Table 2. Ca2+ regulatory effects on Nav1.4 and Nav1.5 studied in heterologous expression systems.
Experimental platform | Pipette buffer (mM concentrations unless otherwise stated)1 | Shifts2 due to applied Ca2+ | Shifts2 due to calmodulin (CaM) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 [Ca2+] | X [Ca2+] | Activation | Inactivation | Activation | Inactivation | |||||
I Na.max | V 1/2 | V 1/2 | τfast | I Na.max | V 1/2 | V 1/2 | τfast | |||
Nav1.5 (tsA201; Tan et al. [15]) | 10 EGTA | 1 µM Ca2+ (1.0 EGTA/0.9 CaCl2)3 | NIL | - | NIL | ?Reduced | NIL | - | ?Depol | Reduced |
Nav1.4 (HEK293; Deschenes et al. [33]) | 10 BAPTA4 | - | - | - | - | - | NIL5 | NIL5 | NIL5 | |
0 BAPTA | 504 nM Ca2+ (3.7 CaCl2/5 BAPTA)4 | - | NIL | ?Depol | - | - | NIL | Hyper6 | NIL | |
Nav1.5 (HEK293; Deschenes et al. [33]) | 0 BAPTA | 504 nM Ca2+ (3.7 CaCl2/5 BAPTA)4 | - | - | - | NIL | - | NIL | NIL | NIL |
Nav1.5 (tsA201; Wingo et al. [7]) | 20 BAPTA | 0–250 nM Ca2+ (0–13.4 CaCl2/20 BAPTA). 1 µM and 10 µM Ca2+ (0.9 CaCl2 or 1.0 CaCl2/1.0 BAPTA)7 | NIL | Depol8 | NIL | - | - | NIL | - | |
Nav1.4 (CHO-K1; Young and Caldwell [34]) | 5 EGTA | - | - | - | - | NIL | Hyper | Hyper9/NIL10 | NIL | |
Nav1.4 (CHO-K1; Young and Caldwell [34]) | 10 µM Ca2+ (5 EGTA/4.9 CaCl2)11, 12 | NIL | NIL | NIL | NIL | - | Hyper | NIL | NIL | |
Nav1.4 (HEK293; Young and Caldwell [34]) | 5 EGTA | 10 µM Ca2+ (5 EGTA/ 4.9 CaCl2) | - | - | - | - | - | NIL | NIL | NIL |
Nav1.5 (CHO-K1; Young and Caldwell [34]) | 5 EGTA | 10 µM Ca2+ (5 EGTA/4.9 CaCl2)13 | NIL | NIL | NIL | NIL | - | Hyper | NIL | NIL |
Nav1.4 (tsA201; Shah et al. [13]) | 20 BAPTA | 1 µM Ca2+ (1.0 BAPTA/0.9 CaCl2) | - | - | Depol14 | - | - | - | - | - |
Nav1.5 (HEK293; Biswas et al. [35]) | 20 BAPTA | 10 µM Ca2+ (1.0 BAPTA/1.0 CaCl2) 16 | NIL | NIL | Depol | Increased | NIL15 | NIL15 | Depol15 | - |
Nav1.5 (HEK293; Biswas et al. [35]) | 0.5 µM Ca2+ (5 BAPTA/ 4 CaCl2)16 | NIL15 | NIL15 | NIL15 | - | |||||
Nav1.5 (tsA201; Potet et al. [99]) | 20 BAPTA | 10 µM Ca2+ (1.0 BAPTA/1.0 CaCl2) | - | - | Depol17 | NIL | ||||
Nav1.5 (tsA201; Chagot et al. [10]) | 20 BAPTA | 1 µM Ca2+ (1.0 BAPTA/0.9 CaCl2). | Depol18 | |||||||
Nav1.5 (tsA201; Sarhan et al. [17]) | 10 BAPTA | 10 µM Ca2+ (1.0 BAPTA/1.0 CaCl2) | - | - | Depol19 | NIL | - | - | - | - |
Nav1.4 (HEK293; Ben-Johny et al. [36]) | 10 BAPTA | 10 µM Ca2+ (10 HEDTA/5 CaCl2) | Reduced | - | NIL | - | - | - | - | - |
Nav1.4 (HEK293; Ben-Johny et al. [36]) | 0.5 EGTA | Activation of co-expressed Cav2.1 | Reduced | - | - | - | - | - | - | - |
Nav1.4 (HEK293; Ben-Johny et al. [36]) | Ca2+ uncaging; 1.0 citrate | 0.5–2 µM Ca2+ (1.0 DMN/0.7 CaCl2) 2–8 µM Ca2+ (2 DMN/1.4 CaCl2)21 | Reduced | - | NIL | - | Reduced20 | - | - | - |
Nav1.5 (HEK293; Ben-Johny et al. [36]) | 10 BAPTA | 10 µM Ca2+ (10 HEDTA/5 CaCl2) | NIL | - | NIL | - | - | - | - | - |
Nav1.5 (HEK293; Ben-Johny et al. [36]) | 0.5 EGTA | Activation of co-expressed Cav2.1 | NIL | - | NIL | |||||
Nav1.5 (HEK293; Ben-Johny et al. [36]) | Ca2+ uncaging; 1.0 citrate | 0.5–2 µM Ca2+ (1.0 DMN/0.7 CaCl2) 2–8 µM Ca2+ (2 DMN/1.4 CaCl2) | NIL | - | NIL | |||||
Nav1.4 (glt skeletal muscle cells; Ben-Johny et al. [36]) | Ca2+ uncaging; 1.0 citrate | 0.5–2 µM Ca2+ (1.0 DMN/0.7 CaCl2) 2–8 µM Ca2+ (2 DMN/1.4 CaCl2) | Reduced | - | - | - | - | - | - | - |
Nav1.5 (guinea-pig ventricular myocytes; Ben-Johny et al. [36]) | Ca2+ uncaging; 1.0 citrate | 0.5–2 µM Ca2+ (1.0 DMN/0.7 CaCl2) 2–8 µM Ca2+ (2 DMN/1.4 CaCl2) | NIL | - | - | - | - | - | - | - |
Nav1.5 with Nav1.4 C-terminal (HEK293; Yoder et al. [38]) | 0.5 EGTA | Activation of co-expressed Cav2.1 | Reduced22 | - | - | - | Reduced | - | - | - |
Nav1.5 with Nav1.4 C-terminal (HEK293; Yoder et al. [38]) | Ca2+ uncaging; 1.0 citrate | 0.5–2 µM Ca2+ (1.0 DMN/0.7 CaCl2) 2–8 µM Ca2+ (2 DMN/1.4 CaCl2)23 | Reduced | - | NIL | Reduced | ||||
Nav1.4 with Nav1.5 C-terminal (HEK293; Yoder et al. [38]) | 0.5 EGTA | Activation of co-expressed Cav2.1 | NIL24 | - | - | - | - | - | - | - |
Nav1.4 with Nav1.5 C-terminal (HEK293; Yoder et al. [38]) | Ca2+ uncaging; 1.0 citrate | 0.5–2 µM Ca2+ (1.0 DMN/0.7 CaCl2) 2–8 µM Ca2+ (2 DMN/1.4 CaCl2) | NIL24 | - | NIL | |||||
Nav1.5 (rabbit ventricular myocytes; Casini et al. [40]) | 10 BAPTA | 100 nM Ca2+ (CsCl/10 BAPTA) | NIL | NIL | NIL | NIL | - | - | - | - |
Nav1.5 (rabbit ventricular myocytes; Casini et al. [40]) | 500 nM Ca2+ (CsCl/10 BAPTA) | Reduced | NIL | NIL | NIL | - | - | - | - | |
Nav1.5 (tsA201; Johnson et al. [18]) | 20 BAPTA | 1.6 µM Ca2+ (5 HEDTA/0.9 Ca2+) | NIL | Increased25 |
∼100 mM F--containing pipette solutions except: Deschenes et al. [33] apart from C2C12 experiments (Sarhan et al. [17]; Ben-Johny et al. [36]; Yoder et al. [38]; Casini et al. [40]). DMN = DM Nitrophen.
Key: - = not studied; Nil = no effect; depol = depolarizing; hyper = hyperpolarizing shifts in V1/2;
Experiments performed with ±peptide 209–309 (antagonizing Ca2+-calmodulin-Nav1.5 binding), I1908E and L1912R IQ mutant and BrS mutant A1924T (Tan et al. [15]);
Pipette solution Cl− or F− and 0 Ca2+ (0 mM BAPTA) or 504 nM Ca2+ (3.7 mM Ca2+/5 mM BAPTA) gave similar results; further 10 µM KN92/KN93 and 100 nM CaMKII inhibitory autocamtide-2 (AIP) controls included;
Effects of 0 Ca2+ and of calmodulin-1234;
Double alanine IQ mutation hyperpolarized inactivation V1/2 and reduced decay constant relative to WT regardless of calmodulin mutation (Deschenes et al. [33]);
Experiments performed ± peptide 209–309 (antagonizing Ca2+-calmodulin-Nav1.5 binding;)
Depolarizing effect observed at >150 nM, saturated at 1 µM Ca2+, attenuated by EF hand D1790G LQT3 mutation, and abolished by 4× EF hand mutation (Wingo et al. [7]);
Effects of 0 Ca2+;
Effects of calmodulin-1234;
Experiments with 10 µM KN93/KN92, N- and C- terminal calmodulin mutants and Nav1.4/Nav1.5 C-terminal chimeras included;
IQ mutations I1727E and L1736R, showed unchanged channel properties relative to WT; I1727E blocked all effects of calmodulin and calmodulin-1234;
Experiments with 10 µM KN93/KN92, N- and C- terminal calmodulin mutants and Nav1.4/Nav1.5 C-terminal chimeras included (Young and Caldwell [34]);
Single, A1924T, but not double IQ mutation also caused depolarizing V1/2 shift (Shah et al. [13]);
Studies with calmodulin1234 included;
Ca2+ hyperpolarized inactivation V1/2 both in mutants lacking C-terminal and double alanine IQ mutation. Both EF hand LQT3 mutation D1790G and 4X mutation hyperpolarized inactivation V1/2 but were unresponsive to Ca2+ (Biswas et al. [35]);
A1924T mutant showed difference from WT only at 0 Ca2+ (Potet et al. [99]);
EF-2X mutation caused hyper and abolished Ca2+ action (Chagot et al. [10]);
No effect at 0.3 µM Ca2+ (Sarhan et al. [17]);
Time constants of Ca2+ dependent inactivation onset reported for different [Ca2+];
Double alanine IQ mutation caused Ca2+ dependent facilitation; myotonia mutants Q1626E and F1698I showed attenuated Ca2+-dependent inhibition and lesser reduction in Imax than WT. EF hand, D1621A and D1623A, mutations had no effect (Ben-Johny et al. [36]);
WT calmodulin and calmodulin-34 maintained Ca2+ dependent inactivation, calmodulin-12 resulted in loss of such inactivation.;
Nav1.5 mutant without the post IQ motif showed persistent Ca2+ dependent inhibition;
Ca2+ dependent inactivation persisted with Nav1.5 C-terminal domain lacking post IQ segment (Yoder et al. [38]);
Ca2+-calmodulin (but not apo-calmodulin) binding implicated in slowed kinetics of inactivation and accelerated recovery from inactivation, but not in Nav1.5 double mutants involving both sites A and B of II–III linker region.