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Abstract

Microfluidic impedance cytometry is a powerful system to measure micro and nano-sized 

particles and is routinely used in point-of-care settings disease diagnostics and other biomedical 

applications. However, small objects near a sensor’s detection limit are plagued with relatively 

significant background noise and are difficult to identify for every case. While many data 

processing techniques can be utilized to reduce noise and improve signal quality, frequently 

they are still inadequate to push sensor detection limits. Here, we report the first demonstration 

of a novel signal averaging algorithm effective in noise reduction of microfluidic impedance 

cytometry data, improving enumeration accuracy and reducing detection limits. Our device uses 

a 22 μm tall by 100 μm wide (with 30 μm wide focused aperture) microchannel and gold 

coplanar microelectrodes that generates an electric field, recording bipolar pulses from polystyrene 

microparticles flowing through the channel. In addition to outlining a modified moving signal 

averaging technique theoretically and with a model dataset, we also performed a compendium 

of characterization experiments including variations in flow rate, input voltage, and particle 

size. Multi-variate metrics from each experiment are compared including signal amplitude, pulse 

width, background noise, and signal-to-noise ratio (SNR). Incorporating our technique resulted 

in improved SNR and counting accuracy across all experiments conducted, and the limit of 

detection improved from 5 μm to 1 μm particles without modifying microchannel dimensions. 

Succeeding this, we envision implementing our modified moving average technique to develop 

next generation microfluidic impedance cytometry devices with an expanded dynamic range and 

improved enumeration accuracy. This can be exceedingly useful for many biomedical applications, 
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such as infectious disease diagnostics where devices may enumerate larger-scale immune cells 

alongside sub-micron bacterium in the same sample.
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INTRODUCTION

Detecting micro and nano-sized objects has been widely explored over the last 70 years 

and is critical for many disciplines including medical diagnostics (Clausen et al., 2018; 

Evander et al., 2013; U. Hassan et al., 2017; U. Hassan & Bashir, 2014), environmental 

protection (Carminati et al., 2014; Ciccarella et al., 2016; Guo et al., 2015), and other 

industries (Bredar et al., 2020; Shi et al., 2021; Teass et al., 1998; Xu et al., 2016; Zhang 

et al., 2021). To accomplish this, one of the most common and promising methods may 

be electrochemical impedance spectroscopy (EIS) which measures the electrical properties 

of objects in response to an electric potential. While numerous configurations have been 

researched and implemented, typically this consists of bonded electrodes to generate an 

electric field on the surface of microchannels that facilitate microfluidic flow. EIS has many 

advantages over other micro-scale detection options, including a diversity of materials which 

can be measured (e.g., proteins (Baraket et al., 2017; Mok et al., 2014; Panneer Selvam 

& Prasad, 2017), immune cells (U. Hassan et al., 2017; Watkins et al., 2013), pathogens 

(Lam et al., 2013), particulate matter (Carminati et al., 2014; Ciccarella et al., 2016), and 

more (Guo et al., 2015; Shi et al., 2021; Teass et al., 1998; Zhang et al., 2021)), label-free 

detection capabilities, requiring small sample volumes, relatively inexpensive fabrication 

options, and the multiplexing ability to quantify many different materials altogether (Ashley 

& Hassan, 2021; Prakash et al., 2020). Additionally, at low voltages the detection process is 

non-destructive to sample analytes, and many EIS systems can be performed without manual 

sample pre-processing (Baraket et al., 2017; U. Hassan et al., 2017, p. 64). A powerful tool, 

EIS or more specifically microfluidic impedance cytometry (MIC) is continuing to make 

improvements in micro-sized object detection with innovations in fabrication methods and 

post-data collection digital processing.

A substantial bottleneck MIC and other micro-scale detection sources deal with are limits 

of the detection resolution. Indeed, the ability to measure smaller materials opens various 

pathways to greater sample understanding and measurement versatility. Currently, there is a 

balance between fabrication complexity, sensing dimensions, and external signal acquisition 

factors with the MIC accuracy and limit of detection. For example, materials such as 

proteins, antibodies, and DNA have been measured using MIC for a few decades now and 

can be detected with a relatively simple to fabricate device (Saleh & Sohn, 2003). However, 

in doing so the sensing region has a limiting dimension of 1 μm, and such a scheme is 

unable to simultaneously measure objects larger than that. Even objects near that aperture 

would have high clogging susceptibility and thus poor device quality control at that scale. 

To extend the dynamic range for MIC, an optimized balance must be achieved along with 

techniques that can reduce background noise from existing systems.
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Simple strategies to reduce noise include digital signal processing after data collection. 

Many such approaches are already employed in MIC to remove baseline drift and other 

noise-dominating frequency regimes (U. Hassan et al., 2015; X. Liu et al., 2014; T. Sun 

et al., 2007). By only reducing noise in frequency alone, many noise contributions are 

neglected, and signal quality can remain inadequate especially as a majority of data points 

collected represent background noise. One technique yet to be coupled with time-domain 

MIC is common signal averaging (CSA), which is the principle that noise is random and 

when data points averaged together will reduce to smaller values relative to desired signal, 

improving signal quality (Umer Hassan & Anwar, 2010). CSA has been employed with 

many periodic electrical signal collection schemes such as electrocardiography (Kamath 

et al., 2011) and pulse oximetry (Janssens et al., 2011; Sukor et al., 2011), as well as 

superimposed image averaging in optical coherence tomography (Baumann et al., 2019; 

Berger et al., 2014) and even robotic stabilization (Balara et al., 2018; Khurana & Nagla, 

2018). For these cases, however, the signal must occur at a consistent defined period, and 

the total data points are subdivided by the number of samples averaged at once. As is, it 

would be difficult to translate CSA to MIC since detected object incidences are random and 

the relative pulse data points are few, which may lose temporal resolution if total data points 

must be empirically subdivided.

Given the unique non-periodic nature of MIC data, we investigated and found that the 

moving average algorithm will be the most suitable signal averaging technique to be 

used. Here, rather than subdividing the data during averaging, an average is taken at the 

beginning of the next original data point, which levels off high variance data. The result 

is a data sparring signal processing technique that does not sacrifice on noise reduction 

potential. This interdisciplinary technique has been used in some biomedical (Chen et al., 

2006; Manikandan & Soman, 2012) and robotic (Redhyka et al., 2015) applications, but is 

primarily utilized to predict stock market trends (de Souza et al., 2018; Ellis & Parbery, 

2005; Metghalchi et al., 2012). Many moving average iterations exist (Vandewalle et al., 

1999), but we focused on simple moving averaging (SMA) in this study, which averages 

each data point with equal weight and has the highest retention of original dataset properties. 

SMA may provide a simple and quick approach to reduce noise and improve detection limits 

without disrupting the balance of fabrication, sensitivity, and design complexity.

Here, we present a MIC device (Fig. 1a) coupled with a modified SMA algorithm to reduce 

background noise in time-domain data. Polystyrene (PS) microparticles are measured in 

a microfluidic channel with dual-grounded gold electrodes (Fig. 1b) that form a bipolar 

pulse when the middle electrode is voltage stimulated and forms an electric field (Fig. S1). 

This signal is improved using channel focusing regions (Fig. 1c) which increase PS particle 

amplitude. With this method, 1 μm PS particles are indistinguishable from background noise 

(Fig. 1d), but after applying our modified SMA technique to the same dataset, noise is 

significantly reduced and these particles can be qualitatively identified from their bipolar 

amplitudes (Fig. 1e). These properties can also be quantified based on noise variance, signal 

amplitude, and their relative signal-to-noise ratio (SNR). After defining mathematically, the 

principles of SMA and modelling its behavior, experiments were conducted with varying 

flow rates, input voltage, and particle sizes to characterize SMA effects and determine 

its potential to improve the sensor accuracy and limit of detection. To the best of our 
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knowledge, this is the first demonstration of signal averaging used with MIC, or with 

random-incidence time-domain data of impedance-based detection.

MATERIALS AND METHODS

Gold electrode microfabrication

Gold electrodes were rendered by spin coating Microposit s1813 photoresist (Kayakuam, 

Tokyo, JPN) above a 4” borosilicate wafer (University Wafer, South Boston, MA, USA) 

at 3000 rpm, forming a 1.55 μm layer. After baking at 115°C for 60 seconds, the wafer 

is exposed to UV light at 150 mJ/cm2 using a mask aligner and mask with rendered 

microelectrode design. The wafer is then submerged in Microposit MF-319 photodeveloper 

(Kayakuam, Tokyo, JPN) under slight agitation for 30 seconds or until features are visible. 

Wafers are submerged in hydrochloric acid for 45 minutes to etch glass in the electrode 

feature regions. After soft baking at 60°C for 15 minutes, the surface is treated with oxygen 

plasma. This is followed by 250 nm of chromium and 750 nm of gold sputtered above 

the s1813 photoresist. When submerging in acetone and under ultrasonic agitation, metal 

is removed except for the electrode regions through lift-off. A diamond-bladed saw is 

then used to cut out individual electrode designs. The gold electrode fabrication process is 

depicted by Fig. S2.

For the final design, gold microelectrodes have a 100 μm width and are spaced 150 μm apart 

(Fig. 1b). Gold connection pads are fabricated with a 3 mm width.

Microfluidic channel fabrication and soft lithography

SU-8 3025 photoresist (Kayakuam, Tokyo, JPN) was spin-coated above a 4” silicon wafer 

(University Wafer, South Boston, MA, USA) at 4000 rpm, forming a 1.5 μm layer. After soft 

baking at 95°C for 5 minutes, the wafer is then exposed to UV light at 150 mJ/cm2 using 

a mask aligner and mask to form the microfluidic channels. The wafer is rinsed with SU-8 

developer (Kayakuam, Tokyo, JPN) for 4 minutes or until channel features are visible. After 

rinsing with isopropyl alcohol, the wafer is hard baked at 300°C for 30 minutes. The wafer 

surface is then treated with (3-Aminopropyl)triethoxysilane (Sigma Aldrich, St. Louis, MO, 

USA) to retain microchannel structure during soft lithography. Microchannel fabrication is 

detailed in Fig. S3.

Before soft lithography, polydimethylsiloxane (PDMS) is formed by combining 10 parts 

of Sylgard 184 elastomer base with 1 part curing agent (Dow, Midland, MI, USA). After 

thorough mixing, the solution is poured over channel features on the silicon wafer and cured 

at room temperature for 30 minutes under vacuum followed by baking at 60°C for 1 hour 

and at atmospheric pressure. Once cured, PDMS molds are cut and removed from the wafer 

with the embedded channel structures. A stereomicroscope is used to align and puncture 

inlet and outlet holes with a biopsy punch and PDMS channels are then cleaned with ethanol 

under sonic agitation for 45 minutes.

The final channel dimensions yield a 1 cm long channel that is 100 μm wide and 22 μm tall, 

with two focusing regions that reduce the width to 30 μm and has a 20 μm path length (Fig. 

1c). Both focusing regions are spaced 280 μm between midpoints.
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Device connections and equipment interfacing

The PDMS channel and gold electrodes are treated with oxygen plasma using a plasma 

chamber (100W power for 60 seconds at 60 cm3 per min of oxygen under vacuum). 

Immediately after, the PDMS is aligned using a stereomicroscope and placed above the 

microelectrodes with focusing regions positioned between outer electrodes (Fig. 1c). After 

soft baking for 1 hour at 60°C, syringe tubing was inserted into PDMS inlet and outlet 

holes and syringe needles are inserted into the opposite end to facilitate media infusion 

using a syringe and the NE-300 syringe pump (Southpointe Surgical Supply, Coral Springs, 

FL, USA). Silver conductive epoxy components (Digi-Key Electronics, Thief River Falls, 

MN, USA) are combined to connect microfluidic devices with custom printed circuit boards 

(PCB, Sunstone Circuits, Mulino, OR, USA) and baked at 60°C for 1 hour. The PCB then 

connects with a custom Veroboard which facilitates transimpedance amplification for signal 

detection using HF2TA current amplifiers (Zurich Instruments, Zurich, SUI) from outer 

electrodes and inputs an AC voltage signal at a 303 kHz frequency to the middle electrode 

using a lock-in amplifier (Zurich Instruments, Zurich, SUI). PS particles (1, 3, 5, 7, and 9 

μm diameters, 2.5% w/v, Spherotech, Lake Forest, IL, USA) are diluted in 1X phosphate 

buffered saline (PBS) and flow is driven through a syringe pump.

Signal acquisition, processing, and sampling algorithm

Signal acquisition process flow is outlined in the supplementary information (Fig. S4). 

First, current output from the device is converted to voltage and undergoes transimpedance 

amplification. The signal is further combined using a differential amplifier and data is 

stored at a 250 kHz sampling rate. A PCIe-6361 data acquisition card (16 bit, 2MB/s max) 

performs data recording, and all steps are managed on a LabView control program (National 

Instruments, Austin, TX, USA).

Subsequent digital filters are applied using MATLAB (version R2020B, MathWorks, Natick, 

MA, USA). A 4th order Butterworth filter is used for high (20 Hz cut-off) and low (100 

kHz cut-off) pass filters, while a 1st order Butterworth filter is used for the band-stop filters 

to remove powerline interference (60 Hz and 120 Hz removed) using the Signal Processing 

Toolbox of MATLAB. See Fig. S5 for more detail.

After data collection and filtering (Fig. 1d), the MATLAB code then analyses and sets a 

threshold of values greater than 5 times the background noise to differentiate PS particle 

detection. Here, background noise (σ) is quantified as the root means squared of the first 

5,000 data points.

σ = 1
m ∑ixi2 (1)

Where m represents the number of data points and x is their respective voltage values. After 

defining a threshold, the bipolar amplitude for a particle (ΔVT) is measured as the difference 

between the positive and negative peaks, collected as 1000 data points ± the threshold.

ΔV T = ΔV max − ΔV min (2)
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The algorithm stores each bipolar amplitude across the dataset. To ignore two or more 

PS particles flowing through the electric field at once, bipolar amplitudes are binned 

into 6 discrete categories, and the most common category is selected to represent bipolar 

amplitudes for one particle flowing through the channel (ΔVT,1PS) which normalizes the 

device sensitivity to only count 1 PS particle. The SNR is calculated based off this signal 

mode.

SNR = 20log10
ΔV T , 1PS

σ (3)

Higher SNR indicates particles are better apparent, and an SNR greater than 20 is the cut-off 

for discernible sensing.

As a metric of particle transit time, the full width-half maximum (FWHM) was determined 

from particle pulses by measuring the number of data points greater than half the particle 

maximum value.

FWHM = m
fs

 for xi > ΔV max
2 (4)

Where m is the number data points (xi) with a greater voltage value than half of ΔVmax for 

one particle pulse, and fs is the device sampling rate set to 250 kHz. FWHM was measured 

and stored in MATLAB for only positive particle pulses.

Statistical evaluations

All studies evaluating significance between three or more groups was performed with a 

one-way ANOVA, with a null hypothesis of all group means are equal and alternative 

hypothesis of at least one group mean is unequal, and an α of 0.05. A Levene’s test with 

all studies did not find significance, confirming homogeneity of variance, and a Tukey’s 

post hoc test was conducted for studies which rejected the ANOVA null hypothesis. For 

studies comparing groups before and after signal averaging or only two groups, an unpaired 

T-test was conducted with a null hypothesis of the groups means being equal, an alternative 

hypothesis of the means being unequal, and an α of 0.05. Error bars displayed on figures 

represent one standard deviation away from the mean.

Signal averaging model

To validate our mathematical modelling as proof-of-concept, at first, a test dataset was 

generated in MATLAB featuring 200,000 data points of zeros followed by 200,000 data 

points of a simple waveform (i.e., sin(x)) with a sampling rate of 0.001 to model signal 

averaging trends (Fig. S6). Subsequently, White Gaussian noise was added to the signal 

using the awgn() function with a 12.3 SNR input using the Communications toolbox 

in MATLAB. Noise, bipolar amplitude, and SNR were calculated and were stored for 

increasing number of data points involved in sample averaging from 2 to 100. The technique 

and rationale behind the performed signal averaging method is dissected in the Theory 

section and implemented with this test dataset to reduce noise (Fig. S7).
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THEORY

The most common signal averaging (CSA) method for physiological data averages an n 
number of data points from an original dataset (ODS) in series with N total data points, 

essentially subdividing the dataset by n (Umer Hassan & Anwar, 2010; Stupin et al., 2017):

CSA i = 1
n ∑

j = n i − 1 + 1

ni
xj (5)

Where n represents the number of data points averaged together in the signal averaging 

technique, and x are the individual data points collected from the ODS. While 

computationally simple, CSA halves the dataset size for each n subdivision.

NCSA = NODS
n (6)

This makes it more susceptible to sample aliasing for average and high frequency data. 

Higher sampling rates can overcome this, but at the cost of massive dataset files which 

may not be viable in all environments. Additionally, resolution will degrade for metrics 

which function on the time domain (e.g., pulse width) that has proven useful in impedance 

cytometry determination (Feng et al., 2019; Norton et al., 2019; Prakash et al., 2020).

In contrast, signal averaging method applied for this work relies on a modified simple 

moving average (SMA) which deviates from CSA to preserve the number of data points 

while not sacrificing on noise reduction. With SMA, an average is taken from n data points 

and the next SMA value begins on the next ODS data point rather than the next data point 

not included in n like CSA.

SMA i = 1
n ∑

j = i

n + i − 1
xj (7)

This is modified from a standard simple moving average as it starts with the first data 

point and selects succeeding points up until the selected signal averaging term n, rather 

than starting with the last data point and working backwards (Vandewalle et al., 1999). 

Concurrently, the only data points lost are the last n values in the set.

NSMA = NODS − n (8)

While more signal averages must be computed versus CSA, the result is a resilient dataset 

to sample aliasing. SMA better suits impedance cytometry as object pulses happens rapidly 

(order of ms) and maximum intensity or pulse width data may be misrepresented from data 

point subdivisions.

The result from SMA leads to reductions in both bipolar amplitude and background noise 

but at different rates. If a dataset x(k) is a function of both noise (xnoise) and desired signal 

(xs), and has a fs sampling rate:

Ashley and Hassan Page 7

Biotechnol Bioeng. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



x k
fs

=  xs
k
fs

+ xnoise
k
fs

(9)

Periodic signals that are statistically dependent with summate constructively and remain 

constant through n signal averaging.

1
n ∑

j = 1

n
xj, s

k
fs

=  nnxj, s
k
fs

= xj, s
k
fs

(10)

Following this, Gaussian white noise is considered by assuming random and statistically 

independent values that inhabits the signal and with a zero average (μnoise) after correcting 

for baseline drift (Marmarelis, 2004).

μnoise = 0 (11)

Then averaging n number of data points will reduce noise at a characteristic rate based on 

standard deviation alone (σ).

1
n ∑

j = 1

n
xj, noise

k
fs

=  1n nσ2 = σ
n (12)

A relationship for SNR can then be predicted from the equation defined in the “Signal 

acquisition, processing, and sampling algorithm” section

SNRSMA = 20 log10
xj, s

k
fs

σ n
= SNRODS + 20log10 n (13)

SNR therefore increases with SMA assuming periodic signals and only Gaussian white 

noise.

RESULTS

Trends over the number of data points averaged together

Bipolar differential voltage amplitudes from 9 μm PS particles were recorded with our 

impedance cytometry device along with background noise measurements to determine the 

SNR without SMA. For the example experimental study, this included a 5V AC input 

voltage at 303 kHz and 15 μL/min flow rate. SMA was then performed with increasing 

number of signals averaged per iteration, from 2 to 100 data points averaged for each 

SMA data point. After measuring bipolar amplitudes, noise, and SNR for each SMA, we 

compared those values based on our model data and by directly following the equations 

derived in the Theory section. For all cases, starting values were normalized to the original 

experimental bipolar amplitude and noise to better visualize trends from SMA.

Fig. 2 graphs the changes in bipolar amplitude (Fig. 2a), noise (Fig. 2b), and SNR (Fig. 

2c) with increasing number of data points averaged in the SMA algorithm following trends 
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from the theoretical changes (dotted line), from our cyclic model data (dashed line) and 

from our experimental data (purple). For all cases, results closely follows the trend of noise 

reduction by the square root of the number of data points averaged together in forming the 

SMA data. Additionally, the model data only has a slight drop-off in bipolar amplitude after 

a few SMA iterations, but it decreases at a slower rate than noise, resulting in the SNR 

continuously improving with more SMA iterations. However, for our experimental data the 

bipolar amplitude from PS particles has a constant decrease in amplitude, to the degree that 

the rate of bipolar amplitude reduction exceeded noise reduction after a certain number of 

data points averaged in the SMA algorithm. This is visualized in Fig. 2c as an inflection 

point is reached in SNR at approximately 34 data points averaged to form the SMA model 

before SNR begins to decline with increasing data points averaged.

There are many reasons why the experimental data may fail to reach theoretical signal 

averaging potentials. One justification may be the presence of non-Gaussian pink noise in 

the experimental system even after filtering, as noise for experimental data does remain 

higher after SMA compared to the theoretical change and model changes (Antal et al., 2001) 

(Fig. 2b). Additionally, the theoretical trends are for synchronous, cyclic signals that are 

predicted to occur within the same period (Umer Hassan & Anwar, 2010). This remains 

apparent for the model, which were evaluating signals from a sine wave without changes in 

wavelength or breaks in waveform, and as such signal amplitude remained relatively steady. 

In the experiments, particle pulses are not periodic in occurrence and are more likely to 

have variations in pulse width from passing over the electric field at different heights. For 

heterogenous waveforms produced from PS particles to form the dataset, signal averaging 

is not perfectly constructive and is inversely proportional to the number of data points 

averaged. However, a degree of signal averaging markedly improves SNR up to a certain 

point, and for each experiment conducted some degree of signal averaging improved SNR.

In the following sections, mentions of results after SMA occur at the number of data points 

averaged that produced the highest SNR for that experiment. A compendium of the number 

of data points averaged together for the maximum SNR from each experiment is provided in 

Table S1.

Microfluidic flow rate optimizations

Experiments with different input flow rates were performed to optimize conditions for 

particle detection sensitivity, ensure counting accuracy, and observe trends from SMA for 

flow rate variations. Five different input flow rates were measured from 5 to 25 μL/min 

using 9 μm PS particles and an input voltage of 5 V with a 303 kHz AC frequency.

Fig. 3 details these results based on previous particle metrics such as PS bipolar amplitude 

(Fig. 3a), noise (Fig. 3b), and SNR (Fig. 3c). Here, there are no statistically significant (p 

> 0.05) differences between flow rates for bipolar amplitude, noise, or SNR between the 

original data and the data after applying the SMA algorithm. This indicates the variations in 

flow rates studied did not impact device performance, and all of them in their original form 

had an SNR of 26 dB or greater (Fig. 3c). However, there was significance for each flow rate 

when comparing each original dataset to their SMA counterpart for both bipolar amplitude, 

noise, and SNR (p < 0.05 for all cases), indicating the effects SMA has in improving SNR 
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for each flow rate, which was now greater than 35 dB. While not a significant trend, there 

is a decline in maximum SNR with increasing flow rate after SMA. One justification for 

this may be a combination of slightly increased background noise from faster fluid flow 

(M. Liu & Franko, 2014) in the microfluidic channel through the sensing zone and less 

number of data points devoted to PS pulses as revealed by the decrease in FWHM with 

increasing flow rate (Fig. 3d). Indeed, signal pulses that have less data attributed to them 

may decline quicker from SMA, and this is confirmed as their maximum SNR was achieved 

with less data points averaged together than slower flow rates (Table S1). This also indicates 

the importance for adopting SMA versus CSA as CSA would more rapidly reduce the data 

points describing the PS pulses with the number of data points averaged and degrade their 

amplitude representation.

The change in transit time per particle and the number of particles counted per flow rate 

was also recorded to ensure accurate particle counting using our device. Fig. 3d reveals 

a decrease in FWHM per particle for increasing flow rates that is consistent with a 3rd 

power exponential decrease (R2 = 0.996) as flow rate and average fluid velocity over the 

electric field have a cubic relationship based on Hagen-Poiseuille flow. Using a constant PS 

concentration of 40 particles/μL across each flow rate, there is a linear trend (R2 = 0.987) 

in the number of particles counted per second (Fig. 3e). From this, the measured particle 

concentration is determined from each flow rate and it is found none of them statistically 

deviated from the given 40 particles/μL concentration (p > 0.05) and their means have a less 

than 10% error from the true concentration (Fig. 3f).

Variations in input voltage amplitude

Using 9 μm PS particles with a constant 15 μL/min flow rate, the effects of peak-to-peak 

input voltage were considered in relation to signal averaging. Here, the channel impedance 

has a direct relationship with input voltage magnitude (Daniels & Pourmand, 2007), and to 

a certain extent increased voltage input leads to greater signal prevalence above background 

noise with a constant voltage frequency. There are restrictions to input voltage however, as a 

linear range defining voltage and impedance is limited after small values (~less than 10 mV) 

and beyond this predicting impedance from input voltage is exceedingly difficult (Barbero et 

al., 2005). In many cases though, signal are orders of magnitude smaller than noise for input 

voltages less than 10 mV, and a lock-in amplification process is typically used to isolate 

signal data from noise based on specific frequency properties (Daniels & Pourmand, 2007; 

Talukder et al., 2017). In doing so however, the filtered noise is no longer Gaussian, being 

filtered out except for a small frequency range, making these situations incompatible for 

SMA. Additionally, the conditions for using a lock-in amplifier for frequency selection are 

not always feasible, and there are several previous reports which have found success using 

larger input voltages (~1–10 V) that maintain Gaussian noise (Caselli et al., 2021; Ciccarella 

et al., 2016; U. Hassan et al., 2017, p. 64; Wang et al., 2017). As such, this will be the input 

voltage regime assessed for this device.

PS particles were measured with varying input voltages of 0.5, 1, 5 and 10 V. Fig. 4 displays 

the changes in bipolar amplitude (Fig. 4a), background noise (Fig. 4b), and SNR (Fig. 4c) 

using these different input voltages. For the original data (dark gray), PS pulse bipolar 
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amplitude and SNR increased for increasing input voltage (only comparing 1 and 5 V were 

statistically different), while noise remained relatively unchanged. After SMA for each input 

voltage (light gray), both bipolar amplitude and noise were reduced, but noise was reduced 

at a lower rate leading to a relative SNR increase. A logarithmic relationship is found for 

SNR with increasing input voltage for both the original data (R2 = 0.9882) and after SMA 

(R2 = 0.9894), which may be attributed to the nonlinear relationship between voltage and 

impedance in these high-voltage regimes (Barbero et al., 2005).

Representative PS pulses before (Fig. 4d) and after (Fig. 4e) SMA for each input voltage 

also reinforce relative noise reduction and greater particle detection, as the unnoticeable 0.5 

and 1 V pulses (green and blue respectively) in the original data can be differentiated after 

SMA. This is further affirmed as SNR increased above 20 dB for both cases after SMA 

(Fig. 4c). Beyond qualitative evaluations for measuring pulses, the device was able to assess 

particle concentration more accurately from SMA. Fig. 4f reveals the number of particles 

detected as a function of increasing data points used in the SMA algorithm. Originally, 

particle counts were not close to the actual particle concentration of 160 particles/μL for 

the 0.5 and 1 V data. However, only after a few data points are averaged using SMA, true 

particles pulses are isolated from the noise and remain within 5% of the true concentration 

after using more data points in the SMA algorithm (Table S2). This attests to the ability of 

SMA to improve particle detection from otherwise noisy data because of changes in input 

voltage and upgrade it to an accurate counting device.

Limit of detection analysis with PS particle size variations

To evaluate the limitations of this device coupled with SMA, PS particles with 1, 3, 5, 7, and 

9 μm diameters were measured in separate solutions using a constant 5 V AC voltage input 

and a 15 μL/min flow rate. Fig. 5 illustrates these results, including metric changes discussed 

in previous sections such as changes in PS pulse amplitudes (Fig. 5a), noise (Fig. 5b), and 

SNR (Fig. 5c) for each PS size experiment. For the original data, increasing particle size 

led to an increase in bipolar amplitude, while noise remained statistically the same across 

different sizes (p >0.05), which corresponds with a linear increase in SNR (maroon, R2 = 

0.9871). After SMA, again the bipolar amplitude and noise had characteristic magnitude 

reductions, which led to increased shifts in SNR. This is notable primarily for bringing the 

1 and 3 μm particle solutions above the discernible 20 dB SNR threshold after SMA and 

likewise lowering the device’s limit of detection (LOD). The changes in SNR after SMA 

for different particle sizes also had a linear trajectory (gray, R2 = 0.9703), which is the 

combination of logarithmic changes in SNR for a typical linear increase in bipolar amplitude 

and the cubic increase in PS volume per linear diameter changes, as PS volume scales with 

displaced media in the channel detection regime and likewise a direct change in recorded 

impedance (Sui et al., 2020). This is supported by the cubic increase in bipolar amplitude 

relative to particle size shown in Fig. 5a. If this linear change in SNR holds across all 

particle sizes and if a 20 dB SNR is the benchmark for accurate detection, the device used 

in this study originally could only measure a 3.17 μm PS particle, but after SMA it may 

measure particles as small as 0.56 μm.
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Fig. 5 also highlights select bipolar pulses from varying PS sizes before (Fig. 5d) and after 

(Fig. 5e) SMA. Originally, the 1 and 3 μm PS particles are difficult to recognize outside 

the noise band, and even larger particles such as 5 and 7 μm PS particles have an SNR 

near the discernible limit. However, after SMA the noise is significantly smoothed relative 

to PS pulses, and all PS waveforms are recognizable. Studies were also conducted related 

the number of data points averaged in the SMA algorithm to the particle concentration 

measured by the device (Fig. 5f). Similar to results from Fig. 4f, particle sizes originally 

near the 20 dB SNR detection limit were significantly lower in particle counts versus the 

true concentration of 300 particles/μL. However, performing SMA with increasing data 

points used led to the accurate counting of all particle sizes, with smaller particles requiring 

more SMA data points to reach 5% error of the actual concentration (Table S2). This shows 

the power SMA has with this device to improve both accurate counting of micron-sized 

particles and lower the LOD to measure smaller particles than originally determined.

DISCUSSION

In this research, a microfluidic impedance cytometry device was conceived, and its detection 

performance improved through digital signal processing with simple moving averaging; a 

technique implemented with this application for the first time. Here, white Gaussian noise is 

summed together destructively while consistent bipolar pulse signals are reduced at a slower 

rate. The result is data with relatively lower background noise which allows smaller particles 

to be detected and greater counting accuracy achieved. Likewise, it was demonstrated that 

SNR after SMA increased for each experiment iteration including experiments at different 

flow rates, with different input voltages, and for different sized PS particles. Another key 

takeaway is as we push the limit of MIC sensing (low flow rates, smaller particle sizes, and 

lower signal amplitudes), a greater number of data points averaged together are required 

in the SMA algorithm for achieving maximum SNR before the inflection point and SNR 

decline (Table S1).

The modified simple moving averaging method selected for this application comes with 

many considerations. For flow-based impedance detection in a microfluidic channel, a 

balance is struck for the flow rate that is slow enough to measure objects with sufficient 

temporal resolution but also fast enough to drive particles through the channel midpoint 

and reduce clogging in the low aspect-ratio channel dimensions (Dressaire & Sauret, 

2017; Thompson et al., 2015). The compromise is a system with high sampling rates 

(200 kHz or greater) to adequately measure particles generating pulses in only a few 

milliseconds. One straightforward alternative may be to diminish the channel and detection 

cross section further, as particles in this system will contribute a greater impedance shift 

relative to flowing media and will have greater pulse amplitudes. However, this approach is 

limited from greater fabrication complexity, higher device failure from clogging, and cannot 

measure nondeformable objects larger than the channel dimensions. With applications 

directed towards heterogenous whole blood analysis, white blood cells may be as large 

as 15 μm in diameter, which is near the limits of our device detection dimensions already 

and could not consistently flow through a channel with smaller features. SMA allows for a 

modest post-processing approach to improve the LOD without redesigning the channel and 

sacrificing larger particle counting.
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Since the data representing individual particle pulses is sparse, the averaging method must 

have high data point retention to avoid sample aliasing. The modified simple moving 

averaging technique fits these requirements, as detailed in Theory section, where the number 

of data points lost across the whole file is the number of data points averaged in the SMA 

algorithm. While even higher sampling rates may facilitate other signal averaging methods 

that subdivides the data, they come at the cost of exceedingly large original file sizes (~100s 

of MB) after only a few seconds of recording. This is unsatisfactory notably for common 

microfluidic impedance counting purposes such as point-of-care diagnostics (Ashley & 

Hassan, 2021). From using SMA in this report, processing time was increased on the order 

of minutes, totaling less than 10 minutes from sample collection to applying digital filters, 

SMA, and analyzing particle metrics. For MICs analyzing higher particle concentrations 

or for larger sample volumes to analyze, processing time and file sizes will proportionally 

increase. However, this is the case regardless of using SMA, and implementing SMA adds 

processing time that would not significantly hinder its application for general MIC use.

While the power of SMA has been presented with this impedance cytometry configuration, 

there are limitations which may prevent its ubiquitous translation with other devices or 

environments. Firstly, SMA can only characteristically reduce white Gaussian noise. Other 

digital signal processing mechanisms may alter background noise to persist in certain 

frequencies. Additionally, sources of pink noise like defects in the physical device materials 

and resistance fluctuations in component semiconductors are sometimes unavoidable, and 

pink noise will not reduce during SMA at the rate of white noise (Kogan, 2008; Weissman, 

1988). It is not to say that SMA cannot improve signal quality under these conditions, but 

that the degree of change will be less drastic and less characterized. Another limitation is 

that SMA cannot distinguish competitive analyte species with similar pulse frequencies or 

exaggerate their amplitude differences, treating all objects which are counted with equal 

scrutiny. To better differentiate two or more materials, other phenotypic properties must 

be exploited (e.g., measure more electrically sensitive particles, probe particles at different 

input frequencies, or use functionalized particles for receptor attachment and identification) 

(Ashley et al., 2021; Prakash et al., 2020; Sui et al., 2020). Finally, the maximum SNR 

achieved would reach a climax and begin to decline from increasing number of data 

points used in the SMA algorithm. This was not consistent to the model periodic data 

or representative relationship equations, where SNR should continuously improve with the 

number of data points averaged together. Causes for this may include pulse amplitude and 

width variations, and pulse occurrences randomly happening, as signal averaging requires 

cyclic signals that have consistent occurrences to summate constructively. Though SNR did 

improve for each experiment using SMA, the number of data points used in the algorithm to 

reach the maximum SNR was less for original data that initially started with higher SNR’s 

like the 5 or 10 V input voltage experiments (Table S1). This may be due a higher slope 

in the pulse waveform, and during averaging will smooth and flatten out at a faster rate 

for more data points relative to pulses with the same width having lower slopes. Similarly, 

faster flow rate SNRs explored in from flow rate variation experiments peaked with less 

data points averaged, but this is due to the smaller pulse width and fewer data points 

representing the pulse rather than a change in amplitude. Based on these conclusions, SMA 
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may serve greater applications in identifying objects near the LOD threshold rather than 

further improving signal quality of already distinct signal.

For determining the optimal signal quality using SMA, the number of data points selected in 

the SMA algorithm is most critical. Ideally, an initial sweep should be performed similar to 

this report using an SMA with a varying number of data points averaged together to pinpoint 

the SNR inflection point. However, it may be estimated that detecting objects with an 

originally poor SNR will require a larger number of particles averaged together in the SMA 

algorithm (Table S1). This translated to smaller particles and with smaller input voltages 

with our design and dimensions. For systems with a poor SNR due to Gaussian noise, the 

maximum SNR achieved may be from 50–100 data points used in the SMA algorithm, while 

a higher starting SNR may reach a maximum between 5–40 data points.

CONCLUSION

SMA may prove to be a versatile tool that can make MIC more flexible for different 

conditions. An improved LOD was shown for this device, and at the length-scales measured 

opportunities for more objects as small as individual bacterium may be measured with 

greater confidence. Other components could also be sacrificed in the face of certain 

conditions, such as low-input voltage requirements in point-of-care settings like battery 

or solar-powered devices (L. Liu & Choi, 2017; Montes-Cebrián et al., 2019; A. Sun et 

al., 2014; Yeh et al., 2017). Future studies will apply the characterizations determined in 

this report using SMA to objects beyond PS particles. Specifically, efforts will be made to 

ensure greater impedance-based counting accuracy of multiple immune cell biomarkers to 

determine pathophysiological conditions such as sepsis, cancer, HIV, or other difficult to 

diagnose diseases.
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Figure 1. 
Overview of microfluidic impedance cytometry system. a) Scheme of custom printed circuit 

board (PCB) that onboards microfabricated electrodes and polydimethylsiloxane (PDMS) 

channel. b) Image of microfabricated gold electrodes. Middle electrode is stimulated with 

voltage input while two exterior electrodes are grounded for impedance detection over the 

generated electric field. c) Brightfield microscope image of channel detection area with 

focusing regions aligned between electrodes. d) Representative results for 1 μm polystyrene 

(PS) particles in solution flowing through device after data processing. e) Results for the 

same dataset after applying a simple moving average (SMA) which averages every 100 data 

points and reduces background noise.
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Figure 2. 
Representative changes in bipolar amplitude (a), noise (b), and signal-to-noise ratio (SNR) 

(c) as the number of signals averaged for a dataset increases. Datasets include theoretical 

parameters starting with the initial amplitude and noise from experimental data (dotted line), 

our Gaussian noise with sine wave model (dashed line) and from experimental results (data 

is from 9 μm polystyrene (PS) particles with a 5V input and 15 μL/min flow rate).
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Figure 3. 
Results with flow rate variations and after simple moving average (SMA) effects. Changes 

in average bipolar amplitude (a), noise amplitude (b), and signal-to-noise ratio (SNR, c) for 

detecting 9 μm polystyrene (PS) particles with 5V input before (blue) and after (gray) SMA. 

d) Average full-width half maximum (FWHM) times for detect PS particles with varying 

flow rates (d-f, for original data without SMA) which follows an exponential decrease 

with flow rate. e) Average number of PS particles detected per second with constant 

particle concentration between experiments. f) Particle concentration calculated from each 

experiment based on total particles counted and respective flow rates, compared against the 

known solution concentration of 40 particles/μL (d-f, for original data without SMA). Fitted 

lines: Figure 4 (c) Original y = −0.0090x + 27.53, After SMA y = −0.35x + 44.46, Figure 4 

(d) y = −0.0022x3 + 0.037x2 – 0.21x + 0.49, Figure 5 (e) y = 3.71x – 0.21.

Ashley and Hassan Page 21

Biotechnol Bioeng. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Results with input voltage variations and after simple moving average (SMA) effects. 

Changes in average bipolar amplitude (a), noise amplitude (b), and signal-to-noise ratio 

(SNR, c) for detecting 9 μm polystyrene (PS) particles with 15 μL/min flow rate before 

(dark gray) and after (light gray) SMA. Example PS pulses before (d) and after (e) SMA 

for different voltage inputs. (f) Semi-log plot showing changes in measured number of 

particles from the counter after increasing iterations of signal averaging compared to the 

stock concentration of 160 particles/μL (black dotted line). Fitted lines: Figure 4 (c) Original 

y = 19.33x0.22, After SMA y = 26.95x0.198.
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Figure 5. 
Results with polystyrene (PS) particle size variations and after simple moving average 

(SMA) effects. Changes in average bipolar amplitude (a), noise amplitude (b), and signal

to-noise ratio (SNR, c) for detecting PS particles with 5V input and 15 μL/min flow rate 

before (maroon) and after (gray) SMA. Example PS pulses before (d) and after (e) SMA 

for different PS particle sizes. (f) Semi-log plot showing changes in measured number of 

particles from the counter after increasing iterations of signal averaging compared to the 

stock concentration of 300 particles/μL (black dotted line). Fitted lines: Figure 5 (c) Original 

y = 1.25x + 16.03, After SMA y = 1.82x+21.02.
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