| Algorithm 1 Learning Procedure of the Proposed Framework |
| Input: Dataset (ꭙ1, ꭙ2, ꭙ3), (ƴ1, ƴ2, ƴ3) |
| Output: Trained model Ɯ, ∫ |
| 1. Initialize projector Ɯ and predictor ∫; |
| 2. repeat |
| 3. Sample ϰ1→Ƭ, ꭚ1→Ƭ from ꭙ1, ƴ1, respectively; |
| 4. ΘƜ←ΘƜ -∂/∂ ΘƜ (ψ); |
| 5. Θ∫←Θ∫ -∂/∂ Θ∫ (ψ); |
| 6. Until ΘƜ, Θ∫ converge |
| 7. return Ɯ, ∫ |