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Abstract

With the development of economic integration, Beijing has become more closely connected

with surrounding areas, which gradually formed the Beijing metropolitan area (BMA). The

authors define the scope of BMA from two dimensions of space and time. BMA is deter-

mined to be the built-up area of Beijing and its surrounding 10 districts. Designed question-

naire survey the personal characteristics, family characteristics, and travel characteristics of

residents from 10 districts in the surrounding BMA. The statistical analysis of questionnaires

shows that the supply of public transportation is insufficient and cannot meet traffic demand.

Further, the travel mode prediction model of Softmax regression machine learning algorithm

for BMA (SRBM) is established. To further verify the prediction performance of the proposed

model, the Multinomial Logit Model (MNL) and Support Vector Machine (SVM), model are

introduced to compare the prediction accuracy. The results show that the constructed

SRBM model exhibits high prediction accuracy, with an average accuracy of 88.35%, which

is 2.83% and 18.11% higher than the SVM and MNL models, respectively. This article pro-

vides new ideas for the prediction of travel modes in the Beijing metropolitan area.

1. Introduction

With the development of society, between urban and cities, the links between urban and

regions are increasingly close. The central status and scope of the city are more prominent in

the region. An advanced city form—Metropolitan area, gradually formed. The urban circle

can maximize resource allocation of regional economic development. At the same time, traffic

problems in the Metropolitan area have also become more intensified. Existing transportation

services are difficult to fit the contact and development of the Metropolitan area, leading to

severe traffic congestion, greatly affecting the various functional functions in the Metropolitan

area. Residents in the Metropolitan area, as an important assumption in urban construction,

and urban function operation, are facing more severe traffic issues. They usually close up with

the construction, service and operation of the city. However, there is currently a lack of scien-

tific system research in daily activities in the Metropolitan area. For the city of Beijing, With

the evacuation of "non-capital functions" in Beijing, the problem of lack of transportation
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channels between Beijing and surrounding cities has gradually been exposed, which has led to

the problem of unsatisfied travel needs and traffic congestion. It is necessary to study the travel

characteristics of residents in surrounding districts to commute to Beijing. The paper will pro-

vide some suggestions to solve the dilemma that inconvenient travel and long commuting

time. These suggestions can help to accelerate the construction of smart transportation cities

in Beijing Metropolitan area. The study for residents’ mode choice in the Beijing Metropolitan

area will help to promote the construction of a harmonious society. It is also important for

enhancing traffic demand forecast analysis and demand management measures.

To study the travel characteristics of residents, the Beijing metropolitan area is selected as

the research scope. However, there is no consensus on the definition of the metropolitan area.

It is chaotic for the scope of the Beijing metropolitan area. Therefore it is necessary to define

the scope of the Beijing metropolitan area. Japan first introduced the metropolitan area and

defined the metropolitan area by dividing the travel range of residents in a day as the boundary

[1]. Zhao et al. (2018) considered economic and historical factors to define Beijing and Tianjin

as the core capital area and analyzed the development trend of the future metropolitan area.

Pan et al. (2018) proposed the concept and classification system of metropolitan areas [2]. Zhe-

jiang Province was taken as an example. Three types of metropolitan areas, quasi-metropolitan

areas, and potential metropolitan areas are divided. Xu et al. (2019) constructed a system of

general ideas and technical methods for the delimitation of the metropolitan area [3]. Xuzhou

was taken as an example to verify the scope from quantitative and qualitative methods.

From the perspectives of commuting and consumption, Wang et al. (2018) used mobile

phone signaling data to define the scope of the Shanghai metropolitan area and compare it

with foreign metropolitan areas [4]. Li et al. (2010) used the data envelopment analysis method

combined with fuzzy mathematics to study the relationship between the spatial distribution of

residence and employment and commuting [5]. Although scholars as mentioned above, have

considered the scope of the metropolitan area from different perspectives, too many perspec-

tives have problems with low adaptability. For the scope of the Beijing metropolitan area, this

article is trying to define it in representative and straightforward aspects. The definition of the

Beijing metropolitan area is conducive to study the residents’ travel behavior, which in turn

facilitates the development of target traffic planning, traffic policies and urban layouts. It is

conducive to alleviating the pressure on the surrounding traffic, and promoting economic

development.

At present, China is actively integrated into the global production network, especially in

large cities. Due to the diversification of urban functions, urban population continuous growth

and construction space spread rapidly, enabling the function and supporting facilities of the

domestic central cities to overload. The environment is constantly deteriorating, and a series

of urban issues are concentrated. Therefore, research metropolitan area traffic travel issues

help relieve traffic congestion and accelerate urban development processes. Scholars have

more research on the city’s evolution [6, 7] However, Lambregts (2009) correctly indicates that

multi-layer and interdependence between the cities that can see in a particular area relies on

the metrics used to measure its indicators [8]. De et al. (2010) thought urban networks are

multiplexed phenomena, so multi-level and interdependence can be studied by assessing dif-

ferent types of functionality between urban and regions [9].

For the factors affecting mode choice of residents, personal attributes [10, 11], family attri-

butes [12, 13], and travel attributes [14] in the previous literature are found to have influence.

Zhang et al. (2017) selected three spots for the questionnaire survey in Beijing, and factors

including age, car ownerships, and monthly income have a significant impact on the choice of

the travel mode [15]. For commuting mode choice, Ding et al. (2021) design the survey to cap-

ture the data of households (e.g., household size, income, ownership of vehicles), individuals
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(e.g., occupation, gender, age, driving license, and education), and travel diaries (e.g., depar-

ture time, travel origin, purpose, arrival time, travel mode, and destination) [16].

In the early analysis of travel behavior characteristics, aggregate data is mainly used. The

characteristics of travel behavior can be predicted by fitting several parameters to a simple

model. However, with the increase in the types of travel modes and the changes in external

objective conditions, the factors affecting travel behavior have become more and more com-

plex. Traditional travel analysis approaches cannot explain the mechanism of travel character-

istics well. Therefore, scholars have begun to explore new theoretical methods to analyze the

characteristics of travel behavior through considering more complex factors.

Subsequently, travel surveys and special surveys on travel behaviors carried out in many cit-

ies gradually developed. Based on the survey data, the dis-aggregated model theory was used to

study the travel behavior and obtained rich research results. Scholars [17–21] have used dis-

aggregate models to study the characteristics of individual travel patterns. A theoretical system

of dis-aggregated models was constructed. The theoretical system included the Multinomial

Logit Model (MNL) and Nested Logit Model (NL) [22–29].

In addition to the above statistical models, machine learning models are also widely used to

analyze travel characteristics of residents. Machine learning models included Support Vector

Machine (SVM), the K-nearest neighbor, the random forest and Softmax regression [30–33].

Although SVM has unique advantages in dealing with small sample, nonlinear and high-

dimensional pattern recognition problems, its classification accuracy is not high for more

complex classification problems, and the processing cost of current big data classification is

too large [34]. The algorithm process of K-nearest neighbor is simple and easy to understand.

However, K-nearest neighbor is a lazy learning method. When the data is unevenly distributed,

the classification error rate will increase, and the calculation complexity of the classification

process changes large. Random forest has the advantages of strong computing power, high

accuracy, fast training speed. However, the random forest will produce some relatively large

noise classification problems, limiting its application in the prediction of travel mode. These

shortcomings cause the above three classifier models to have certain limitations in application.

The Softmax regression classifier has the advantages of many types of classification, simple

application, high accuracy, good training [35, 36]. At present, few scholars apply Softmax

regression classifier to predict the travel mode of residents. It is meaningful to introduce the

Softmax regression to predict the travel mode in Beijing metropolitan area.

The rest of the paper is organized as follows: Section 2 is the definition of Beijing Metropoli-

tan Area. Section 3 analyzes the travel characteristics in metropolitan areas. In Section 4, meth-

odologies provide details on travel mode prediction based on Softmax regression in Beijing

metropolitan area. Section 5 presents the modeling results. To verify the prediction accuracy,

the prediction results were compared with the SVM and MNL models. Finally, Section 6 sum-

marizes the paper and highlights the perspectives from the viewpoints of the research.

2. Definition of Beijing metropolitan area

At present, the definition of the metropolitan area has not formed final conclusions. Due to its

remarkable similarity with urban agglomeration and its different technical concepts, many

studies lack the prerequisite explanation of the spatial scale and confuse the two concepts. The

following will summarize the characteristics of metropolitan areas and urban agglomerations,

distinguish metropolitan areas and urban agglomerations, and provide a theoretical basis for

the definition of Beijing metropolitan areas.

The metropolitan area is generally formed by the core city and the adjacent small and

medium-sized towns with close social and economic ties with this core city and tend to be co-
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urbanization [1]. Affected by the dual constraints of commuter travel time (according to 1h)

and travel cost, the spatial boundary of the metropolitan area should be around 70km. The

population and transportation demand characteristics of metropolitan areas and urban

agglomerations are shown in Table 1.

The initial stage of urban agglomeration is the discrete development of individual cities,

and the advanced stage is the development of urban clusters. The growth experience of urban

agglomerations is: "towns—central cities—metropolitan areas—urban agglomerations." Com-

bined with related research, urban agglomerations have a broader spatial scope than metropol-

itan areas. Urban agglomerations are tightly integrated areas composed of at least two

metropolitan areas and their surrounding small and medium cities. The spatial structure of

urban agglomerations is multi-centered. The network structure has a significant "circle + corri-

dor" effect, which presenting a development law that extends from the distribution of the met-

ropolitan circle to the axis [37, 38]. The spatial structure of a more mature urban

agglomeration mainly includes three aspects: the central city metropolitan area, the main axis

of the urban agglomeration, and the medium and small cities and town networks. The scope

and structural characteristics of metropolitan areas and urban agglomerations are shown in

Table 2.

There are many methods for defining metropolitan areas. The definition of dominant ele-

ments is complicated. The metropolitan area is the production of the interaction between cit-

ies. The factors that affect the interaction between cities are diversified. To avoid the above

mentioned complicated factors, the article reference the definition of the metropolitan area

introduced by Sun et al. (2003) [10]. Combined with the situation in Beijing, the scope of the

Beijing metropolitan area is considered comprehensively in terms of space and time.

2.1. Space element

When considering the definition of spatial elements, it is necessary to comprehensively con-

sider factors such as the accessibility, convenience, travel cost, and transfer times of the resi-

dents in the metropolitan area to determine a metropolitan area radius that meets actual

experience, and divide a rough the circled metropolitan area. Then, it is necessary to check

whether there are natural obstacles that are not conducive to traffic within the scope. If it

Table 1. Comparison of population and traffic demand characteristics between metropolitan areas and urban agglomerations.

Main

characteristics

Population size Transportation demand characteristics

Metropolitan area total population� 5

million

commuting transportation needs

Central city population

� 1 million

Urban

agglomeration

total population� 25

million

the transportation of raw materials and semi-finished products between the upstream and downstream industrial

chains; A large number of business trips between cities

https://doi.org/10.1371/journal.pone.0259793.t001

Table 2. Comparison of the scope and structural characteristics of metropolitan areas and urban agglomerations.

Main characteristics Scope scale spatial structure characteristics

Metropolitan area Combined commuting time and commuting expenses, Generally around 70km layered structure

Urban agglomeration Huge space circle layer + corridor structure

The structural characteristics of metropolitan areas and urban agglomerations are shown in Fig 1.

https://doi.org/10.1371/journal.pone.0259793.t002
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exists, the radius should be reduced on the side of the natural obstacle and multiplied by an

appropriate weight coefficient. Finally, the accurate metropolitan area can be obined by taking

the administrative boundary of each city as the boundary of the metropolitan area. References,

and conclusions determine that the radius of the metropolitan area centered on Beijing is

about 70km and the total area is about 20,000km2.

2.2. Time element

The prominent role of the time element is reflected in the delineation of the "one-hour metro-

politan area" and the "one-day exchange circle." The connotation of the time element is that

the one-way travel time required for residents in the central city and surrounding towns within

the metropolitan area is one hour. When defining the scope of a metropolitan area, it is neces-

sary to understand the main modes of transportation for residents of the central city and sur-

rounding districts and counties. Secondly, it is needed to understand the traffic network and

road speed corresponding to each mode of transportation. Finally, according to the transporta-

tion network of different levels, the maximum distance reached within one hour from the cen-

tral city is obined. At the same time, based on the administrative boundary, the scope of the

metropolitan area can be determined. When defining the scope of the Beijing metropolitan

area based on time elements, it is essential to consider the road network corresponding to sev-

eral modes of transportation: buses, subways, cars, buses, and railways. Refer to the discussion

of Chen et al. (2016) on the scope of "1 hour metropolitan area" in Beijing [39], the definition

of spatial elements embodies the influence of distance and region. The definition of time ele-

ments reflects the convenience of external transportation links in the central city.

The scope of the metropolitan area selected by combining the two factors. The Beijing met-

ropolitan area mainly includes the main urban areas of Beijing, Wuqing, Sanhe, Main urban

area of Langfang (hereinafter referred to as Langfang), Zhuozhou, Gu’an, Dachang, Yongqing,

Yanjiao, Huailai, and Xianghe. The space element mainly considers the geographical factor of

distance. The time element mainly considers the convenience of travel. The scope of Beijing

Fig 1. Urban agglomeration and metropolitan coordinating region structure.

https://doi.org/10.1371/journal.pone.0259793.g001
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metropolitan area belongs to the core area of government planning and development. In the

following, a questionnaire survey will be conducted on the Beijing metropolitan area to study

the travel characteristics of residents.

2.3 The description of the studied area

The studied area can be divided into four medium regions, namely Beijing, the northern

region, the southern region, and other regions. The social and economic development and

transportation systems of the studied area are summarized.

2.3.1 Beijing. By 2020, the total production value of Beijing has increased by 6.1% to 3.18

trillion RMB. According to the National Bureau of Statistics, Beijing’s social and economic

development index is shown in Table 3.

2.3.2 The northern region. The northern region includes Sanhe, Yanjiao, Xianghe, and

Dachang. The northern region is close to Beijing, just 40 kilometers away from the center of

Beijing, approximately 50 kilometers away from the capital international airport. The districts

of the northern region are in the gold node of the "one hour economic circle." As of the end of

2020, Sanhe (including Yanjiao) household registration population is about 650,000. The total

production value is about 60 billion RMB. The total production value of large factory counts

reached 8.8 billion RMB. The total production value of Xianghe was about 20 billion RMB.

The overall economic form of the northern region has been well operating and has a rapid

growth situation.

There are three kinds of mode choices for residents in the northern region, namely subway,

bus, and passenger car. The bus operating in the northern region includes No. 930, NO. 938

and other lines. The endpoint station is near the economical center of Beijing. Passenger car

enter and leave Beijing mainly though Tongyan Expressway, Beijing Ping Expressway, Jingqin

Expressway, etc.

2.3.3 The southern region. The southern region includes Langfang, Gu’an, and Yongq-

ing. The southern region is located in the southern area of Beijing, about 50 kilometers away

from Beijing’s center area. It is known as the "Golden Zone." As of the end of 2020, The GDP

of Langfang is about 32.4 billion RMB. Gu’an is a "zero distance" district in the capital, with a

regional GDP of about 20 billion RMB. Yongqing is strategically located, with a regional out-

put value of about 10 billion RMB. The geographical advantages of the southern region pro-

mote rapid economic and social development.

There are many bus lines for residents of the southern region to enter Beijing. In addition,

there are two train stations, named Langfang Station and Langfang North Station in the

Table 3. Beijing’s social and economic development index.

Index 2015 2016 2017 2018 2019 2020

Gross product (billions of RMB) 2,296.9 2,457.9 2,638.4 2,820.8 2,998.7 3,177.9

GDP growth rate in the actual area 6.9% 6.5% 6.3% 5.6% 5.4% 4.7%

Personal consumption (billions of RMB) 849.5 934.8 1,024.9 1,124.2 1,227.2 1,333.7

Population (million) 22.8 22.4 22.8 23.1 23.4 23.6

Gross the per capita area (RMB) 100,639 109,693 115,956 122,273 128,377 134,539

Actual pay (year-on-year) 7.5% 7.1% 6.3% 5% 4.5% 4.5%

At the end of 2020, there were about 20 million people in Beijing, and 1,345.25 million household registration population. There are eight national expressways in

Beijing and the external area, namely Jingha (G1), Jingtai (G3), Jinggangao (G4 Jingshi), Jingkun (G5), and Daguang (G45 Beijing, Jingcheng) Highway, etc. Beijing has

been linked to ten districts through the peripheral expressways.

https://doi.org/10.1371/journal.pone.0259793.t003
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Langfang, with a total of 30 trips entering Beijing throughout the day. Residents enter Beijing

through Jingtai Expressway, Jinghu Expressway, and Jingkai Expressway.

2.3.4 Other regions. Other regions include Zhuozhou, Wuqing, and Huailai. Zhuozhou is

adjacent to Gu’an and Langfang to the east, and is only 62 kilometers away from Beijing’s Tia-

nanmen Square. The total population of the city is more than 570,000 people, and GDP is 30.1

billion RMB. Wuqing is 71 kilometers away from Beijing, with a registered population of

925,000, and its annual GDP is 114.499 billion RMB. The eastern part of Huailai is bordered

by the Yanqing, Changping and Mentougou districts of Beijing, with a total registered popula-

tion of 360,000 and a GDP of 14.5 billion RMB. Huailai is the “first gateway” to the west of

Beijing.

There are three expressways running from north to south in Zhuozhou, and two railway

transport stations. There are six expressways in Wuqing District. The train line of Jingjin spe-

cial line stops 23 times per day in Wuqingri, and it takes only 23 minutes from Wuqing to Bei-

jing. Huailai is located in the golden zone of Beijing’s one-hour economic circle, only 60

minutes drive from Zhongguancun, which is an economical center of Beijing. The surround-

ing traffic conditions are relatively convenient. The Jingzhang Expressway and the Jingzhang

High-speed Railway are connected with each other. The transportation network is densely

woven, making it convenient for residents to enter Beijing.

3. Travel characteristics in Beijing metropolitan areas

3.1. Questionnaire

3.1.1 Survey scope. The scope of the investigation is defined as the surrounding 10 dis-

tricts and counties in the Beijing metropolitan area, namely: Sanhe City, Langfang City,

Dachang County, Xianghe City, Zhuozhou County, Gu’an County, Yongqing County, Huailai

County, Yanjiao County, Wuqing County.

3.1.2 Survey content. The survey is an individual travel survey of residents. It is divided

into two types: manual questionnaire survey and online questionnaire survey. The manual

questionnaire survey is processed on the street. We conducted this survey in 2018. The survey

content is mainly divided into three parts: personal attributes, family attributes and travel attri-

butes. Personal attributes include residential address, individual age, and commuting fre-

quency. Family attributes include car ownerships, and disposable income. Travel attributes

include travel time, and travel purpose.

3.1.3 Investigation method. To ensure the validity of the questionnaire, the resident

travel survey adopts a simple random sampling survey method. The manual questionnaire sur-

vey adopts an on-site survey. The survey site randomly selects the surveyed persons and asks

questions about the survey items. The investigator fills out the questionnaire. In addition, the

online questionnaire survey adopts the principle of random distribution on the Internet to sur-

vey the residents who live in the Beijing metropolitan area.

3.1.4 Number of questionnaires. The number of questionnaires is determined by the

population of the studied districts. The proportion of the sample is 0.5% of the population. A

total of 3907 valid questionnaires were collected from the manual questionnaire surveys con-

ducted by residents of various districts and counties in Beijing, specifically: 400 in Sanhe City,

700 in Yanjiao County, 300 in the main urban area of Langfang City, 451 in Xianghe County,

456 in Dachang County, and Gu’an County 300 samples, 350 samples from Yongqing County,

300 samples from Zhuozhou City, 350 samples from Wuqing District, and 300 samples from

Huailai County. The specific number of questionnaires is shown in Fig 2. The online version

recovered 4,952 valid questionnaires. The specific number of questionnaires is shown in Fig 3.
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3.2. Travel characteristics analyze

The survey data collected from the questionnaire was used to obtain the basic information

about the age of residents in the Beijing metropolitan area, disposable income per month,

Fig 2. Survey sample size—artificial questionnaire.

https://doi.org/10.1371/journal.pone.0259793.g002

Fig 3. Survey sample size—online questionnaire.

https://doi.org/10.1371/journal.pone.0259793.g003
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number of vehicles, travel time, and weekly travel frequency. The age distribution of the sur-

veyed residents is calculated, and the age distribution of residents in the surrounding districts

and counties in the Beijing metropolitan area is shown in Fig 4.

According to statistics on the age distribution of the surveyed persons, residents aged 25–34

accounted for the highest proportion of all surveyed persons, accounting for 42.46%. The age

range in 35–44, 18–24, 45–49, 50–59, 60 and above, and under 18, accounting for 23.22%,

14.09%, 8.30%, and 7.35% 3% and 1.56%. The survey samples have a strong age dispersion and

have certain pertinence.

The distribution of disposable income of residents commuting Beijing is calculated, and the

distribution of disposable income is shown in Fig 5.

According to the statistics of the surveyed persons’ disposable income distribution, it is

found that the disposable income of all surveyed persons presents a normal distribution of

Fig 4. Beijing metropolitan population age distribution.

https://doi.org/10.1371/journal.pone.0259793.g004

Fig 5. Beijing metropolitan population disposable income distribution.

https://doi.org/10.1371/journal.pone.0259793.g005
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"small at both ends and big in the middle." Disposable income of 3,000–5,000 RMB accounted

for the highest proportion, accounting for 30.67%, followed by disposable income of 5,000–

10,000 RMB, 1,000–3,000 RMB, less than 1,000 RMB and more than 10,000 RMB, accounting

for 28.68% and 19.75%, 14.01%, and 6.89%, respectively.

The vehicle ownership of residents entering Beijing is calculated, and the vehicle ownership

of residents in the surrounding districts in the Beijing metropolitan area is shown in Table 4.

According to the vehicle ownership statistics of the surveyed persons, 62.96% of residents

in the Beijing metropolitan area have vehicles, 37.04% of residents do not have any vehicles.

This shows that most households own vehicles and the proportion of self-driving trips will be

relatively high. The travel time distribution of residents in the surrounding districts in Beijing

metropolitan area is calculated, as shown in Table 4.

According to the distribution of the travel time proportion of the surveyed persons, it is

found that the travel time of all the surveyed persons is about 2 hours. The period with the

highest proportion is within the range of 90–120 minutes, which is 32.86%. In the period of

120–180min, the ratio is 27.95%, and the proportion of residents in the period of 60-180min

has exceeded 60%. At the same time, 8.85% of residents have spent more than 3 hours in Bei-

jing. This shows that residents travel time is relatively long and travel time cost is high. The

weekly travel frequency of residents in Beijing is calculated, and the travel frequency distribu-

tion of residents in the surrounding districts and counties in the Beijing metropolitan area, as

shown in Fig 6.

According to the distribution of the travel frequency ratio of the surveyed persons, it is

found that the travel frequency of all the surveyed persons is more in and out of Beijing 5

times a week, with a ratio of 68.20%. It is indicated that the surveyed residents commute to

Table 4. Population vehicle ownership distribution and travel time distribution in beijing metropolitan area.

Beijing metropolitan passenger car ownership distribution

Vehicle presence No vehicle Own vehicle

Proportion 37.04% 62.96%

Beijing metropolitan resident travel time distribution

Period <30 min 30–45 min 45–60 min 60–90 min 90–120 min 120-180min >180min

Proportion 1.17% 1.03% 13.79% 14.35% 32.86% 27.95% 8.85%

https://doi.org/10.1371/journal.pone.0259793.t004

Fig 6. Population travel frequency distribution.in the beijing metropolitan.

https://doi.org/10.1371/journal.pone.0259793.g006
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Beijing more frequently. The distribution characteristics of travel modes in the Beijing metro-

politan area are shown in Fig 7.

It can be seen from Fig 7, the majority of residents in the Beijing metropolitan area choose

public transport, which is 35.82%. Secondly, 28.90% of residents choose cars to travel, which

may be related to the long commuting distance and insufficient public transportation supply.

The proportion of residents who chose the subway was 15.63%, and 15.43% of the residents

chose trains. This shows that the construction of railways within the commuter circle has

brought convenience for residents to commute to Beijing. It is necessary to further explore the

transportation convenience brought by high-speed railways. 4.15% of residents choose the

mode of coach. This group of residents are mainly located in Wuqing County with longer

travel time. Based on the analysis of the travel mode and travel time in the Beijing metropolitan

area, the main mode of travel for residents is public transportation, followed by cars. The com-

muting time is too long and travel is not convenient. Through the above analysis, it is found

that the research on the travel of residents in the Beijing metropolitan area is worth exploring.

The Research on the mechanism of residents’ travel characteristics and predicting travel

modes can promote the sustainable development of green transportation in the Beijing metro-

politan area.

Fig 7. Distribution of travel modes in Beijing metropolitan area.

https://doi.org/10.1371/journal.pone.0259793.g007
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4. Methods

It can be seen from the above analysis that residents in the Beijing metropolitan area have cer-

tain differences in the choice of travel modes, which are mainly reflected in the age of resi-

dents, travel frequency, family vehicles, family income, and travel characteristics. Based on the

Softmax regression machine learning model (SR), The authors used the above factors as inde-

pendent variables and travel mode as the dependent variable to build a travel mode prediction

model in Beijing metropolitan area. SR has the advantages of structure simple, high classifica-

tion accurate rate. SR have not been applied in the model choice field yet. It is meaningful to

introduce SRBM to estimate the model performance in the mode choice field. In addition, in

the field of machine learning, Support vector machine (SVM) has also shown good prediction

results. The prediction model for traffic mode choice in the Beijing metropolitan area based

on SVM is also constructed to compare the predicted efficiency. Due to the MNL model is

mainly used in routine research to study the probability of residents’ method selection. This

paper introduces MNL as a comparative model for the evaluation of prediction accuracy.

4.1. Variable definitions

The output of the model is the mode of transportation chosen by residents. The input is the

factor that influences the choice of mode. The factors that influence the mode choice of resi-

dents is related to the individual characteristics (e.g. age, family income, and travel frequency),

the family characteristics (e.g. car ownerships), the travel characteristics (e.g. travel frequency,

family vehicles, travel time, travel cost, and transfer times). Where, The transfer times refers to

the transfer number of times by taking the travel mode. Therefore, according to the collected

data, the influencing factors considered in this paper are age, family income, travel frequency,

family vehicles, travel time, travel cost and transfer times. The influencing factors are defined

as variables, as shown in Table 5.

4.2. Prediction model of travel mode based on Softmax

Softmax regression machine learning model is an extension of Logistics Regression (LR). It is

different from logistic regression classification model where only two category labels can be

taken. SR provides more possibilities for category labels and is suitable for multi-classification

problems. The structure of SR is shown in Fig 8. The structure includes an input layer, two fea-

ture extraction layers and a classification output layer. The input feature passes through the

two feature extraction layers to obtain the feature vector of the graph. It is passed into the SR

classifier and only calculated by matrix multiplication. The probability of choosing each mode

is output. The travel mode with the highest probability is the mode that residents ultimately

choose. The output features of mode prediction in this paper are subway, bus, car, train, and

Table 5. Variable definition.

Factor Variable Definition

Age (year old) 1:<18; 2:18–24; 3:25–34; 4:35–44; 5:45–49; 6:50–59; 6:>60

travel frequency 1:<1; 2:2; 3:3; 4:4; 5:5; 6:6; 7:>7

family income(RMB) 1:<1000; 2:1000–3000; 3:3000–5000; 4:5000–10000; 5:>10000

family vehicles 1: own vehicle; 2: No vehicle

travel cost (RMB) 1:<5; 2:5–10; 3:10–20; 4:20–30; 5:30–50; 6:>50

travel time (min) 1:l<30; 2:30–45; 3:45–60; 4:60–90; 5:90–120; 6:120–180; 7:>180

transfer times 1:0; 2:1; 3:2; 4:3; 5:4

https://doi.org/10.1371/journal.pone.0259793.t005
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coach, respectively. It is noteworthy that, since each factor has a different dimension, a normal-

ization processing is necessary before they are input into the Softmax model.

Softmax maps the input vector from the N-dimensional space to the traffic mode. The result

is given in the form of probability. The formula is shown as Eq 1

pj ¼
ey

T
j X

XK

k¼1

ey
T
j X

ðj ¼ 1; 2; . . . ;KÞ ð1Þ

Where, θk = [θk1,θk2,� � �,θkK]T is the weight. It is the classifier parameter corresponding to

the traffic mode. Total model parameters θ is shown as Eq 2

y ¼ ½y
T
1
; y

T
2
; � � � ; y

T
K � ð2Þ

Where, θ is obtained by the Softmax classifier training. θ can be used as a parameter to cal-

culate the probability of all possible traffic modes of the item to be classified, and then deter-

mine the selected transportation mode. A data set including N training samples is given: {(x(1),

y(1)), (x(2),y(2)),. . .,(x(n),y(n))}. Where, x represents the input vector, and y is each mode of trans-

portation. For a given test sample x(i), the Softmax classifier is used to estimate the probability

of belonging to each mode of transportation. The function formula is shown as Eq 3.

hyðx
ðiÞÞ ¼

pðyðiÞ ¼ 1ÞjxðiÞ; y
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Fig 8. The structure of the Softmax regression machine learning model.

https://doi.org/10.1371/journal.pone.0259793.g008
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In Eq 3, hθ(x(i)) is a vector. p(y(i) = K|x(i);θ) respect the probability that x(i) belongs to traffic mode

k. The sum of hθ(x(i)) in the vector is equal to 1. For x(i), The k corresponding to the maximum prob-

ability value is selected as the prediction result of the current travel mode of residents. The value of

parameter θ can be obtained by minimizing the cost function of Softmax regression. First, the sam-

ples are assumed to be independent of each other. The likelihood function is shown in Eq 4.

LðyÞ ¼
Yn

i¼1

Yk

j¼1

ey
T
j x
ðiÞ

XK

j¼1

ey
T
j x
ðiÞ

0

B
B
B
B
@

1

C
C
C
C
A

IðyðiÞ¼jÞ

ð4Þ

Where, I{�} is an indicative function. When the value is true, it is equal to 1. When the value is

false, it is equal to 0. The loss function of Softmax regression is defined as Eq 5

JðyÞ ¼ �
1

n

Xn

i¼1

XK
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The classifier parameter θ can be obtained by minimizing J(θ).

4.3. Comparison model

Through the above analysis, the travel mode of residents in the Beijing metropolitan area will

be affected by individuals, families, and travel characteristics. A large amount of sample data

needs to be used to learn the mechanism of the choice of different characteristic attributes.

SVM machine learning method has a good classification function. It can accurately classify the

surveyed sample data by mapping it to a high-dimensional space, classify samples with similar

characteristics into one category, and obtain travel mode predictions. Therefore it is intro-

duced to compare the prediction efficiency with Softmax machine learning method. The calcu-

lated process of the SVM model is shown in Fig 9.

This paper uses the RBF radial basis function as the kernel function. The kernel function

has the advantages of concise training, simple structure, and fast convergence speed. The ker-

nel function can be used to solve the optimal parameters of the kernel function r. The kernel

function formula is shown in Eq 6.

kðxi; xÞ ¼ expð� r
kxi � xk2

s2
Þ ð6Þ

Among them, σ is the variance, and xi represents the i-th sample variable.

The Lagrangian function is introduced to construct the objective function and predict the

mode of travel. The optimization function formula is shown in Eq 7.

max
Xn

i¼1
ai �

1

2

Xn

i;j¼1
aiajyiyjx

T
i xi

s:t:

(
0 � aai � C; i ¼ 1; � � � ; n
Xn

i¼1
aiyi ¼ 0

ð7Þ

Among them, y represents the travel mode variable, i and j represent the sample number, α
is the Lagrangian multiplier, C is the penalty factor.
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In the process of training the model, it is necessary to verify and adjust the classification

performance of the model. K-Cross Validation (K-CV) is adopted, which has the advantages

of avoiding under-learning and over-fitting. The parameter optimization method uses a grid

search method to traverse the parameters in the divided range to obtain values, and select a

group of parameters with the highest accuracy rate as the optimal parameters.

Another compared model is MNL travel mode prediction model. The established model by

MNL can reference Chen et al. (2015) [30].

5. Results

This paper uses Python programming to implement the model training and parameter evalua-

tion of the Softmax regression traffic mode prediction model of Beijing Metropolitan area

(SRBM). 3/4 of the data set is selected as the training set, and the remaining data is the valida-

tion set. The 5-fold cross-validation method was chosen to find the optimal parameters. At the

same time, the above method is used for model training for SVM. In the grid search method,

the value range of the penalty factor C is set to [0.01, 1000], and the range of the kernel func-

tion parameter r is set to [0.01, 1000]. After training and verification, when C = 0.01 and r = 10

are finally selected, the prediction accuracy of the validation set of the SVM model is the

Fig 9. The calculated process of the SVM model.

https://doi.org/10.1371/journal.pone.0259793.g009

Table 6. SRBM model prediction accuracy of 10 districts.

District Subway Bus Car Train Coach Total accuracy

Sanhe 89.81% 90.00% 96.38% — — 92.06%

Yanjiao 83.33% 95.04% 94.22% — — 90.86%

Langfang — 79.38% 93.00% 93.75% — 88.71%

Xianghe 92.25% 83.84% 94.50% — — 90.20%

Dachang 90.44% 95.90% 89.42% — — 91.92%

Gu’an 82.50% 76.27% 94.13% — — 84.30%

Yongqing — 96.99% 94.72% — — 95.86%

Zhuozhou — 95.44% 89.22% 15.00% — 66.55%

Wuqing — — 78.17% 93.73% 94.80% 88.90%

Huailai — — 92.53% 95.73% — 94.13%

Total accuracy 87.67% 89.11% 91.63% 74.55% 94.80% —

https://doi.org/10.1371/journal.pone.0259793.t006
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highest. In addition, the MNL model is calibrated with the help of STATA software, and the

calibrated model is used to predict the travel mode of the original data. The prediction accu-

racy of the SRBM model is shown in Table 6.

In terms of overall accuracy, Yongqin has the highest overall accuracy of 95.86%, and the

lowest prediction accuracy is in the Zhuozhou, with an accuracy rate of 66.55%. The accuracy

of the prediction for mode train from Zhouzhou is only 15%. The reason is that the number of

sampled data that chosen train mode is relatively small. The sampled data are not sufficient to

the proposed model to explore the characteristics of the train mode. So errors occurred in

mode choice predictions. From the perspective of transportation, subways, bus and coach have

the highest accuracy. Among bus transportation, Yanjiao and Yongqing have the highest pre-

diction accuracy rates of 95.9% and 96.99% respectively. Among subway transportation,

Xianghe has the highest prediction accuracy of 92.25%. This shows that the establishment of

the SRBM model is reasonable, it can reasonably analyze the mechanism that affects the mode

choice, and can better predict the choice of transportation modes for residents.

To verify the prediction effect of the SRBM model, the SRBM prediction accuracy rate was

compared with the SVM and MNL models. In this study, two indicators are selected as the

evaluation function, namely, the classification prediction accuracy rate and the overall predic-

tion accuracy rate.

5.1. Individual percentage of correct predictions

Individual Percentage of Correct Predictions (IPCP) refers to the proportion of accurate sam-

ples of each traffic mode to the total sample size of the traffic mode. IPCP is calculated as Eq 8.

IPCP ¼
The number of samples with accurate prediction of the traffic mode i

The total sample number of the traffic mode i
ð8Þ

In this study, the three transportation modes of bus, subway and car were selected to com-

pare the classification accuracy. The summary comparison for subway, bus, and car is shown

in Figs 10–12, respectively.

The summary comparison for subway, bus, and car is shown in Table 7.

Fig 10. Subway accuracy of SRBM, SVM and MNL model.

https://doi.org/10.1371/journal.pone.0259793.g010
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It can be seen from Figs 10–12, and Table 7 that the average prediction accuracy of SRBM is

higher than that of SVM and MNL models. It shows that SRBM is more accurate in predicting

the accuracy of traffic mode.

5.2. Overall percentage of correct predictions

Overall Percentage of Correct Predictions (OPCP) refers to the proportion of samples with

accurate predictions of all traffic modes in the overall sample. IPCP is calculated as Eq 9.

OPCP ¼
The number of samples with accurate predictions for all traffic modes

Overall sample size of all traffic modes
ð9Þ

The OPCP of SRBM, SVM and MNL model is shown in Fig 13, and Table 8.

Fig 12. Car accuracy of SRBM, SVM and MNL model.

https://doi.org/10.1371/journal.pone.0259793.g012

Fig 11. Bus accuracy of SRBM, SVM and MNL model.

https://doi.org/10.1371/journal.pone.0259793.g011
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It can be seen from the Fig 13 and Table 8 that, the OPCP of SRBM in 9 out of 10 districts is

higher than that of SVM and MNL models. The average OPCP of SRBM traffic mode accuracy

rate in 10 districts is 88.35%. The average OPCP of traffic mode prediction accuracy rate of

SVM and MNL in 10 districts is 85.52% and 70.24%, respectively. That means the average

OPCP of SRBM in 10 districts is 2.83% and 18.11% higher than that of SVM and MNL, respec-

tively. This shows that the SRBM Beijing metropolitan area residents travel mode prediction

model constructed in this paper has excellent predictive ability. At the same time, it proves

that the SRBM model has good applicability in the predictive analysis of the travel mode choice

of residents in Beijing metropolitan area.

As can be seen that, prediction accuracy varies between different modes and different dis-

tricts. The reason for this is that, there are different composition and different proportions of

transport modes in different districts, meanwhile the number of survey sample is also different

in different districts. Therefore, the input sample size of different modes is different, which

will cause the model to have different fitting performances. Different fitting performance of

the proposed model will perform various prediction accuracy between different modes (sub-

way, bus, car, etc.) and different districts.

Table 7. Subway, bus, and car accuracy of SRBM, SVM and MNL model.

IPCP-Subway

District SRBM SVM MNL

Sanhe 89.81% 89.43% 59.87%

Yanjiao 83.33% 79.03% 71.84%

Xianghe 92.25% 91.20% 75%

Dachang 90.44% 83.60% 76%

Gu’an 82.50% 70.40% 68.75%

IPCP-Bus

District SRBM SVM MNL

Sanhe 90.00% 93.60% 72.00%

Yanjiao 95.04% 95.04% 86.40%

Langfang 79.38% 84.56% 53.33%

Xianghe 83.84% 90.65% 64.00%

Dachang 95.90% 95.90% 87.18%

Gu’an 76.27% 82.50% 58.67%

Yongqing 96.99% 93.26% 90.26%

Zhuozhou 95.44% 77.59% 63.21%

IPCP-Car

District SRBM SVM MNL

Sanhe 96.38% 90.00% 69.23%

Yanjiao 94.22% 91.38% 83.08%

Langfang 93.00% 90.00% 62.50%

Xianghe 94.50% 85.38% 75.00%

Dachang 89.42% 78.27% 71.75%

Gu’an 94.13% 95.42% 68.75%

Yongqing 94.72% 93.65% 86.11%

Zhuozhou 89.22% 86.40% 43.48%

Wuqing 78.17% 64.52% 34.78%

Huailai 92.53% 79.57% 76.52%

https://doi.org/10.1371/journal.pone.0259793.t007
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6. Conclusion

This article defines the scope of the Beijing metropolitan area in terms of time and space. With

a radius of 70km, the scope of 10 districts around Beijing were selected as the Beijing Metro-

politan Area. A questionnaire is designed to survey personal characteristics, family characteris-

tics, and travel characteristics of residents living in the metropolitan area. Through the analysis

of the questionnaire, it is found that the travel mode of residents in the Beijing metropolitan

area has significant characteristics. The highest proportion of buses is chosen, followed by cars.

As part of the public transportation, the subway has a lower proportion than cars. In addition,

more than 50% of residents travel for more than 1.5 hours, which shows that the supply of

public transportation is insufficient and residents travel for too long. It is suggested that in the

future, the transportation policy should be tilted towards green transportation, and more pub-

lic transportation should be developed to provide more convenience for residents to travel.

Based on the Softmax Regression machine learning model, this paper constructs the Beijing

Metropolitan Area Resident Travel Mode Prediction Model (SRBM). At the same time, SVM

Fig 13. The OPCP of SRBM, SVM and MNL model.

https://doi.org/10.1371/journal.pone.0259793.g013

Table 8. The OPCP of SRBM, SVM and MNL model.

OPCP

District SRBM SVM MNL

Sanhe 92.06% 91.01% 66.32%

Yanjiao 90.86% 88.48% 79.56%

Langfang 88.71% 90.40% 59.57%

Xianghe 90.20% 89.08% 71.49%

Dachang 91.92% 85.92% 80.33%

Gu’an 84.30% 82.77% 65.53%

Yongqing 95.86% 93.45% 91.20%

Zhuozhou 66.55% 81.16% 57.89%

Wuqing 88.90% 65.82% 44.94%

Huailai 94.13% 87.09% 85.54%

https://doi.org/10.1371/journal.pone.0259793.t008
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and MNL models are introduced to evaluate the prediction efficiency of SRBM. The results

show that SRBM exhibits a high prediction accuracy, with an average prediction accuracy rate

of 88.35%. The average prediction accuracy rates of SVM and NL models are only 85.52% and

70.24%, and the stability of the prediction results of each method is relatively poor. The predic-

tion accuracy of SRBM is 2.83% and 18.11% higher than that of SVM and MNL models,

respectively. This article provides new ideas for the prediction of travel modes in the Beijing

metropolitan area. In the next step, the adaptability and prediction accuracy of models such as

deep learning to travel modes need to be further studied. As travel distance is one of the signif-

icant factors in travel mode choice, For the further study, the factor of travel distance will be

added for the mode choice problem.
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