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Abstract

Nuclei segmentation is a fundamental task for various computational pathology applications 

including nuclei morphology analysis, cell type classification, and cancer grading. Deep learning 

has emerged as a powerful approach to segmenting nuclei but the accuracy of convolutional 

neural networks (CNNs) depends on the volume and the quality of labeled histopathology 

data for training. In particular, conventional CNN-based approaches lack structured prediction 

capabilities, which are required to distinguish overlapping and clumped nuclei. Here, we present 

an approach to nuclei segmentation that overcomes these challenges by utilizing a conditional 

generative adversarial network (cGAN) trained with synthetic and real data. We generate a large 

dataset of H&E training images with perfect nuclei segmentation labels using an unpaired GAN 

framework. This synthetic data along with real histopathology data from six different organs 

are used to train a conditional GAN with spectral normalization and gradient penalty for nuclei 

segmentation. This adversarial regression framework enforces higher-order spacial-consistency 

when compared to conventional CNN models. We demonstrate that this nuclei segmentation 

approach generalizes across different organs, sites, patients and disease states, and outperforms 

conventional approaches, especially in isolating individual and overlapping nuclei.
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I. Introduction

From its origin in gross anatomy prior to cell theory, to modern computer-aided digital 

pathology, the field of histopathology has evolved as a crucial element in the diagnosis 

and treatment of nearly every disease discovered [1]–[3]. Millions of tissue biopsies 

are performed annually, and in nearly every case the study of nuclear morphology and 

distribution provides critical clues to healthcare providers [4]. Indeed, containing vast 

amounts of genetic and epigenetic code that govern and regulate cellular type, morphology, 

and function, the nucleus is of paramount importance. Decades of modern cytological and 

histopathologic study have led to the development of cellular stains such as hematoxylin 

that fluorescently highlight nuclei [5], [6]. Since their advent, and until the nascent field of 

digital pathology, interpretation and determination of aberrant phenotypes in these stained 

tissue specimens has been accomplished by subjective human interpretation [7]–[9]. As the 

field of pathology migrates from subjective to automated objective interpretation, there is a 

critical need for accurate and precise but simple and computationally-efficient methods for 

nuclei segmentation.

The shape and distribution of cell nuclei in pathology images is used to determine cell, 

tissue, and cancer types, and is critical in cancer identification, grading, and prognosis [10]. 

For example, in blood smears, multi-lobed nuclei typically indicate neutrophils, oval and 

kidney-shaped nuclei mark monocytes, round nuclei with a high nuclear-to-cytoplasmic 

ratio mark lymphocytes, while fully developed red blood cells lack nuclei all together [11], 

[12]. “Cigar-shaped” nuclei help identify smooth muscle, and, when found out of place, 

leiomyosarcoma [2]. Nuclear distribution, morphology, presence, and absence helps identify 

the layers of epithelium on the exterior and interior of the body, while the identification of 

cytological penetration of characteristic epithelial layers by cancer such as melanoma can 

drastically alter treatment course and prognosis [13]. In breast cancer, the identification of 

nuclear and chromosomal mitotic figures provides an accurate prognostic indicator, and in 

adenocarcinoma of the prostate, cancer cells commonly demonstrate nuclear enlargement 

and prominent nucleoli [14], [15]. The importance of nuclear identification and subsequent 

detailed analysis can hardly be overstated.

The field of digital pathology is revolutionizing modern healthcare. The advent of whole

slide imagers coupled with telemedicine and cloud storage has facilitated efficient storage 

of vast amounts of tissue data and promises to facilitate diagnosis, prognosis and treatment 

planning [16]. Combining tissue data with electronic medical records, genetic and epigenetic 

sequencing, big data science, and epidemiologic studies, can facilitate further personalized 

healthcare and reveal interesting scientific discoveries [17], [18]. The application of precise 

computer vision techniques to this data is catalyzing the field’s development, increasing 

the efficiency of providers through rapid screening, aiding in education, and standardizing 

analysis to reduce observer variability [10], [19]–[21].

Given the importance of nuclear distribution and morphology, and the rapid growth of 

digital pathology, the task of precise nuclear segmentation in H&E images via computer 

algorithms provides a logical starting point for the rest of computer-aided tissue image 

analysis. Accurate segmentation of nuclei is a pivotal starting point for further feature 
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extraction and classification within the nucleus itself, but also serves as a relatively simple 

basis to model cellular distribution, which can be used to classify tissue subtypes and 

identify abnormalities.

While identification of nuclei in a conventional H&E stain is routine for trained clinicians 

and researchers, chromatic stain variability, nuclear overlap and occlusion, variability in 

optical image quality, and differences in nuclear and cytoplasmic morphology and stain 

density provide challenges for computer-based segmentation algorithms [22]–[24]. Many 

techniques have been used to accomplish the task, but have been met with limited success 

in the more challenging of cases. For example, intensity thresholding methods generally 

fail with noisy images and clumped nuclei, marker-based watershed segmentation requires 

precise parameter selection, and active contour and deformable models are computationally 

expensive [23]–[29]. Machine learning-based nuclear segmentation approaches are generally 

more robust to these challenges, as they can learn to identify variations in nuclear 

morphology and staining patterns. More specifically, convolutional neural networks (CNNs) 

have recently demonstrated state-of-the-art performance in nuclei segmentation [24], [30], 

[31]. In this approach, images are passed through a trained two-class classifier to label pixels 

as nuclear or non-nuclear, and additional post-processing techniques to delineate clustered 

nuclei are subsequently applied [24]. A third class of inter-nuclear pixels can be added to 

eliminate the bulk of the post-processing work, which demonstrates significant advantage 

in separating crowded nuclei [31]. Most current deep learning-based multi-organ nuclei 

segmentation methods are limited by the amount of data available. For a single network to 

perfectly segment nuclei from different organs large, diverse, quality-annotated training data 

is required. Moreover, existing methods often fail to segment overlapping nuclei without 

complex post processing steps.

The primary goal of this work is to accurately segment nuclei in a diverse set of H&E 

stained histology images. Unfortunately, a significant barrier for data-driven approaches 

such as deep networks is the paucity of large and diverse annotated datasets. Although, 

individually trained nuclei segmentation networks may perform better for a specific organ, 

training a separate network for every organ in the human body while catering for the 

diversity that exists across patients, hospitals and disease states is tedious. A singular 

network that is independent of organ specific nuclei morphology is more broadly applicable 

while training on just a few organs. While there exist datasets for organ types such as 

breast tissue and prostate tissue, there is a lack of support for other important organ types. 

Moreover, even for supported cancer types, there is also a lack of coverage of possible 

disease grades. Overall, the presentation of histopathology tissue and their nuclei is organ-, 

disease-, and patient-specific. While specialized organ and disease human experts might 

perform better than general pathologists, for data-driven approaches such as deep networks, 

there is not enough training data currently to cover all possible modes of data, which 

makes computational pathology a domain adaptation problem. Stated precisely, domain 

adaptation is the generalization problem in which a model trained on data from one domain 

is often incapable of performing well on data from another domain due to subtle distinctions 

between the two domains. In computational pathology, models trained on a specific patient, 

H&E staining protocol, disease grade or organ would have a domain bias towards that 

training set, and might not cover the full distribution of testing cases found in histopathology 
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tissue. Thus, as with previous work, in order to generalize to unknown organ types and 

disease grades, nuclei segmentation should be approached is unified manner.

Contributions: In this work, we propose a method to overcome the diversity required 

in training data using synthetically generated data and then use a contex-aware adversarial 

network for nuclei segmentation. Our main contributions are highlighted below:

• Synthetic Pathology Images with Ground Truth: Because of the limited 

availability of diverse labeled nuclei segmentation data we generate a large 

dataset of perfectly-annotated synthetic histopathology images by generating 

random polygon masks and adding realism using unpaired cycle-consistent 

adversarial training.

• Adversarial Nuclei Segmentation: We propose to train a conditional GAN 

(cGAN) network with spectral normalization and gradient penalty for multi

organ nuclei segmentation. Instead of using post-processing steps which 

reinforce spacial contiguity in the nuclei segmentation mask we use adversarial 

term imposes higher-order spacial-consistency during the training process. 

Moreover, we pose the problem as a regression rather than a classification 

problem where the loss function is also learned during the training process.

• Quantitative Study: We validate our proposed nuclei segmentation paradigm 

on publicly available and newly created datasets. Our quantitative study 

demonstrates cross site, patient and organ adaptability of our proposed method.

II. Related Work

A. Deep Learning-based Nuclei Segmentation

Nuclei segmentation in histopathology images has been extensively studied using a variety 

of deep learning methods. However, there are several challenges associated with effectively 

using deep learning approaches for this task. Most work has focused on developing nuclei 

segmentation methods for single organs and specific application without addressing issues 

such as domain adaptation [32]. Histopathology images are diverse due to variations such 

as organ type, tissue site, and staining protocol. Clumped and chromatin-sparse nuclei 

are especially difficult to isolate or detect. The close proximity of epithelial cell and the 

random occurrence of mitotic figures make accurate boundary detection difficult. Most deep 

learning techniques estimate a probability map based on a two-class problem followed by 

post-processing. Neeraj et al. completed seminal work in multi-organ nuclei segmentation 

by posing the challenge as a three class problem (CNN-3C) [31]. Cui et al. developed 

a fully convolutional network-based nuclei segmentation approach [33] and Naylor et al. 
posed the problem as a regression task of estimating the nuclei distance map [34]. Khoshdeli 
et al. demonstrate that fusion of networks is better than multi-task learning for nuclei 

segmentation [35]. Salvi et al. demonstrate a multi-scale adaptive nuclei segmentation 

(MANA) method and show results on multi-organ nuclei segmentation. The performance 

of all of these approaches is limited by the size and quality of labeled datasets and the 

diversity required in the images to model the distribution of relevant tissue features. For 

a single method to be adaptable to multiple organs, data sites, patients, and disease states 

Mahmood et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



large amounts of diverse data are required. Moreover, simple CNN-models are generally 

not capable of handling the issue of overlapping nuclei and post-processing or alternate 

parallel processing is required to determine such overlaps. This is because CNNs minimize a 

per-pixel loss between the input image and the segmentation mask. Most previous work has 

posed the nuclei segmentation problem as a classification or as a combined classification and 

regression problem. We propose to pose this as an adversarial regression-based image-to

image translation problem. Such an approach is more context aware and globally consistent, 

i.e. the loss function is learned taking the entire image into consideration rather than just 

pixel-wise loss.

B. GANs for Medical Imaging Applications

GANs were introduced by Goodfellow et al. in [36] and have since been used for 

a variety of medical imaging applications including segmentation [37]–[39], detection 

[40], [41], reconstruction [42]–[44], domain adaptation [45]–[48]. The GAN framework 

can be seen as a two player min-max game where the first player (the generator), is 

tasked with transforming a random input to a specific distribution, such that the second 

player (the discriminator) cannot distinguish between the true and synthesized distributions 

[36], [49]. GANs have a generative and artistic ability to map random noise to realistic 

distributions [50]–[52]. However, for medical imaging tasks it is critical to constrain this 

artistic ability and thus conditional GANs (cGANs) are more applicable. cGANs have the 

ability to conditionally control the output of GAN training based on a class or an image. 

Image-to-image translation tasks i.e. situations where the GAN is conditioned by an input 

image, are more useful for medical imaging than class conditioning. Due to the limited 

availability of labeled medical imaging data generative adversarial networks (GANs) have 

been recently been used for synthetic data generation. For example, Dou et al. proposed 

to generate synthetic retinopathy data from retinal masks [37]. Schlegl [41] proposed 

generating pathology data using nuclei masks where the background and foreground are 

learned separately. Despite the wide spread use of GANs they are notoriously difficult to 

train. We use recently proposed GAN stability methods such as spectral normalization [53] 

and gradient penalty for improving the stability of cGAN-based image-to-image translation.

III. Methods

A. Datasets

There are very few nuclei segmentation datasets with pixel-level annotations. Careful 

annotation of nuclei boundaries is time-consuming, error-prone and may also suffer from 

subjective interpretation errors. Irshad et al. [54] showed that there was larger interoberver 

disparity among pathologists identifying nuclei in H&E data. Several datasets have been 

released for nuclei segmentation but often lack annotations of all nuclei in large portions of 

the data [55], [56]. This makes it difficult to identify false positives and to focus on clumped 

and overlapping nuclei. The only publicly available dataset with complete nuclei annotation 

and multi-organ pathology images was presented by Neeraj et al. in [31]. This dataset 

contains annotations of 30 1000 × 1000 pathology images from seven different organs 

(bladder, colon, stomach, breast, kidney, liver, and prostate). The raw data for this data was 

sourced from the NIH Cancer Genome Atlas (TCGA). Although, this is a large database 

Mahmood et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



it is still not enough to cater for the diversity required to train context aware methods that 

can determine overlapping nuclei with a high accuracy on object and pixel-level statistics. 

To increase the number of organs and test data available we complemented this existing 

dataset with four additional 1000 × 1000 pathology images (breast, prostate, ovary, and 

esophagus) from the TCGA database labeled by a pathologist at the Johns Hopkins Hospital. 

Since, this additional data is labeled by a different pathologist it contributes to the overall 

diversity of the data. Data from five different organs from the first dataset [31] along with 

synthetically generated data were used for training. Synthetically generated data to models a 

large diversity of nuclei sizes, overlapping morphology and characteristics that can enhance 

overall network performance. The trained models were evaluated on a combination of 

images from the first and second datasets and includes evaluation on four organs that were 

not used for training. For testing, two slides from breast, liver, kidney, prostate, bladder, 

colon and stomach and one slide from esophagus and ovary were used.

B. Stain Normalization

A significant amount of color variations exists in H&E stained histopathology images due 

to differences in manufacturing of stains, staining protocols used and response functions 

of digital scanners. Differences in stains can be a major issue in cross-site domain 

adaptability of CNN-based computational pathology methods. This is because CNNs mostly 

rely on the color and texture of H&E images for learning cues. Normalizing the images 

can significantly improve the performance of such CNN-based methods [57]. However, 

normalization methods developed for conventional vision applications [58] provide limited 

benefit in computational pathology applications because the two stains can be normalized 

against each other. Several methods have been presented for normalizing pathology images 

or adapting networks trained on data from one site to data from other locations [57], [59]–

[61]. Vahadane et al. [62] proposed decomposing the pathology image into stain density 

maps in an unsupervised manner and then combining these sparse stain density maps 

with the stain colored basis of a target image. This approach preserves the structure in 

the source image while adapting the color to the target domain. We empirically found 

that sparse stain normalized H&E images following [62] performed better with our nuclei 

segmentation methods as compared to standard Reinhard et al. [58] and Macenko et al. [61] 

stain normalization. Details about this method can be found in [62] and examples of stain 

normalized images have been shown in Fig. 1a.

C. Learning Preliminaries

The primary objective of this work is twofold:

1. Generate synthetic H&E images that model the distribution of cellular and 

extracellular spatial features represented in multiple organs.

2. Use both the synthetic and real histopathology data for training a context-aware 

CNN that can accurately segment nuclei.

This approach can be generalized as learning mapping functions between two domains: M 
(nuclei mask) and N (H&E images). Specifically, G maps from M → N, and is used for 
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synthetic data generation, while S maps from N → N, and is used for nuclei segmentation. 

We denote m and n as training examples where m ∈ M and n ∈ N.

D. Synthetic Data Generation

Previous work on histopathology image synthesis has focused on generating the nuclei-free 

background and foreground separately [63]. In contrast we propose a relatively simple 

unpaired mapping-based approach, where cycle-consistency loss is used in a dual-GAN 

architecture to transfer between polygon masks (M) and histopathology images (N). The 

size, location and shape of the nuclei can vary significantly based on patients, clinical 

condition, organs, cell-cycle phase and aberrant phenotypes. Thus, we generate nuclei masks 

by building a dictionary of nuclei sizes and shapes from different organs and randomly 

perturbing size and shape parameters before placing them on a grid in a randomized 

fashion. We then use a cycleGAN-style [52] architecture to add realism to the polygon 

mask. The cycleGAN is trained on real H&E patches, once trained it can be used to add 

realism to randomly perturbed nuclei placed on a grid. These generated polygon masks and 

corresponding synthesized H&E images are subsequently used for training. The purpose of 

synthetic data generation is to make the data independent of biological nuclei morphology 

represented in a specific organ, patient or disease state. By slightly perturbing the nuclei 

on a scaffold we essentially domain randomize the network which allows the network to 

be more general. Domain randomization is recent concept commonly used by the robotics 

community to generalize training on synthetic data [64]. While the generated synthetic data 

does not have biological significance, it can be used to train a nuclei segmentation network 

which is more effective than a network entirely trained on realistic data.

The cycleGAN framework learns a mapping between randomly generated polygon masks 

and unpaired pathology images. Since cycleGAN is based on consistency-loss, the setup 

also learns a reverse mapping from pathology images to corresponding segmentation or 

polygon masks (Fig. 1b). However, since this is an unpaired mapping, the segmentation 

network is not efficient enough to be used. Thus, we use the reverse mapping only to train 

the forward mapping more effectively. Such an arrangement consists of four networks: G 
(random polygon mask to pathology image generator), S (pathology image to polygon mask 

generator), DN (discriminator for G), and DM (discriminator for S). To train this framework 

for synthetic data generation with unpaired data, the cycleGAN objective consists of an 

adversarial loss term ℒGAN and a cycle-consistency loss term ℒcyc. The adversarial loss is 

used to match the distribution of translated samples to that of the target distribution and can 

be expressed for both mapping functions.

The cycle-consistency loss is used to constrain the generator in learning an invertible 

mapping from generated polygon masks to pathology tissue, in that, when learning a 

mapping function G that translates the nuclei mask into pathology tissue, we can learn a 

mapping function S as that can map that pathology tissue back into a nuclei mask (creating 

a forward cycle, N → M → N). As a small note, that only forward cycle consistency loss is 

maintained. We do not preserve backward cycle-consistency. For the mapping G : M → N 
with discriminator DN, we can express the objective as the binary cross entropy (BCE) loss 
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of DN in classifying real or fake, in which DN and G play a min-max game to maximize and 

minimize this loss term respectively. This objective for G : M → N, can be expressed as,

ℒGAN G, DN = En pdata  n logDN(n) + Em pdata  m log 1 − DN(G(m)) , (1)

in which the generator G aims to generate nuclei images from random polygon masks such 

that they would be indistinguishable from real nuclei images, i.e., G(m) ≈ n, while the 

discriminator DN aims to distinguish generated vs. real nuclei images. A similar objective 

can be expressed for S : N → M,

ℒGAN S, DM = Em pdata  m logDM(m) + En pdata  n log 1 − DM(S(n)) . (2)

The cycle-consistency loss is used to incentivize a one-to-one mapping between samples 

in M and N, and facilitate the evolution of G and S to inverse functions of each other. 

Specifically, the ℒcyc term ensures that the forward and back translations between the 

random polygon mask and nuclei image are lossless and cycle consistent, i.e., S(G(m)) 

≈ m (forward cycle-consistency) and G(S(N)) ≈ N (backwards cycle-consistency). The 

forward cycle loss term helps with refining synthetic nuclei images to be more realistic, 

as the generated images should not only mimic the H&E tissue, but also create a diverse 

morphology of the nuclei for training a robust nuclei segmentation network. We can express 

the objective as,

ℒcyc G, S = λnEn pdata  n ∥ G S n − n ∥1
+ λmEm pdata  m ∥ S G m − m ∥1

(3)

where λ controls the importance of the forward and backward cycle constraints. For 

synthetic data generation, we relaxed the λm term, as a random polygon mask can represent 

multiple valid nuclei images. This randomization can also be seen as GAN input noise that 

contributes to generating the diversity in synthetic image.

The full objective for synthetic data generation can thus be written as,

argmin 
G, S

argmax 
DN, DM

ℒGAN G, DN + ℒGAN S, DM + ℒcyc G, S
(4)

E. Conditional GANs for Segmentation

One of the major challenges in nuclei segmentation is independent boundary detection and 

isolation of overlapping nuclei. Standard CNNs segment these nuclei as one object because 

these approaches typically rely on minimization of some pixel-wise loss. The contribution 

of a single misclassified pixel is insignificant to the overall loss but can subsequently lead 

to multiple nuclei segmented as one. This problem has previously been mitigated by contour 

prediction [31], [65], [66], concave point detection [67] and distance map regression [34].

For conventional vision, conditional random fields (CRFs) have been extensively used to 

enforce spatial contiguity as a post-processing step in segmentation problems [68]. Joint 
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CNN-CRF models have also been explored for more global and context aware CNN training 

[46], [69], [70]. Despite the advances in CNN-CRF models, this approach is often limited to 

the use of pairwise CRFs, which only incorporate second order statistics. According to [71], 

[72] higher order potentials have also been useful for image segmentation. Using CRFs to 

incorporate higher order statistics renders a complex energy function. Adversarial training 

allows higher order consistency without being limited to a specific type of higher order 

potential (e.g. unary and pairwise in the case of CRFs). Since the adversarial model has 

a field-of-view that is a large portion of the image rather than just neighboring pixels or 

super-pixels, it can enforce a higher-order spacial-consistency that can neither be enforced 

using pair-wise terms in a CRF nor measured by pixel-wise loss.

The adversarial segmentation model also learns an appropriate loss function which 

circumvents manually engineered loss functions. This has been explored in detail in image

to-image translation methods such as [51]. Such a model is flexible enough to detect subtle 

differences in a range of higher order statistics between the predicted and ground truth 

nuclei segmentation masks. The adversarial setup can learn a loss, based on classifying the 

output image as real or fake, while iteratively training a segmentation model to minimize 

this learned loss. Each output pixel is usually considered conditionally independent from all 

other pixels whereas conditional GANs can learn a structured context-aware loss considering 

a larger receptive field. The adversarial loss used to penalize the generator is calculated 

from the discriminator, in which the discriminator classifies overlapping pairs of image and 

segmentation prediction patches as being real or unrealistic. By controlling the size of the 

patch, we can control the size of the non-locality, with bigger patches incorporating more 

global information in the image.

The cGAN framework learns a mapping S for nuclei segmentation, in which S can adapt 

H&E nuclei images to their segmentation masks. To train this framework for semantic 

segmentation with paired data, the conditional GAN objective consists of an adversarial loss 

term ℒGAN and a per-pixel loss term ℒ1 to penalize both the joint configuration of pixels 

and segmentation errors.

The adversarial loss in conditional GANs is similar to that of cycleGAN, in which the 

segmentation network S and discriminator DM play a min-max game in respectively 

minimizing and maximizing the objective, minSmaxDMℒGAN S, DM . Specifically, S 

translates nuclei images to realistic segmentation masks to minimize the cross-entropy loss 

of DM. The adversarial loss can additionally be interpreted as a structured loss, in which 

S is penalized if the group configuration of the pixels in the predicted mask is unrealistic, 

i.e. masks that look like salt-and-pepper noise. Because the data is paired, DM sees both the 

nuclei image and the predicted mask. We can express the GAN objective as,

ℒGAN S, DM = Em, n pdata  m, n logDM m, n
+ En pdata  n log 1 − DM m, S n (5)

An additional ℒ1 loss term is used to bring the output closer to the ground truth and stabilize 

GAN training,

Mahmood et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℒ1 S = Em, n pdata  m, n ∥ m − S n ∥1 . (6)

Based on Eq. 5 and 6 the full objective for conditional GAN-based segmentation can be 

expressed as,

arg minSmaxDMℒGAN S, DM + ℒ1 S . (7)

Because the discriminator works on overlapping patches (i.e., PatchGAN Markovian 

classifier), it penalizes structure at a patch level rather than over the entire image. This 

approach draws focus of the network on portions of the image in which the nuclei 

boundaries are likely to be missed. The overlapping patches mean that the same nuclei 

of the image contribute to the learned loss multiple times in a different context and varying 

neighboring environments. To resolve individual, touching and overlapping nuclei, we use 

a distance transform that is computed on the probability map, which essentially yields a 

global minimum in the case of individual nuclei and multiple separate local minimas for 

overlapping nuclei. This post processing technique is similar to [27], [73].

F. Spectral Normalization for GAN Stability

Discriminator normalization can improve stability. From an optimization point-of-view, such 

normalization leads to more efficient gradient flow. Various forms of normalization have 

been proposed, for example batch normalization (BN) was proposed for GAN frameworks 

in [74]. BN is done on a batch level, and normalizes pre-activations of nodes in a layer 

to the mean and standard deviation of the parameters learned for each node in the layer. 

Since a neural network can be seen as a composition of non-linear mappings with spectral 

properties. Spectral normalization was first suggested in [53] for improving GAN stability 

and entails dividing each weight matrix, including the matrix representing convolutional 

kernels, by their spectral norm. We use spectral normalization for stabilizing GAN training 

for both synthetic data generation and segmentation. Spectral normalization is used to 

control the Lipschitz constant of the discriminator such that the spectral norm σ of the 

convolution weights W in the network would be bounded by the Lipschitz constraint: σ(W) 

= 1. As a result, the discriminator is more stable during training and can avoid irregular 

gradients.

IV. Experiments and Results

A. Implementation Details

Dataset Preprocessing—The data obtained from [31] and our manually labeled data 

were normalized using sparse stain normalization to match a standard slide from the breast. 

Collectively, these data were sourced from nine different organs, 34 different patients and 

collected at different hospitals. Four slides from breast, liver, kidney and prostate were used 

for training. For testing, two slides from breast, liver, kidney, prostate, bladder, colon and 

stomach and one slide from esophagus and ovary were used. Thus, our test data includes 

images from four organs that the network was not trained on. All data were decomposed into 
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large patches of size 256 × 256 for training the network efficiently. The training data was 

then supplemented with synthetically generated data containing 4, 650 patches. The overall 

training data had 4906 256 × 256 patches.

Synthetic Data Generation

Network Architectures:  The generator architectures contain two stride-2 convolutions, 

nine residual blocks and two functionally constrained convolutions with a stride of 1
2 . 

Reflection padding was used to minimize artifacts. The discriminator architecture was a 

simple classifier with three layers and the output was 70×70 with the aim to classify weather 

these overlapping patches were real or fake. As suggested in [52] a patch level discriminator 

has fewer parameters and is more easily applicable to various image sizes. We observed that 

larger size images needed more residual blocks for efficient convergence. The GAN training 

was stabilized to prevent mode collapse by using spectral normalization [53]. Additional 

details of the network architectures is discussed in the supplement.

Training Details:  The training code was implemented using Pytorch 0.4. For all 

experiments λn = 70 and λm = 10. These values were chosen after a log-linear grid search. 

Adam solver [75] was used to solve the optimization problem with a batch size of 1, which 

was experimentally determined. A total of 300 epochs was used. The learning rate was set to 

0.0002 for the first 150 epochs and linearly decayed to zero for the remaining 150 epochs. 

Since the purpose of this architecture was to construct an accurate generator, we divided the 

objective function by two when optimizing the discriminator i.e. to give it a lower learning 

rate. All networks were trained from scratch with no prior knowledge and weights were 

initialized from a Gaussian distribution with a mean and standard deviation of 0 and 0.02 

respectively.

Nuclei Segmentation

Network Architectures:  We use an encoder-decoder architecture with skip connections 

(U-Net [76]) for the generator. Skip connections are added between the ith layer and the (n 
− i)th layer, where each skip concatenates channels at the ith and the (n − i)th layers, where 

n is the total number of layers. After the last layer in the decoder, a convolution is applied 

to map the output segmentation mask followed by a Tanh function. Leaky ReLUs [77] were 

employed for the encoder with a slope of 0.2 and regular ReLUs were used for the decoder. 

A 70×70 patch Markovian discriminator, similar to the one described previously [51], was 

employed but with leaky ReLUs with a slope of 0.2. Additional details about this network 

architecture are discussed in the supplementary material.

Training Details:  During training, random jitter was applied to the data by resizing the 

256 patches to 286 × 286 and then cropping them back to 256 × 256. The Adam optimizer 

was used to solve the objective function and all networks were trained from scratch where 

the weights were initialized from a Gaussian distribution of mean 0 and standard deviation 

0.02. The training was run for 400 epochs and the learning rate was set to 0.0002 for 

the first 200 epochs and linearly decayed to zero for the remaining 200 epochs. Spectral 

normalization was used for increasing the stability of the adversarial training. A pooling 
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history of randomly selected 64 patch pairs from the segmented output and ground truth was 

used in the discriminator.

B. Evaluation Criteria

For efficient evaluation of nuclei segmentation, both object-level and pixel-level errors 

must be penalized. Object-level penalty is associated with nuclei detection and pixel-level 

penalty is important for preserving fine boundaries, which influence the shape and size of 

the nuclei mask. As described in [31] any quantitative nuclei segmentation metric should 

penalize four different possible erroneous outcomes: a) Missed nuclei b) Detection of ghost 

objects as nuclei c) Under-segmentation (i.e., segmentation of overlapping nuclei as one) 

d) Over-segmentation (i.e., segmentation of a single nucleus as many). For our quantitative 

study we use three different evaluation metrics that assess these outcomes:

• Average Pompeiu–Hausdorff distance (aHD): The aHD is a pixel-level metric 

that calculates the greatest of all the distances from a point in the ground truth 

segmentation mask to the closest point in the predicted mask [79]. It can be 

calculated as P x, y = max p ℎ, y , p y, ℎ  where p = maxaminb a − b  and a ∈ 

h and b ∈ y. A lower HD indicates the two segmentation masks being compared 

are closer to each other.

• F1 Score: The F1 Score is an object-level metric defined by the harmonic mean 

between precision and recall, F1 = Recall×Precision
Recall+Precision . A higher F1 score indicates 

a better intersection between the ground truth and the predicted segmentation 

masks.

• Aggregated Jaccard Index (AJI): AJI was proposed in [31] specifically for 

quantitative evaluation of nuclei segmentation. AJI is an extension of the global 

Jaccard index which computes the ratio of aggregated intersection cardinality 

and aggregated union cardinality in the ROI. Assuming, G = ∪i = 1, 2..K Gi is the 

ground truth of the nuclei pixels and P = ∪j = 1, 2..L Pj are the prediction results, 

the AJI can then be defined as, AJI =
∑i = 1

L Gi ∩ Pj* i

∑i = 1
K Gi ∪ Pj*(i) + ∑k ∈ U Pk

. Where, Pj* i

is the connected component from the prediction result for which the Jaccard 

index is maximized, and U is the set of indices of detected ghosts that are not 

assigned to any component in the ground truth. A higher AJI indicates better 

results while penalizing all four possible errors mentioned above.

C. Quantitative Study and Results

We used data from nine different organs for evaluating the trained nuclei segmentation 

network. No data used for testing was used for training. To assess generalizability of the 

developed algorithms, we tested on four organs that were not represented in the real or 

synthetic training data. Table I summarizes the results of the testing on three different 

metrics mentioned above. A comparative analysis with standard segmentation architectures 

[82], [83] such as U-Net [76], Fully Convolutional Network (FCN) [68] and Mask R-CNN 

[84] was performed using an identical test and train split. These architectures were used 
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for comparison because of their wide spread usage for a variety of different segmentation 

tasks including nuclei segmentation [85], [86]. Besides these standard architectures, we also 

make explicit comparisons with DIST [34] and CNN-3C [31] two state-of-the-art nuclei 

segmentation methods. We also compare with nuclei segmentation toolboxes available in 

Cell Profiler [81] and ImageJ-Fiji [80]. These comparisons and representative patches from 

different organs are shown in Fig. 2. The overlap between ground truth annotations from a 

pathologist and those detected by our method are highlighted in green and the difference 

between the ground truth and the prediction are shown in red. Our segmentation networks 

demonstrates a 29.19% improvement in AJI as compared to DIST and 42.98% as compared 

to CNN-3C. In terms of standard architectures there is a 44.27% improvement over standard 

Mask R-CNN and 73.19% over a U-Net. Among the 3224 overlapping nuclei 2769 were 

accurately segmented using our method so the segmentation rate among overlapping nuclei 

was 85.88% as compared to 79.46% with DIST and 77.38% with CNN-3C. Additional 

comparative analysis of the proposed Nuclei Segmentation Framework with Fused ENet 

[35] and MANA [78] has been shown in Table II. It should also be noted that There was an 

8.68% improvement in the AJI by using sparse stain normalization.

V. Discussion and Conclusion

Objective, accurate, and automated analysis of H&E slides has the potential to revolutionize 

clinical practice in pathology, by improving the detection, grading, classification, and 

quantitative analysis of aberrant phenotypes. Towards realizing this potential, this work 

addresses one of the most fundamental tasks in computational pathology nuclear 

segmentation. Nuclear morphology and distribution are paramount for the analysis of 

histopathology slides by computational pathology. In addition to providing foundational 

features, nuclei shape and position can be used to enhance network attention.

We propose a single network that is trained with four organs and synthetically generated 

pathology data. Our network is trained using an adversarial pipeline which has a larger 

receptive field as compared to standard CNNs and captures more global information. This 

approach captures higher-order statistics from the image and the resulting networks are more 

context-aware. We pose the segmentation problem as an image-to-image translation task 

rather than a classification task. Doing so allows us to learn a complex loss function between 

the output and the ground truth rather than having to use a manually engineered one. We 

demonstrate that this approach performs better than standard architectures, state-of-the-art 

methods and general purpose tools such as Fiji and Cell Profiler for nuclei segmentation.

Future work will involve adapting this approach to other medical imaging modalities, as well 

as fusing nuclear morphology information with other features for networks that can improve 

detection, classification, grading and prognosis from histopathology images. Future work 

will also explore the adversarial training paradigm for structured prediction and generalizing 

the concept for other applications. The source code and trained models are publically 

available: http://github.com/mahmoodlab/NucleiSegmentation
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Fig. 1. 
(a) Figure showing full-slide images, 1000×1000 cropped images and sparse stain 

normalization for nine different organs sources from the NIH TCGA database. (b) Unpaired 

synthetic data generation using randomly-generated polygon masks mapped to H&E images. 

The architecture includes a dual-GAN setup with cycle-consistency loss. Two generators 

learn mappings, G, and S between a mask (M) and a histology image (N) G : M → N and 

S : N → M and two discriminators classify the pairs of M and N as real or fake. (c) The 

conditional GAN setup for segmenting nuclei. The discriminator enhances the receptive field 

of the generator while learning an efficient loss function for the task.
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Fig. 2. 
Representative patches from six different organs and corresponding nuclei segmentation 

masks predicted by our proposed method, overlaid on ground truth segmentation masks. 

The green region represents an overlap between the prediction and manually labeled ground 

truth whereas the red region represents a disparity between the two. The predominance of 

the green region demonstrates accurate labeling. The bar charts compare the AJI for all 

test patches of corresponding organs with state-of-the-art methods (DIST [34] and CNN-3C 

[31]) as well as commonly-used segmentation tools in Fiji [80] and Cell Profiler [81].
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TABLE II

Comparative Analysis of the Proposed Nuclei Segmentation Framework With Fused ENet [35] and MANA 

[78]

Metric Fused ENet [35] MANA [78] Ours

Aggregated Jaccard Index (AJI)↑ 0.601 0.673 0.721

Average Hausdorff distance↓ 6.219 4.882 4.291

F1-Score↑ 0.733 0.839 0.866
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