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Abstract

In positron emission tomography (PET), gating is commonly utilized to reduce respiratory motion 

blurring and to facilitate motion correction methods. In application where low-dose gated PET is 

useful, reducing injection dose causes increased noise levels in gated images that could corrupt 

motion estimation and subsequent corrections, leading to inferior image quality. To address these 

issues, we propose MDPET, a unified motion correction and denoising adversarial network for 

generating motion-compensated low-noise images from low-dose gated PET data. Specifically, 

we proposed a Temporal Siamese Pyramid Network (TSP-Net) with basic units made up of 1.) 

Siamese Pyramid Network (SP-Net), and 2.) a recurrent layer for motion estimation among the 

gates. The denoising network is unified with our motion estimation network to simultaneously 

correct the motion and predict a motion-compensated denoised PET reconstruction. The 

experimental results on human data demonstrated that our MDPET can generate accurate motion 

estimation directly from low-dose gated images and produce high-quality motion-compensated 

low-noise reconstructions. Comparative studies with previous methods also show that our MDPET 

is able to generate superior motion estimation and denoising performance. Our code is available at 

https://github.com/bbbbbbzhou/MDPET.
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I. Introduction

Positron emission tomography (PET) is a commonly used functional imaging modality 

with wide applications in oncology, cardiology, neurology, and biomedical research. PET 

scans require injection of a small amount of radioactive tracer to patients, introducing 

radiation exposure to both patients and healthcare providers. By reducing the administered 

injection dose, low-dose PET is of-great-interests according to the As Low As Reasonably 

Achievable concept (ALARA) [1], in particular for applications of serial PET scans to 

measure response to therapy. Since the data acquisition typically takes 10 to 20 minutes, 

the patient’s respiratory motion in the thorax and upper abdomen areas inevitably introduces 

blurring in the reconstructed images, affecting subsequent diagnosis and treatments [2]. 

Respiratory gating facilitated by external motion monitoring devices, such as Anzai [3], is 

typically used to provide gated images with reduced respiratory motion effect. The gated 

image that shows minimum motion effects is then used for clinical interpretation. However, 

the interpretation can still be hampered by the increased image noise level as each gated 

image is generated by only a fraction of all detected events. To tackle the issue, previous 

works proposed approaches involving an initial image reconstruction for each gate followed 

by an image registration for motion estimation among different gates. The motion vectors 

derived from the image registration were then utilized to average transformed images or 

incorporated into a final reconstruction to generate a motion compensated image with 

all events. In addition to using the conventional non-rigid image registration algorithms 

[4]–[7], deep learning based methods were explored recently as well [8], [9]. However, 

the noisy gated images could lead to inaccurate motion estimation and alignment errors. 

In applications of low-dose gated PET, this makes extending the previously mentioned 

approaches for motion estimation/correction challenging because the noise level is further 

increased in each gated images. The highly noisy gated image could lead to non-ideal 

motion estimation results by previous methods, and could subsequently degrade the final 

motion-compensated reconstructions. Moreover, in low-dose gated PET, denoising methods 

should also be applied to the final motion-compensated image reconstructed with all events 

because there are limited events from low-dose data.

Previous works on denoising low-dose PET can be summarized into two categories: 

conventional image post-processing [10]–[12] and deep learning based methods [13]–[22]. 

Conventional image post-processing techniques, such as Gaussian filtering, are standard 

techniques in practice, but have challenges to preserve local structures. Non-local mean 

filter [10] and block-matching 4D filter [11] were proposed to denoise low-dose PET 

while better preserving the structural information. Although these conventional image 

post-processing methods may substantially improve the image quality, over-smoothing is 

often observed in ultra-low-dose data. Recently, deep learning techniques have achieved 

promising performance in medical imaging applications, such as reconstruction [23]–[27], 

segmentation [28]–[30], registration [31] and denoising [32]. As the statistical characteristics 

of noise in medical imaging is complex and hard to model, deep learning models can learn 

the highly non-linear relationship from data and recover the original signal from noise. For 

deep learning based low-dose PET denoising, previous works can be further divided into 

two categories. The first category only uses the low-dose PET data as input. Kaplan and 
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Zhu [16] proposed using a GAN [33] with UNet [28] as generator to predict standard-dose 

PET images from low-dose PET images. Similarly, Wang et el. [14] proposed using a 

3D-conditional-GAN [34] also with UNet as generator to translate low-dose PET images 

to standard-dose PET images. In addition to GAN, Ouyang et el. [20] further improves 

the denoising performance by incorporating patient specific diagnosis information. Zhou et 
el. [19] and Gong et el. [18] found incorporating Wasserstein GAN [35] can also achieve 

promising low-dose PET denoising performance. Furthermore, Hu et el. [17] proposed 

a DPIR network that directly predicts the standard-dose PET image from low-dose PET 

sinogram data. The second category uses the low-dose PET images and MR/CT images as 

input. Xiang et el. [13] proposed a deep auto-context CNN that takes low-dose PET image 

and T1 MR image as input for prediction of standard-dose PET image. Similarly, Chen et 
el. [21] proposed to input low-dose PET images along with multi-contrast MR images into 

a UNet [28] for ultra-low-dose PET denoising. Cui et el. [36] suggested to use a UNet 

to iteratively predict the denoised PET from the CT image. Comparing to conventional 

PET denoising methods, all these deep learning based methods achieved superior denoising 

performance on static low-dose PET.

However, none of the above mentioned studies addressed motion estimation and denoising 

in low-dose respiratory gated PET. Recently, our group proposed a Siamese Adversarial 

Network (SAN) to estimate the motion between pairs of low-dose gated images by first 

denoising the low-dose gated images and estimating the motion based on them [37]. One 

limitation of this approach is that the motion estimation network only considers pairs of 

gated images for registration and relies on high-quality denoised images of each gates, while 

disregarding the temporal information over the gated images. The temporal information 

containing respiratory motion patterns may be potentially helpful for motion estimation 

tasks. Therefore, it is desirable to develop a motion estimation algorithm that does not 

rely on denoised low-dose gated images and can directly estimate the motion from original 

low-dose gated images, while incorporating the temporal information among gates. With 

accurate motion estimation from low-dose gated images, we can register the low-dose 

gated images to a reference low-dose gated images and average all the aligned low-dose 

gated images to generate a motion-compensated PET image with preliminary denoising. 

This image can be fed into another deep network for further denoising. The general 

pipeline of the idea is illustrated in Figure 1. In this work, we design a unified motion 

correction and denoising adversarial network for low-dose gated PET, called MDPET. As 

illustrated in Figure 2, our MDPET is a unified network consisting of a Temporal Siamese 

Pyramid motion estimation network (TSP-Net), a denoising network, and a discriminator. 

Specifically, our TSP-Net consists of multiple shared-weights Siamese Pyramid Networks 

(SP-Net) and a bi-directional LSTM (Figure 3). Each SP-Net predicts the transformation 

field between the source gated image and the reference gated image by utilizing the coarse­

to-fine pyramid features from pairs of low-dose gated images. After registering all the source 

low-dose gated images with the reference low-dose gated image via Spatial Transformation 

Layers (STL) [38], the average image is fed into the denoising network for generation of our 

final motion-compensated denoised PET image. The network structure and training details 

are described in the following sections. The experimental results on human data demonstrate 
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that our MDPET can accurately estimate the motion from low-dose gated images and 

generate high-quality motion-compensated PET images.

II. Problem Formulation

As illustrated in Figure 1, assuming a phase gated PET scan generates 6 gates, we denote 

high-dose gated images and low-dose gated images as Hn, Ln ∈ ℝℎ × w × d with gate index of 

n ∈ {1, 2, 3, 4, 5, 6} and image size of h × w × d. Here, typical end-expiration gate 4 with 

the least intra-gate motion is used as our reference gate, and we denote Href = H4 and Lref = 

L4, respectively.

First, our goal is to accurately estimate a set of transformation fields Tn between Lref and Ln 

with n ∈ {1, 2, 3, 5, 6}. Denoting our motion estimation model as PT S P  parameterized by 

θTSP, the transformation fields can be described as:

T1, ⋯, Tn = PT S P L1, ⋯, Ln; Lref, θT  S P (1)

Each transformation field Tn is used to deform the low-dose gated image Ln to generate an 

average image Lavg:

Lavg = 1
N Lref + ∑

n ≠ ref
Tn ∘ Ln (2)

where N = 6 for 6 gates in our experiments. Then, our goal is to denoise the motion­

compensated low-dose averaged image and generate a high-quality final PET image. 

Denoting our denoising model as PDN parameterized by θDN, the denoised motion 

compensated average low-dose image is given by:

Hsyn = PDN Lavg; θDN (3)

Our customized motion estimation model PT S P , denoising model PDN, and the unified 

training strategy are discussed in details in the following section.

III. Methods

A. Unified Motion Estimation and Denoising Adversarial Network

The general pipeline of our unified motion estimation and denoising network (MDPET) is 

illustrated in Figure 2. Our MDPET consists of a motion estimation module and a denoising 

module. The two modules are unified and trained in an end-to-end fashion.

1) Motion Estimation Network: We build a Temporal Siamese Pyramid Network 

(TSP-Net) consisting of basic units of Siamese Pyramid Network (SP-Net) and a 

Bidirectional Convolutional Long Short Term Memory (BiConvLSTM) [39]. Each SP-Net 

is responsible for generating features for predicting the transformation between each source 

low-dose gated image Ln and the reference low-dose gated image Lref with all SP-Nets 
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share the same network parameters. Details of our SP-Net are provided in Figure 3. In 

general, our SP-Net has two input branches for generating coarse-to-fine pyramid features 

of the reference low-dose gated image Lref and the source low-dose gated images Ln 

separately. Then, the coarse-to-fine pyramid features are fed into our decoder for estimating 

transformation, similar to the image pyramid used in traditional image registration methods 

[40]. More specifically, we use two 3D UNet in each SP-Net for generating 5 levels of 

pyramid features with goals of learning coarse-to-fine features and denoising the input 

images for robust feature representations. To achieve these goals, the finest decoded feature 

maps from the source low-dose image Ln and the reference low-dose image Lref are passed 

through two 1-channel 3D convolutional layers, and the outputs H are supervised by the 

high-dose gated images H with mean square error loss (MSE):

ℒS Pn = ℒref + ℒsrcn (4)

= 1
H ∑

p
Href(p) − Href(p) 2

(5)

+ 1
H ∑

p
Hsrcn(p) − Hsrcn(p) 2

(6)

where p denotes the voxel location in the images. |H| is the number of voxel in each 

image. n is the index of the gates. ℒref and ℒsrcn are the losses for reference gated image 

branch and source gated image branch, respectively. As illustrated in Figure 3, the pyramid 

feature maps from the UNet’s decoder successively recover the original high-dose signal 

from the low-dose signal, thus providing noise-reduced feature representations at different 

levels. Then, the coarse-to-fine pyramid features from the reference image and source 

image are successively fused together and decoded to generate features for predicting the 

transformation.

While each SP-Net generates features for predicting the transformation between the 

reference low-dose image and one of the source low-dose gated images, the adjacent and 

non-adjacent SP-Net’s features can provide additional non-local information, such as motion 

pattern in a full respiratory cycle, which can be potentially helpful for accurate motion 

estimation over low-dose gated images. Recurrent convolutional neural network, such as 

BiConvLSTM, is able to learn the feature pattern among correlated data samples over 

time. The cell state of BiConvLSTM allows temporal feature from adjacent or non-adjacent 

frames to be transferred along forward and backward temporal directions. Therefore, we 

concatenate a 3D BiConvLSTM to the output features of the SP-Nets to allow the temporal 

feature exchange from different gate’s motion estimation features (TSP-Net). The output 

features with 32 channels, as shown in Figure 2, are then fed into convolutional layers with 3 

channels of output for predicting the transformation fields Tn over the gates.
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For each gate, the spatial transformation layer [38] transforms both the high-dose gated 

image Hn and the low-dose gated image Ln with the predicted transformation field Tn from 

the TSP-Net. The loss function for supervising the motion estimation here can be written as:

ℒreg = ∑
n

ℒregn = ∑
n

ℒsimn + λℒsmootℎn (7)

with

ℒsimn = 1
H ∑

p
Href(p) − Hn(p) 2

(8)

= 1
H ∑

p
Href(p) − Tn ∘ Hn (p) 2

(9)

ℒsmootℎn = ∑
p

∇Tn(p) 2
(10)

where n is the index of the gates. Hn is the transformed Hn with transformation field 

Tn. ℒsimn is the mean square error in image appearance, and ℒsmootℎn is a deformation 

regularization that adopts a L2-norm of the gradient of the transformation field Tn with a 

weighing term of λ. As suggested in [9], we empirically set λ = 0.01 in our experiments.

2) Unified With Denoising Network: As mentioned above, the spatial transformation 

layer simultaneously transforms the low-dose gated image Ln with the predicted 

transformation field Tn from TSP-Net. Then, a motion-compensated low-dose gated image 

can be generated with:

Lavg = 1
N Lref + ∑

n ≠ ref
Tn ∘ Ln . (11)

where N = 6 for 6 gates setup in our experiments. While Lavg with 6 fold counts 

can significantly reduce the low-dose image’s noise, we further reduce the image noise 

by feeding Lavg to a denoising network. As UNet [28] has demonstrated outstanding 

performance in low-dose PET denoising [15], we adapt UNet as our denoising network 

in this work. However, our denoising network is not limited to UNet and can be substituted 

by other networks as well. The denoising loss can be formulated as:

ℒDN = 1
H ∑

p
Href(p) − Hsyn(p) 2

(12)

= 1
H ∑

p
Href(p) − G Lavg (p) 2

(13)
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where G is our denoising network and Hsyn is the denoised image generated from Lavg. 

Moreover, we incorporate a patch discriminator D for adversarial learning on the denoising 

output [34]. To achieve stable adversarial training, we used the LSGAN adversarial loss [41] 

that can be formulated as:

ℒadv = D(Href) − 1 2 + D(G(Lavg) 2
(14)

Unifying the denoising network and the motion estimation network allows the denoising 

supervised gradient to back-propagate to the motion estimation network. As the denoising 

result relies on an accurate motion estimation over low-dose gated images and the 

alignment, the unified motion estimation and denoising adversarial network can be mutually 

beneficial. Therefore, the total loss for training our MDPET can be written as:

ℒtot = λDNℒDN + λadvℒadv + λregℒreg + λSP ∑
n

ℒSPn (15)

where the weighting parameters are empirically set to λDN = 10, λadv = 1, λreg = 5, and λSP 

= 0.2 for a balance adversarial training.

B. Evaluation on Human Data

We included 28 pancreas 18F-FPDTBZ [42] PET/CT studies. All PET data were obtained 

in list mode using the 4-ring Siemens Biograph mCT scanners located at the Yale PET 

Center. External respiratory motion was tracked using the AZ-733V respiratory gating 

system (Anzai Medical, Tokyo, Japan). The Anzai respiratory trace was recorded at 40 

Hz for all subjects. The averaged dose administered to the patients is 9.13±1.37 mCi. 

Our patient dataset consists of 15 healthy patients and 13 Type-2 diabetic patients. All 

studies were approved by the Institutional Review Board and Radiation Safety Committee 

at Yale University. The total acquisition time was 120 mins for each study. We used 

phase gating to generate 6 gates for each study. To eliminate the mismatch between the 

attenuation correction (AC) map and the gated PET images, instead of using CT images 

to derive the AC-map, we utilized the maximum likelihood estimation of activity and 

attenuation (MLAA) [43] to generate AC-map for each gated volume to ensure phase­

matched attenuation correction. The CT-derived AC-map was used as initial estimation for 

MLAA iterations. The high-dose images were reconstructed with 100% of the listmode 

data mimicking high radiation dose data with a large amount of tracer injection. Thus, 

each high-dose gated image was reconstructed with about 16.67% of the listmode data. The 

low-dose images were reconstructed with 1.5% of the listmode data with uniform sampling. 

Thus, each low-dose gated image was reconstructed with about 0.25% of the listmode data. 

Each dataset was reconstructed into a 400 × 400 × 109 volume with voxel size of 2.032 × 

2.032 × 2.027 mm3 using ordered subset expectation maximization (OSEM) with 21 subsets 

and 1 iteration. The central 200 × 200 × 109 voxels were cropped to remove most voxels 

outside the human body contour. The resulted image was then resized to 96 × 96 × 96 

voxels. The end expiration gate (typically Gate 4) was used as the reference gate since it 

shows minimum intra-gate motion.
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We performed four-fold cross validation with each fold consisting of 7 studies. During 

each validation, 21 studies were used for training and 7 studies were used for testing. The 

evaluation was performed on all 28 studies with 6 gated images in each study. For motion 

estimation evaluation, the transformation fields estimated from low-dose gated images were 

used to transform the corresponding high-dose gated images, and then the Normalized 

Mean Absolute Error (NMAE) were computed between the reference high-dose gated image 

and the transformed high-dose gated images. For comparative study, we compared our 

motion estimation results against VoxelMorph (VM) [9], the previously proposed Siamese 

Adversarial Network (SAN) [37], and a non-deep learning based Non-Rigid B-spline 

Registration (NRB) implemented in BioImage Suite [40]. VM is a deep learning based 

registration framework that exhibits top-performance in a wide range of medical imaging 

applications. With NRB, we used normalized mutual information as the similarity metric 

and we set the parameter of control point spacing to be 15mm, same as the optimized 

parameters demonstrated in [7]. For denoising evaluation, we computed the Peak Signal-to­

Noise Ratio (PSNR), Structural Similarity Index (SSIM), and NMAE between our final 

synthetic high-dose image and the reference high-dose gated image.

C. Implementation Details

We implemented our method using Pytorch [44]. We used the ADAM optimizer [45] with 

a learning rate of 10−4. We set the batch size to 1 with each training batch consisting of 

gated images from one patient. We first pre-trained the TSP-Net by setting λDN = λadv = 

0. Then, we pre-trained the denoising network using the predicted averaged images from 

our pre-trained TSP-Net and its denoising ground-truth. Finally, the pre-trained TSP-Net 

and denoising network were loaded into MDPET to train in an end-to-end fashion. Our 

model was trained on an NVIDIA Quadro RTX 8000 GPU for 200 epochs. To prevent 

overfitting, we also implemented ‘on-the-fly’ data augmentation for all the training steps. 

During training, we first resized the image to 106 × 106 × 106 and performed 96 × 96 × 96 

random cropping, and then randomly rotated the images along the z-axis with angle between 

−30 to 30 degrees.

IV. Results

A. Motion Estimation

A sample set of low-dose gated PET images with and without applying the deformation 

fields predicted by our MDPET network is shown in Figure 4. The corresponding averaged 

images are provided as well. To assist the evaluation, difference images between the 

reference gate and each source gate with and without applying the transformation fields 

were calculated using the corresponding high-dose gated images. As we can see from 

the first row of Figure 4, the low-dose gated images with only 0.25% count level are 

noisy. Although directly averaging the low-dose gated images reduced the noise, important 

anatomical structure or pathological findings were blurred. As shown in the second row 

of Figure 4, our MDPET can accurately predict and deform each low-dose gated image 

to the reference low-dose gated image (L4), leading to sharper anatomic boundaries in the 

averaged image. Moreover, without applying the predicted deformation fields, significant 

amounts of misalignment can be observed between the reference gate and Gate 1 / Gate 6 / 
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Gate 2 due to the position difference between expiration and inspiration motion (Figure 4, 

third row). The bright and dark intensity difference at the top and bottom of the kidney and 

liver indicated the error caused by the inter-gate motion. On the other hand, the position 

difference between the reference gate and Gate 3 / Gate 5 was small because the expiration 

phase is relatively long and steady. After applying the MDPET-predicted transformation 

fields, as illustrated in the fourth row, the differences in H were significantly reduced for the 

gates with large position difference. Specifically, the bright and dark errors at the top and 

bottom of the kidney and liver were reduced. The remaining differences were largely due to 

the different amount of intra-gate motion, which is larger for inspiration gates, i.e. Gated 1 / 

Gate 6 / Gate 2 in our experiments.

The results of the proposed MDPET were compared with those of VM [9], NRB [40], and 

SAN [37]. Similar to the third and fourth rows of Figure 4, we used the difference image 

between H with and without applying the deformation to visualize the motion estimation 

errors (Figure 5). Two coronal slices containing different organs of interest are provided 

to assist the visual comparison. As we can see from the results for Gate 1 and Gate 6 in 

which large motion displacement was observed, even though VM and NRB were able to 

reduce the position difference in the kidney, liver and pancreas, they introduced additional 

misalignments in the spine regions that should remain unmoved over the scan. From the 

results of Gate 3 with minimal motion displacement, VM and NRB introduced additional 

misalignments. On the other hand, our previously proposed method, SAN, was able to better 

align the kidney, liver, and pancreas with less misalignments in the spine region for Gates 

1, 3 and 6. The MDPET network further reduced the small residual misalignment errors in 

SAN for all the gates, providing superior motion estimation results as compared to other 

methods (Figure 5, bottom row).

The quantitative results are summarized in Table I. Similar to the assessment in Figure 5, 

we used the transformation field Tn estimated from low-dose gated images Ln to transform 

the corresponding high-dose gated images Hn to minimize the impact of noise on motion 

vector evaluation, and calculated the NMAE between the reference high-dose gated image 

Href and the transformed high-dose gated images Hn. For Gate 1 and Gate 6 with large 

intra-gate motion, our MDPET was able to significantly reduce the NMAE from 0.185 

to 0.110 for Gate 1 and from 0.136 to 0.091 for Gate 6, demonstrating superior motion 

estimation performance than SAN, VM and NRB. For gates with small or no intra-gate 

motion, such as Gate 3, our MDPET could maintain the overall alignment and finely adjust 

the small misalignment in local regions. Thus, we observed small NMAE reduction for 

Gate 2, Gate 3 and Gate 5 when using our MDPET. In contrast, NRB and VM both led to 

degradation of NMAE for Gate 2, Gate 3, and Gate 5. The results were even worse than 

those without applying motion estimation. For example, NRB increased NMAE from 0.065 

to 0.121 at gate 3. Previous methods of VM and NRB are limited for accurate registration 

in the low-dose gated images, and our MDPET can generate reasonable registration across 

all the gates. The run time analysis is summarized in the last two columns of Table I. NRB 

with iterative optimization required the longest run time, about 1489 seconds on average 

using CPU. On the other hand, deep learning based VM and SAN could directly infer the 

transformation once the models are trained, thus requiring much shorter run time on CPU 
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or GPU. Unlike VM and SAN that required 5 times of inference over different gates, our 

MDPET used all the gated images at once, thus further reducing the GPU run time to 0.54 

seconds on average.

We also performed ablation study on motion estimation for our MDPET. The results are 

summarized in Table II. As we can see, the BiConvLSTM in our TSP-Net could improve 

the motion estimation performance. The performance was slightly further boosted by the 

additional adversarial learning. However, adding BiConvLSTM slightly increased the GPU 

run time from 0.38 seconds to 0.54 seconds.

B. Denoising Different Motion-Compensated Images

After motion prediction, the averaged image of the transformed low-dose gated images was 

inputted into the denoising network to further reduce the noise. In Figure 6, we compared 

our MDPET results with other two-stage processing methods, including UNet denoising 

on the averaged image based on the NRB-derived transformation fields (NRB+UNet), 

UNet denoising on the averaged image based on the VM-predicted transformation fields 

(VM+UNet), and UNet denoising on the averaged image based on the SAN-predicted 

transformation fields (SAN+UNet). In NRB+UNet, the UNet was independently trained 

with paired motion-compensated averaged images from NRB and the ground truth high-dose 

image. The same UNet training protocol was used in VM+UNet and SAN+UNet. As 

observed in the figure, NRB+UNet and VM+UNet could reduce the global noise level. 

Subtle anatomic details, such as liver veins, were hard to observe for these two methods 

given the signal could have already been blurred out by motion in the input averaged image. 

On the other hand, in addition to reducing the global noise level, both SAN+UNet and our 

MDPET can better preserve anatomical details in the final image by efficiently reducing the 

motion blurring in the input averaged image. Our MDPET can generate anatomic details that 

best match with the ground-truth in terms of shape and intensity.

The quantitative results are summarized in Table III. In addition to UNet, we also 

explored the application of GAN with the same UNet generator in the two-stage methods, 

since adversarial learning is also implemented in our MDPET. Therefore, the quantitative 

results of our MDPET were compared not only with those of NRB+UNet / VM+UNet / 

SAN+UNet, but also with those of NRB+GAN / VM+GAN / SAN+GAN. As we can see, 

the evaluated image quality metrics were slightly improved while applying any of the 

two-stage processing methods, regardless of the incorporated image denoising network. 

The two-stage processing methods can reduce the NMAE from 0.17 to about 0.08. 

However, in the two-stage processing methods, changing the denoising network from 

UNet to GAN does not lead to significant improvements. On the other hand, our MDPET 

unifying motion estimation and denoising demonstrated the superior performance with mean 

NMAE=0.088, SSIM=0.966, and PSNR=32.28. Note that the image quality metrics for 

our MEPET’s averaged image (✓Ours+✗DN) were worse than those for NRB’s averaged 

image (✓NRB+✗DN) and VM’s averaged image (✓VM+✗DN). However, the denoising 

results based on our MDPET’s averaged image demonstrated the best performance. This 

is caused by the fact that NRB and VM register the image merely based on the image 

appearance, including anatomical structure and noise. Registering the noise will result in 
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smoother averaged image, thus generating better image quality metrics for NRB and VM. 

Our MDPET registration can mitigate the impact from noise, thus providing averaged image 

with better anatomic details for denoising. The boxplot of our comparison results along with 

statistical analysis are summarized in Figure 7.

We also performed ablation study on denoising for our MDPET. The results are summarized 

in Table IV. According to Table II in the previous section, incorporating BiConvLSTM could 

improve the motion estimation performance thus generating sharper averaged image for 

denoising. Therefore, as we can observe from Table IV, adding BiConvLSTM could produce 

better image quality over the baseline MDPET. Moreover, adding adversarial learning could 

further improve the denoising performance. Three human subjects are illustrated in Figure 

8. Overall, our MDPET with both BiConvLSTM and adversarial learning achieved the best 

motion estimation and denoising performance.

V. Discussion and Conclusion

In this work, we proposed a unified motion estimation and denoising adversarial network, 

called MDPET, for generating motion-compensated low-noise PET image from low-dose 

respiratory gated PET. First, we developed a motion estimation module, TSP-Net, that 

can reliably estimate the motion from the low-dose gated images, which also incorporates 

the temporal motion features to improve the motion estimation. The basic unit of SP-Net 

in TSP-Net utilizes the denoised coarse-to-fine pyramid features to generate the motion 

features for each gate. Our TSP-Net then takes the motion features from each SP-Net into 

a recurrent layer to learn the temporal motion relationship over the gates, thus generating 

accurate motion estimation for all gates at once. Second, we unify the motion estimation 

network with a denoising network to directly generate motion-compensated low-noise 

PET images. Specifically, the gated images are deformed using the transformation fields 

predicted by TSP-Net and averaged such that all the counts in low-dose scan can be utilized 

to reduce the noise. Then, the averaged image is fed into a denoising network to further 

reduce the noise. A discriminator is added to the denoising output to enable adversarial 

learning for both motion estimation and denoising in our MDPET.

We demonstrated successful application on low-dose respiratory gated PET with evaluations 

on both motion estimation and denoising. For motion estimation, we compared with other 

previous motion estimation methods, including NRB, VM, and SAN. NRB and VM are 

not robust to noise in the low-dose gated images, thus leading to significant increases 

in registration errors in Gate 2 / Gate 3 / Gate 5, as illustrated in Table I. SAN with 

denoising first then motion estimation leads to better motion estimation as the noise in the 

low-dose gated images was first suppressed. However, SAN requires two-steps processing 

and requires 5 times inference for each study. On the other hand, our MDPET was able 

to generate superior motion estimation over all respiratory gates with the shortest inference 

time of 0.5 seconds. Ablation studies also demonstrated that adding the recurrent layer for 

temporal motion feature learning allows our MDPET to generate better motion estimation. 

For denoising, we compared our end-to-end denoising output with conventional two-stage 

processing methods, i.e. motion estimation then denoising. Because the motion estimation 

of NRB and VM are prone to error due to high noise level in the low-dose gated images, 
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their averaged image may have already suffered from residual motion blurring and the 

denoising network cannot recover the motion blurred signals. The denoising results from 

SAN’s averaged images are more reasonable as SAN can better align the low-dose gated 

images. However, the motion estimation and final denoising are in two separate stages. 

The denoising network trained separately may not be able to correct the residual motion 

blurring in the averaged image. In this case, our MDPET is an end-to-end framework and 

the denoising output based on our motion-compensated averaged image provides the best 

reconstructed image quality with PSNR = 32.28.

The presented work also has potential limitations. First of all, the denoising result is still 

not as distinct as the ground truth from high-dose gated image. In our current MDPET 

implementation, we use UNet as our denoising network because its efficiency has been 

extensively studied and demonstrated in literature [15]. However, the denoising network in 

our MDPET is interchangeable with other advanced denoising networks [13], [17], [46], 

[47] to potentially further improve the image quality. Moreover, perceptual loss [17] could 

also be incorporated into the MDPET to help further recover the image details. However, 

perceptual loss is currently only available for 2D image but not 3D imaging data as in 

our work. In addition, more patient data could be collected for training our MDPET in 

the future for further improving the performance. Secondly, our work only addressed the 

inter-gate motion (motion between gates) but not the intra-gate motion (motion within each 

gate) for low-dose gated PET. The gated images may already suffer from intra-gate motion 

blurring, potentially affecting our inter-gate motion estimation and the subsequent denoising. 

Although we have chosen the end-expiration gate image with the least intra-gate motion as 

the ground truth for supervising the MDPET’s output to mitigate the impact, future work 

could also consider event-by-event listmode based correction to further limit the amount of 

intra-gate motion in each gate. Finally, current image reconstructions were based OSEM 

with 1 iteration. Additional iteration numbers and filtering settings need to be investigated in 

our future work.

Our MDPET also suggests several potential clinical applications for our future studies. 

First of all, since MDPET could generate high-quality motion compensated PET image 

under low-dose injection protocol, our generated image is potentially useful for diagnosis 

purposes, especially for abdominal regions where respiratory motion is inevitable. Second, 

our MDPET is also potentially useful for registering continuous bed motion (CBM) multi­

pass for whole body dynamic PET. To elaborate, each CBM pass is scanned with a 

short time period (2–5 min) that contains a high noise level, similar to low-dose gated 

PET. The respiratory motion is inevitable in a CBM acquisition. Thus, our method can 

potentially apply to CBM inter-pass and intra-pass motion correction. Lastly, our method 

could potentially be adapted to deviceless low-dose gating reconstruction as well.

In conclusion, we proposed a unified motion estimation and denoising adversarial network 

for low-dose gated PET. The experimental results using human data show that our MDPET 

can accurately estimate the motion over the noisy low-dose gated images and simultaneously 

produce high-quality motion-compensated denoised PET image. Future work would also 

investigate the potential of further improving the performance of MDPET by substituting our 
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current MDPET framework with different state-of-the-art motion estimation and denoising 

sub-networks on different applications.
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Fig. 1. 
Illustration of phase gated PET and the proposed method. The Anzai signal (red curve) 

can guide the assignment of the detected events to different respiratory phases and generate 

6 gated images. End-expiration gate with the least intra-gate motion (G4) is used as our 

reference gate. Our goal is to register all the low-dose gated images to the reference gate, 

averaging them, and denoise the averaged image to generate a high-dose gated image at the 

reference gate with the least intra-gate motion.
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Fig. 2. 
The overall structure of our unified motion correction and denoising network (MDPET). 

The reference gate low-dose image Lref and N-th gate low-dose images Ln are fed into 

each Siamese Pyramid Network (SP-Net) within our Temporal Siamese Pyramid Network 

(TSP-Net). The predicted transformation fields Tn simultaneously transform the paired Ln 

and Hn. The transformed low-dose gated image Ln are averaged and subsequently fed into 

the denoising network for denoising. Our MDPET is trained in a unified fashion with 

registration loss ℒreg, denoising loss ℒDN, and adversarial loss ℒadv combined.
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Fig. 3. 
Design of our Siamese Pyramid Network (SP-Net). 5 levels of pyramid features are 

generated from the reference low-dose gated image Lref and the source low-dose image 

Ln. Generation of pyramid features are supervised by the reference high-dose image Href and 

the source high-dose image Hn. The pyramid features are fused and decoded to generate the 

transformation features. The number of feature channel is denoted inside the feature map. 

The spatial resolution of each feature map with respect to the input image is printed next to 

the feature map.
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Fig. 4. 
Low-dose gated image before and after deformation by our MDPET. The unregistered 

low-dose gated images Ln and the corresponding averaged image Lavg are shown in the 1st 

row. The deformed low-dose gated image Ln and the corresponding averaged image Lavg 

are shown in the 2nd row. The predicted transformations are applied to the corresponding 

high-dose gated images Hn, where the difference of H between reference gate and source 

gate are visualized. The difference of H before and after registration over all gates are 

shown in the 3rd and 4th row, respectively. The motion blurred regions are indicated by gray 

arrows.
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Fig. 5. 
Comparison of registration errors between previous registration methods and our MDPET 

over Gate 1, Gate 3, and Gate 6 at kidney, liver, and pancreas regions. From top to bottom: 

without registration, VM [9], NRB [40], SAN [37], and our MDPET. Using NRB and VM, 

misalignment errors can be found in spine region at gate 6 (red arrows), and additional 

misalignment errors are introduced in kidney, liver and pancreas regions at Gate 3 (blue 

arrows).
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Fig. 6. 
Comparison of denoising results. The averaged low-dose gated image generated from 

different motion estimation methods are shown in the 1st row. The corresponding denoised 

images are shown in the 2rd row. From left to right: ground truth, UNet denoising from 

the averaged image without any deformation, UNet denoising on the averaged image based 

on NRB-derived deformation fields, UNet denoising on the averaged image based on VM­

derived deformation fields, UNet denoising on the averaged image based on SAN-derived 

deformation fields, and the end-to-end output from our MDPET. Our MDPET can reduce 

the motion blurring between the liver and kidney (gray box), as well as improving the 

visualization of small anatomic structures, such as portal veins (blue arrows).
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Fig. 7. 
The boxplot results of all denoising testing images, where “*” means the difference are 

significant at p < 0.05, while “N.S” means not significant.
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Fig. 8. 
Three subjects with low-dose gated PET. The averaged images L and the corresponding 

denoised image from different MDPET configurations are shown in the 1st row and 2rd row 

in each patient’s image group. Motion blurred anatomic structure are recovered using our 

MDPET (blue arrows).

Zhou et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou et al. Page 24

TA
B

L
E

 I

C
om

pa
ri

so
n 

of
 D

if
fe

re
nt

 M
ot

io
n 

E
st

im
at

io
n 

M
et

ho
ds

 f
or

 D
if

fe
re

nt
 G

at
es

. N
M

A
E

 I
s 

C
al

cu
la

te
d 

B
as

ed
 o

n 
th

e 
H

 T
ra

ns
fo

rm
ed

 b
y 

th
e 

Pr
ed

ic
te

d 
T

. T
he

 R
un

 

T
im

e 
of

 E
ac

h 
A

lg
or

ith
m

 o
n 

C
PU

 a
nd

 G
PU

 I
s 

Sh
ow

n 
on

 th
e 

L
as

t T
w

o 
C

ol
um

ns
.

N
M

A
E

G
at

e 
1

G
at

e 
2

G
at

e 
3

G
at

e 
4

G
at

e 
5

G
at

e 
6

G
P

U
 s

ec
C

P
U

 s
ec

w
/o

 r
eg

is
tr

at
io

n
0.

18
46

0.
10

66
0.

06
53

-
0.

06
59

0.
13

60
0

0

N
R

B
 [

40
]

0.
15

64
↓*

0.
13

47
↑*

0.
12

12
↑*

-
0.

12
88
↑*

0.
13

39
↓†

-
14

89

V
M

 [
9]

0.
13

62
↓*

0.
12

02
↑*

0.
11

26
↑*

-
0.

11
44
↑*

0.
12

32
↓*

2.
1

22
0

SA
N

 [
37

]
0.

12
98
↓*

0.
08

82
↓*

0.
06

82
↑†

-
0.

07
51
↑*

0.
11

03
↓*

4.
3

42
3

O
ur

s
0.

10
98
↓*

0.
07

49
↓*

0.
05

82
↓*

-
0.

06
19
↓*

0.
09

08
↓*

0.
54

59

↓ 
an

d 
↑ 

M
ea

n 
th

e 
N

M
A

E
 D

ec
re

as
e 

an
d 

In
cr

ea
se

 a
s 

C
om

pa
re

d 
to

 B
as

el
in

e 
N

M
A

E
 W

ith
ou

t R
eg

is
tr

at
io

n,
 R

es
pe

ct
iv

el
y.

“*
” M

ea
ns

 th
e 

D
if

fe
re

nc
e 

to
 th

e 
B

as
el

in
e 

N
M

A
E

 W
ith

ou
t R

eg
is

tr
at

io
n 

A
re

 S
ig

ni
fi

ca
nt

 a
t p

 <
 0

.0
5,

 W
hi

le
 “

†”
 M

ea
ns

 N
ot

 S
ig

ni
fi

ca
nt

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou et al. Page 25

TA
B

L
E

 II

A
bl

at
io

n 
St

ud
y 

on
 O

ur
 M

D
PE

T
 in

 T
er

m
s 

of
 M

ot
io

n 
E

st
im

at
io

n.
 ±

 L
ST

M
 M

ea
ns

 M
D

PE
T

 W
ith

 o
r 

W
ith

ou
t B

iC
on

vL
ST

M
 a

nd
 ±

 G
A

N
 M

ea
ns

 M
D

PE
T

 

W
ith

 o
r 

W
ith

ou
t A

dv
er

sa
ri

al
 L

ea
rn

in
g.

N
M

A
E

G
at

e 
1

G
at

e 
2

G
at

e 
3

G
at

e 
4

G
at

e 
5

G
at

e 
6

G
P

U
 s

ec
C

P
U

 s
ec

O
ur

s-
L

ST
M

-G
A

N
0.

12
83

0.
08

49
0.

06
60

-
0.

07
01

0.
10

10
0.

38
36

O
ur

s+
L

ST
M

-G
A

N
0.

11
16

*
0.

07
62

*
0.

05
88

*
-

0.
06

23
*

0.
09

20
*

0.
54

59

O
ur

s+
L

ST
M

+
G

A
N

0.
10

98
*

0.
07

49
*

0.
05

82
*

-
0.

06
19

*
0.

09
08

*
0.

54
59

“*
” M

ea
ns

 th
e 

D
if

fe
re

nc
e 

to
 th

e 
B

as
el

in
e 

(1
st

 R
ow

) 
A

re
 S

ig
ni

fi
ca

nt
 a

t p
 <

 0
.0

5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou et al. Page 26

TABLE III

Comparison of Denoising Performance on Different Motion-Compensated Images. Our MDPET Is Compared 

With 1) SAN and 2) Two-Stage Processing Methods That Consist of Motion Estimation and Denoising (DN).

Method-mean(std) NMAE SSIM PSNR

✗REG+✗DN .1712(.0225) .9018(.0175) 25.87(1.87)

✓NRB+✗DN .1174(.0198) .9424(.0096) 28.97(1.79)

NRB+UNet .1166(.0177) .9479(.0068) 29.49(1.85)

NRB+GAN .1147(.0179) .9489(.0071) 29.66(1.91)

✓VM+✗DN .1165(.0130) .9431(.0080) 28.98(1.90)

VM+UNet .1125(.0124) .9480(.0052) 29.43(1.99)

VM+GAN .1128(.0130) .9490(.0061) 29.48(1.98)

✓SAN+✗DN .1401(.0187) .9191(.0154) 27.99(1.49)

SAN+UNet .1062(.0122) .9498(.0061) 30.31(1.87)

SAN+GAN .1036(.0117) .9503(.0061) 30.87(1.79)

✓Ours+✗DN .1383(.0185) .9193(.0153) 28.14(1.46)

Ours .0883(.0133) .9669(.0054) 32.28(1.89)

✓ and ✗ Denote Use or Not Use of a Specific Processing Stage. For Example, ✓NRB+✗DN Means NRB Is Used For Estimating the Motion and 
Generating The Averaged Image, but No Denoising Step Is Applied. The Corresponding Boxplot Comparison Results With Statistical Analysis Are 
Shown in Figure 7
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TABLE IV

Ablation Study on Our MDPET in Terms of Denoising. ± LSTM Means MDPET With or Without 

BiConvLSTM and ± GAN Means MDPET With or Without Adversarial Learning.

Method-mean(std) NMAE SSIM PSNR

Ours-LSTM-GAN .1058(.0140) .9587(.0063) 30.95(1.89)

Ours+LSTM-GAN .0921(.0137) .9613(.0062) 31.64(1.88)

Ours+LSTM+GAN .0883(.0133)* .9669(.0054)* 32.28(1.89)*

“*”
Means the Difference to the Baseline (1st Row) Are Significant at p < 0.05
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