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Abstract

The operation of the cardiovascular system in health and disease is inherently mechanical. 

Clinically, aortic stiffness has proven to be of critical importance as an early biomarker for 

subsequent cardiovascular disease; however, the mechanisms involved in aortic stiffening are still 

unclear. The etiology of aortic stiffening with age has been thought to primarily involve changes 

in extracellular matrix protein composition and quantity, but recent studies suggest a significant 

involvement of the differentiated contractile vascular smooth muscle cells in the vessel wall. 

Here, we provide an overview of vascular physiology and biomechanics at different spatial scales. 

The processes involved in aortic stiffening are examined with particular attention given to recent 

discoveries regarding the role of vascular smooth muscle.
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INTRODUCTION

Cardiovascular disease, the leading cause of death worldwide, is a group of complex, 

multifactorial disorders of the heart and blood vessels, including coronary heart disease, 

myocardial infarction, angina pectoris, heart failure, and stroke [18,38,81]. Traditional 

risk factors for cardiovascular disease include age, gender, hypertension, cholesterol, 

tobacco smoking, alcohol consumption, family history, diet, obesity, physical activity, and 

diabetes mellitus [18]. An additional independent risk factor—aortic stiffness—has recently 

attracted the renewed attention of clinicians and researchers. Aortic stiffening has been 

shown in numerous studies to precede and predict negative cardiovascular outcomes, but 

its development is not well understood [30]. As aortic stiffening is an early event in 

aging-associated cardiovascular diseases, often before the onset of symptoms, its study 

may provide clues to the underlying cellular and molecular mechanisms of cardiovascular 

disease and lead to novel therapeutic interventions. This review presents a brief summary 

of elements of cardiovascular physiology and biomechanics (reviewed in depth elsewhere 

[27,32,71]) that are important in the context of aortic stiffness. These elements are organized 
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by biological length scale, from organ to subcellular levels (Figure 1), with particular focus 

given to the contribution of contractile vascular smooth muscle to aortic stiffness.

CARDIOVASCULAR PHYSIOLOGY

The Organ/System Level

The cardiovascular system functions to circulate blood throughout the body. The left 

ventricle of the heart pumps oxygenated blood through the successively smaller vessels 

of the bifurcating systemic arterial tree, through the proximal, large-diameter aorta, and 

subsequent elastic arteries, then the muscular arteries, and finally the distal arterioles, 

through the capillaries, where gas and nutrient exchange occur, and then through the venous 

tree [13,23]. The arteries most proximal to the heart are considered elastic conduits whose 

walls expand to accommodate the blood ejected by the heart and then recoil (Figure 1A), 

releasing their stored elastic energy and aiding in the propulsion of blood down the arterial 

tree. The flow of blood through the system is primarily impeded by the peripheral arteries 

of the microcirculation, which account for roughly 60% of the total resistance. By the time 

blood has reached the capillaries, the mean pressure has dropped substantially, the pulse 

pressure (the difference between systolic and diastolic blood pressures) has dampened out, 

and the flow is relatively steady.

The Tissue Level

The blood vessel wall, which is organized into three layers (Figure 1B), is composed 

of cells, extracellular matrix (principally the proteins collagen and elastin), and cell–cell 

and cell–matrix connections that link these components [5]. Blood vessels exhibit marked 

spatial heterogeneity between different wall layers and along the length of the vascular 

tree [5,21,22]. The outer adventitial layer contains fibroblasts, and the inner intimal layer 

contains endothelial cells. The endothelium produces potent vasoregulatory agents that 

modulate the tone of the dVSMCs found in the media, which is generally the thickest 

layer of the vessel wall. Smooth muscle contraction in microvessels can dramatically reduce 

lumen size, functioning to both increase vascular resistance and direct blood flow to tissues 

based on metabolic need. In large arteries the lumen reduction is modest, but stiffness is 

markedly increased in response to dVSMC contraction [5,19,23,55].

The Cellular/Subcellular Level—Vascular Smooth Muscle

Vascular smooth muscle contraction is initiated and regulated by various neurotransmitters, 

hormones, and paracrine factors, as well as mechanical stimulation and electrical 

stimulation, and a combination of these signals may be present at any given instant in 
vivo. Force generation derives from interactions between cytoskeletal proteins myosin and 

actin [23,33]. At least three kinds of pathways regulate vascular smooth muscle contractility: 

(i) those that regulate myosin activity; (ii) those that regulate actin availability; and (iii) 

those that regulate the nonmuscle actin cytoskeleton and FAs, integrin-based cell–matrix 

adhesions (traditionally called dense plaques or adhesion plaques in smooth muscle) (Figure 

1C) [34,87]. This third regulatory scheme has come to light only recently from studies 

conducted mainly in airway smooth muscle [20,45,61,64,87] and runs contrary to classic 

models of a static ultrastructure for differentiated smooth muscle [5,60].
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Although cytoskeletal plasticity is now recognized as an important factor in vascular 

smooth muscle as well, particularly in the cell cortex [6,34], most of what is known 

about FAs comes from studies of migrating cultured cells, where FA undergoes dynamic, 

tension-mediated formation, growth, and maturation, followed by release of the contacts 

with the matrix and recycling [9,14,28,78,84,88]. Tyrosine phosphorylation of FA proteins 

in migrating cells modulates FA size, location, and composition and is considered the 

biochemical signature of FA recycling and turnover [10,42,75,85]. FAs, which contain 

upward of 100 proteins, serve as the mechanical bridge between the outside of the cell and 

the actin cytoskeleton [15,16,37,49,86]. The FA performs mechanotransduction, wherein 

physical forces (hydrostatic pressure, shear, tensile stretch, etc.) are transformed into 

biochemical signals [4,53]. Aberrant mechanotransduction has been suggested to play a 

role in the pathogenesis and progression of cardiovascular and other diseases, but further 

investigation is necessary [29].

CARDIOVASCULAR BIOMECHANICS

The Organ/System Level

The nature of blood flow (pulsatile hemodynamics) is complex, determined not only by 

the time-variant pressure gradient established by contractions of the heart but also by the 

morphology (geometry), composition, and mechanical properties of the vessel walls, which 

vary along the length of the vascular tree [5,23]. Early attempts to model the arterial 

circulation and relate pressure to flow invoked the Windkessel model [46,76]. In its simplest 

form, this lumped parameter circuit model consists of a resistor representing the small 

arteries and microcirculation and a capacitor representing the compliance of the large 

arteries. This electrical analog captures the smoothing action of the aorta on flow from 

the heart, but incorrectly assumes that changes in pressure are felt instantaneously, without 

delays, throughout the entire system [40,41]. A more accurate model of the spatiotemporal 

variation in pressure and flow in the arterial tree treats the arterial system as a distributed 

load, using transmission line theory to account for transit delays, impedance mismatches 

between arterial segments, and wave reflections [2,40,65,66]. These models provide a 

valuable framework for describing and interpreting changes in cardiovascular function.

The Tissue Level

The biomechanical properties of the aorta wall depend on its material composition and 

organization. Vascular stiffness is commonly attributed to the major matrix proteins of the 

vessel wall, collagen, and elastin [71]. The basic notion is that at low pressures wall tension 

is born by distensible elastin, whereas at higher pressures the collagen fibers in the wall 

uncrimp and reorient to bear a greater portion of the load and effectively stiffen the vessel 

[26,52]. Elastin is responsible for the elastic recoil of the vessel in response to pulsatile flow, 

and the collagen protects the vessel from damage from overdistension.

The blood vessel wall exhibits mechanical behavior that is nonlinear, anisotropic 

(directionally dependent), and visco-elastic (exhibiting creep, stress relaxation, and 

hysteresis), with hysteresivity that is insensitive to strain rate [13]. In the unloaded state, 

the wall harbors residual stresses, and in vivo it exists in a prestretched, prestressed 
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configuration [13]. While many quantitative models have been proposed to characterize 

this complex biomechanical behavior, most only possess a subset of these features [70]. 

In particular, most models primarily describe passive mechanical properties with very few 

attempting to account for active cellular behaviors.

The Cellular/Subcellular Level—Vascular Smooth Muscle

The contribution of the contractile smooth muscle cell to aortic stiffening with age has 

largely been overlooked. The dVSMC is believed to act as a short-term tension setter that 

does not directly contribute to the stiffness of the vessel wall, but rather contracts transiently 

to redistribute tensile forces between elastin and collagen, modulating stiffness only on 

short timescales [44,51,80]. However, this scheme has been challenged by recent studies 

demonstrating for the first time that the intrinsic stiffness of aortic smooth muscle cells 

increases with either age or hypertension, through mechanisms tied to the actin cytoskeleton, 

and may contribute directly to aortic stiffening [50,56]. Further studies of the mechanical 

behavior of individual differentiated vascular smooth muscle cells are necessary to bridge 

the gap in our understanding between vessel mechanics at the micro- and macroscales [39].

AORTIC STIFFNESS

Functional vs. Material Aortic Stiffness

Currently, the literature and the field have taken to referring to the various measures of 

aortic stiffness simply as “aortic stiffness,” which is imprecise and may cause confusion. 

A preferred nomenclature would invoke two varieties of stiffness—material stiffness and 

functional (or effective) stiffness. Material stiffness (e.g., the modulus of elasticity or 

Young’s modulus E) is geometry independent, whereas functional stiffness (e.g., PWV, 

impedance, etc.) depends on vessel geometry (e.g., diameter, thickness, in vivo prestrain, 

and tethering) as well as the material composition, and therefore material stiffness, of the 

vessel wall [19].

Functional aortic stiffness is assessed by noninvasive clinical procedures in vivo, and 

some researchers have tried to estimate material stiffness from the in vivo data using 

mathematical relations derived from hemodynamics (e.g., the Bramwell–Hill or Moens–

Korteweg equations) [44]. The gold standard of clinical measures is PWV, which is 

determined by recording carotid and femoral pressure waveforms and then dividing the 

transit distance by the transit time between the two sites [40]. It is important to clarify 

that PWV is not the velocity at which blood travels through the lumen, but rather the 

velocity at which the pressure signal is conducted by the vessel wall. Another surrogate 

for material stiffness is aortic characteristic impedance Zc, a measure of the vessel’s 

capacity for limiting the flow induced by a time-varying pressure gradient [2,40]. Aortic 

PWV and characteristic impedance have the same dependence (square root) on Young’s 

modulus and thickness [40]. Importantly, PWV has an inverse square root dependence on 

lumen diameter, while characteristic impedance is fivefold more sensitive to changes in 

diameter [40]. This distinction is critical for proper interpretation of functional stiffness 

measurements, especially as there are situations in which PWV and characteristic impedance 

change divergently [40].
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Although material stiffness can be calculated from noninvasive measures of functional 

stiffness, which reflect not only the material stiffness but also the geometry, strains, and 

pressurization of the vessel in situ, in practice there may be substantial errors introduced 

due to the challenges of monitoring and controlling the relevant geometric and loading 

parameters during blood flow in vivo. For this reason, the study of material stiffness is better 

suited to direct measurement of suitable animal tissues in vitro (e.g., by uniaxial stretching 

of rings as in [55], by biaxial stretching of tissue strips as in [68], or by pressurization 

of intact vessels as in [72]). In some regards such experiments will allow investigators to 

more quickly and easily understand the biomechanical and morphological underpinnings of 

cardiovascular disease.

Implications of Increased Functional Aortic Stiffness for Cardiovascular Disease

It is thought that the increased functional stiffness of the aorta with age decreases 

the impedance mismatch between the aorta and the muscular arteries, allowing greater 

transmission of the pulse pressure to distal sites [40]. This excess energy causes end-organ 

complications by damaging the microvasculature in critical high-flow, low-impedance 

organs, such as the brain, retina, and kidney [25,35,69,73]. The increased pressure pulsatility 

may also promote hypertrophy or remodeling in the resistance vessels, which would affect 

resistance to flow and the blood supply to various tissues and could lead to subsequent 

development of hypertension [40,43]. Changes in aortic stiffness may also shift the return 

timing of reflected waves to earlier in systole, which could augment aortic pressure and 

increase the load on the heart [41].

Mechanisms of Changes in Aortic Stiffness

Aortic stiffening with age or disease is generally thought to be a consequence of 

modifications to the morphology and composition of elastin and collagen [19,71]. In 

the aorta, repeated loading cycles over time lead to the fatigue failure of elastin and a 

progressive shift of mechanical loads from damaged, fragmented elastin fibers to collagen, 

thereby stiffening the vessel. Elastin has a relatively long half-life in the body (>40 

years); however, essentially all elastin synthesis is complete by adulthood, and there are 

no mechanisms to replace damaged elastin [8,47,58]. This long half-life makes elastin 

especially vulnerable to cumulative damage in the form of AGEs that can irreversibly 

crosslink elastin or collagen via nonenzymatic protein glycation [1,36,79]. In addition, 

elastic arteries are also known to undergo calcification [7,57], as well as enzymatic 

degradation via MMPs [74,82,83]. Increased collagen deposition, particularly in the 

collagen-rich adventitial layer, also leads to a stiffer aorta [12]. Oxidative stress [3] and 

inflammation [11,24] may further influence the structural changes that result in arterial 

stiffening.

The role of dVSMCs in aortic stiffening has been examined for the most part indirectly 

in studies of endothelial vasoregulatory dysfunction with age and disease (e.g., reduced 

bioavailability of nitric oxide) [17,59,62,63,77]. Recently, it has been shown that the 

stiffness of primary cultured aortic smooth muscle cells is increased in an aging primate 

model and in a hypertensive rodent model, representing a potential new mechanism for 

aortic stiffening, but the details of such a mechanism remain unclear [50,56]. Work 
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from our laboratory employing a multiscale approach has now identified the cortical 

FA of vascular smooth muscle cells as a key subcellular regulator of aortic stress 

generation and stiffness [55]. Using a magnetic microneedle to apply piconewton forces 

to cell-bound, RGD-coated microbeads, we demonstrated that agonist stimulation induces 

stiffening of the VSMC cortex, and that the small molecule Src-inhibitor PP2 prevents 

this stiffening. Deconvolution immunofluorescence microscopy revealed that this cortical 

stiffening parallels agonist-induced increases in FA size, which are also Src dependent. 

Aorta tissue homogenates probed by Western blot with phosphospecific antibodies indicated 

increased tyrosine phosphorylation of FA proteins CAS, FAK, and paxillin in response to 

contractile stimulation, which is indicative of FA remodeling. Both PP2 and FI-14, a small 

molecule inhibitor of FAK, inhibited agonist-induced increases in tyrosine phosphorylation, 

as well as agonist-induced contractile force and stiffening, as measured with high-frequency, 

low-amplitude cyclic stretches that do not break cross-bridges. Taken together with previous 

studies, these results indicate that agonist stimulation induces actin polymerization, cortical 

stiffening, and Src-FAK–mediated FA growth and remodeling that strengthens the cortical 

cytoskeleton and FA to enable tissue stiffening [34,55] (Figure 2). Different FA proteins 

undergo varying degrees of redistribution in response to agonist stimulation, with proteins 

like VASP and zyxin that strengthen the link between the FA and cortical actin being 

most dynamic [48]. This shuffling of FA proteins is linked to actin- and microtubule­

dependent endosomal pathways [48], which had previously been implicated in FA recycling 

in migrating cultured cells [31,54,67], and may help to reinforce high tension-bearing sites.

SUMMARY

The microcirculation, the main regulator of total vascular resistance, plays an important 

role in cardiovascular disease, but recent studies have indicated a substantial role for the 

large-diameter elastic aorta as well. Aortic stiffening, a known biomarker for subsequent 

cardiovascular disease, reduces the impedance mismatch between the aorta and the muscular 

arteries. As a result, a larger portion of the pulse pressure is transmitted distally to 

sensitive microvessels in critical organs, including the heart, brain, and kidney. Augmented 

transmission of the pressure pulse may induce hypertrophy and remodeling of the 

microcirculation and increase the afterload on the heart.

Clinical measures of aortic stiffness, while noninvasive, incorporate not only the mechanical 

properties of the vessel wall but also its geometry. It is important to distinguish functional 

measures of stiffness (PWV, Zc) from measures of material stiffness (Young’s modulus). 

This will require thorough biomechanical investigations in vitro where loading conditions 

and vessel dimensions can be precisely tracked and controlled.

Recent inquiries into the multifaceted mechanisms of stiffness are forcing investigators to 

reconsider the aorta as more than simply a passive elastic conduit. Just as dVSMCs are 

integral to regulating the resistance of the microcirculation, these cells are also integral 

regulators of aortic stiffness. Further investigations of smooth muscle involvement will not 

only inform modeling efforts but may also lead to the development of new interventions to 

mitigate aortic stiffening and reduce the burden of cardiovascular disease.
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Thus, the complexity of aortic stiffening with aging and disease warrants a multiscale 

approach to understand underlying mechanisms and their effects on cardiovascular 

function. Importantly, the success of this integrative approach will require interdisciplinary 

collaboration among clinicians, physiologists, biologists, and engineers.

PERSPECTIVE

Aortic stiffness is an early biomarker for cardiovascular disease. The mechanisms of aortic 

stiffness have long been presumed to be extracellular, although recent studies suggest that 

vascular smooth muscle cells are important regulators of stiffness. A multiscale approach 

that integrates insights across fields of study may lead to new therapies for aortic stiffness 

and cardiovascular disease.
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impedance
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Figure 1. 
The aorta across length scales. An integrative consideration of structure and function at 

different biological levels of scale is necessary to understand cardiovascular physiology 

and biomechanics in health and disease. (A) System/organ level. Top: Contraction of the 

heart ejects blood into the arterial systemic circulation. The blood first enters the aorta, 

which distends and then recoils to propel the blood downstream. Bottom: With an aging- or 

disease-related increase in aortic stiffness, the aorta is less distensible and absorbs less of 

the energy of the pressure pulse. (B) Tissue level. Aortic stiffness dictates aortic function, 

and aortic stiffness is determined by the structural organization and composition of the 

vessel wall. The wall is arranged in three main layers (intima, media, and adventitia), each 

containing a characteristic cell type (endothelial cells, vascular smooth muscle cells, and 

fibroblasts, respectively). (C) Cellular/subcellular level. Vascular stiffness depends critically 

on both the extracellular matrix and the smooth muscle cells embedded in the matrix. 

VSMCs are physically connected to their surrounding matrix by transmembrane integrin 

receptors, which are connected via the actin cytoskeleton to contractile filaments responsible 

for force production and regulation of stiffness.
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Figure 2. 
Model of FA regulation of aortic stiffness. Agonist- and tension-induced growth and 

remodeling of FA in aortic VSMCs strengthen cell–matrix adhesion to facilitate force 

transmission and stiffening of the aorta. Differential redistribution of FA proteins is 

facilitated by endosomal recycling pathways. Modified from [55].
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