3. The distance between the centers of the boxes did not
change. The same people described in the previous point participated in this study. The
subjects conducted 20 trials each. Figure 11 presents the view of the robot model seen by
the test subjects.
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Figure 11. View of sort test performed on model. First scenario on left; second scenario on right.

In the tests on the real robot, the same distances were kept as in the tests on the model.
To maintain the same conditions, the user saw the image from two cameras placed in the
vicinity of the robot. The image from the cameras is presented in Figure 12.
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3. Results
3.1. Results of Tests Concerning the Accuracy of the Robot Model Tip Positioning with and
without Feedback

The measurements from 50 attempts were superimposed on a chart after being col-
lected. Figure 13 presents the results of virtual robot tip positioning both with enabled
and disabled feedback. The results are presented in three plains. The next step featured
statistical calculations which are presented in Table 2.

Table 2. Statistical results of a virtual robot’s tip positioning.

No Feedback Feedback

Average time 48.26 s 39.63 s
Standard deviation 10.12 s 9.83 s

Minimum time 30.60 s 20.40 s
Maximum time 64.40 s 54.30 s

Average distance 41.29 mm 9.00 mm
Standard distance deviation 13.12 mm 2.31 mm

Minimum distance 10.40 mm 4.48 mm
Maximum distance 65.58 mm 12.98 mm

The simulation tests were repeated on the industrial robot during the next test. The
measurements from 50 attempts were also superimposed on a chart after being collected.
Figure 14 presents the results of the robot tip positioning both with feedback enabled
and disabled. The results are presented in three plains. The next step featured statistical
calculations which are presented in Table 3. A sample trajectory of the robot’s tip movement
is presented in Figure 15.
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3.2. Results of Sorting Elements Using a Hybrid Brain-Computer Interface with Force Feedback
Turned on

During the research, runs from 60 trials were recorded. 20 balls were sorted for each
trial. The number of correctly and incorrectly sorted balls was also recorded. Erroneous
attempts were divided into errors resulting from missed boxes and balls thrown into the
wrong box. Figure 16 shows the position of the robot tip for one of the trials. The test
turned out to be not very complicated and after setting the arm at the appropriate height,
the movement took place only in the Y axis. The next step featured statistical calculations
which are presented in Table 4.
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Table 4. Statistical results of virtual robot tip positioning endpoints when trying to sort.

Model Real Robot

Average time 58.18 s 56.87 s
Standard deviation 8.75 s 8.50 s

Minimum time 40.40 s 38.10 s
Maximum time 75.40 s 69.90 s

Incorrectly sorted 25 (2.1%) 31 (2.6%)
Missing boxes 56 (4.7%) 60 (5%)
Total wrong 81 91

Correctly sorted 1119 (93.2%) 1109 (92.4%)
Flawless trials 16 (26.7%) 13 (21.7%)

Attempts with a maximum of 1 failure 33 (55%) 30 (50%)

The simulation tests were repeated on the industrial robot during the next test. As
in the previous test, the waveforms and information about the correctness of sorting for
60 trials were recorded. Due to the complexity of the test, the movement took place in more
than one axis. The course of one of the tests is shown in Figure 17. The next step featured
statistical calculations which are presented in Table 5.
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Table 5. Statistical results of robot tip positioning endpoints when trying to sort.

Model Real Robot

Average time 99.76 s 101.33 s
Standard deviation 11.51 s 11.27 s

Minimum time 80.70 s 70.90 s
Maximum time 118.80 s 129.20 s

Incorrectly sorted 38 (3.2%) 42 (3.5%)
Missing boxes 99 (8.25%) 102 (8.5%)
Total wrong 137 144

Correctly sorted 1063 (88.6%) 1056 (88%)
Flawless trials 12 (20%) 11 (18.3%)

Attempts with a maximum of 1 failure 25 (41.7%) 22 (36.7%)

4. Discussion
4.1. Discussion on the Results of Tests on the Accuracy of the Robot Model Tip Positioning with
and without Feedback

Previous robot arm control systems in the literature focused on making a movement
or selecting a predefined robot program. These articles did not focus on positioning the
robot with the system. In this study, subjects must carefully inspect and stop the robotic
arm as close to the box as possible. Therefore, the main goal of this work is to prove that a
hybrid BCI can provide satisfactory precision in robotic arm control to cope with difficult
daily tasks.

The presented results clearly demonstrate that substantially better results were ob-
tained with feedback enabled. Only a few attempts without using feedback can be com-
pared with attempts with feedback enabled. The average distance of the robot’s tip from
the target is 4.5 times lower with feedback enabled than with feedback disabled. Similar
results were obtained for the standard deviation. It is 5.5-times lower in favor of the test
with feedback enabled. The time for the attempts with feedback enabled is approximately
19% lower than for the attempts with feedback disabled.

The presented results for the real-life robot clearly demonstrate that substantially better
results were obtained with feedback enabled, as was in the simulation tests. Similar to
previous tests, most attempts with feedback disabled substantially deviated from attempts
with feedback enabled. The average distance of the robot’s tip from the target is 4 times
lower with feedback enabled than with feedback disabled. Similar results were obtained
for the standard deviation. It is 3.9-times lower, in favor of the test, with feedback enabled.
The time taken for attempts with feedback enabled is approximately 24% lower than for
attempts with feedback disabled.

A similar result can be observed when comparing the simulation test results with the
real-life robot test results. In both cases, the results with enabled feedback are better than
those with feedback disabled for both times and distances.

4.2. Discussion on the Results of Sorting Elements Using a Hybrid Brain-Computer Interface with
Force Feedback Turned on

Most BCI systems only allow the selection of predefined programs. This article
presents robot control in simulated working conditions consisting in sorting elements.
Such systems may help people with disabilities in the future.

The results of the research on sorting on the virtual model are reflected in reality.
Correct sort attempts were maintained at 90% for both tests. Most of the errors were due
to the small size of the box and the user’s insufficient field of view. The time of the trials
depended on the level of complexity of the traffic that had to be performed. Longer trials
were observed when there were obstacles on the board and the boxes were at different
heights from the ground. The test duration in the second scenario was 71% longer for the
model and 78% longer for the real robot. Standard deviation was greater by about 30% in
scenario number 2. Such results were obtained both on the model and the real robot. In
both scenarios, the errors resulting from choosing the wrong box amount to around 3%.
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Most of the errors resulting from throwing the ball into the wrong container resulted from
the accidental triggering of the throwing down trigger. There was a significant increase in
errors in the second scenario resulting from missing the box. The number of failed attempts
is approx. 70% higher. This situation results from covering part of the field of view with
obstacles. The tests showed a low level of effectiveness when the samples were fully valid.
Only approx. 25% of the trials for scenario number 1 and approx. 20% of trials for scenario
number 2 were flawless. A much higher result was obtained for trials with a maximum
of one error. In this case, it was approx. 50% of the trials for the scenario number 1 and
approx. 40% of the trials for the scenario number 2. The results in both cases were lower
for the scenario number 2. This was due to insufficient field of view by the user.

5. Conclusions

The built hybrid brain-computer system enables the sorting of objects using signals
from the human body with a correctness of 90%. For better results, the author intends to
focus on increasing the user’s field of view. Such systems can allow a disabled person to
return to work.
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