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Abstract
Copy number variants (CNVs) are associated with syndromic and severe neurological and psychiatric disorders (SNPDs),
such as intellectual disability, epilepsy, schizophrenia, and bipolar disorder. Although considered high-impact, CNVs are
also observed in the general population. This presents a diagnostic challenge in evaluating their clinical significance. To
estimate the phenotypic differences between CNV carriers and non-carriers regarding general health and well-being, we
compared the impact of SNPD-associated CNVs on health, cognition, and socioeconomic phenotypes to the impact of three
genome-wide polygenic risk score (PRS) in two Finnish cohorts (FINRISK, n= 23,053 and NFBC1966, n= 4895). The
focus was on CNV carriers and PRS extremes who do not have an SNPD diagnosis. We identified high-risk CNVs
(DECIPHER CNVs, risk gene deletions, or large [>1Mb] CNVs) in 744 study participants (2.66%), 36 (4.8%) of whom had
a diagnosed SNPD. In the remaining 708 unaffected carriers, we observed lower educational attainment (EA; OR= 0.77
[95% CI 0.66–0.89]) and lower household income (OR= 0.77 [0.66–0.89]). Income-associated CNVs also lowered
household income (OR= 0.50 [0.38–0.66]), and CNVs with medical consequences lowered subjective health (OR= 0.48
[0.32–0.72]). The impact of PRSs was broader. At the lowest extreme of PRS for EA, we observed lower EA (OR= 0.31
[0.26–0.37]), lower-income (OR= 0.66 [0.57–0.77]), lower subjective health (OR= 0.72 [0.61–0.83]), and increased
mortality (Cox’s HR= 1.55 [1.21–1.98]). PRS for intelligence had a similar impact, whereas PRS for schizophrenia did not
affect these traits. We conclude that the majority of working-age individuals carrying high-risk CNVs without SNPD
diagnosis have a modest impact on morbidity and mortality, as well as the limited impact on income and educational
attainment, compared to individuals at the extreme end of common genetic variation. Our findings highlight that the
contribution of traditional high-risk variants such as CNVs should be analyzed in a broader genetic context, rather than
evaluated in isolation.

Introduction

Large genomic rearrangements, called copy number var-
iants (CNVs), have been identified as causative for a range

of syndromes with neuropsychiatric traits [1–5]. While
even most rare CNVs are considered non-deleterious,
specific CNV types carry significant risk for severe neu-
rodevelopmental and psychiatric disorders, and intellectual
disability (ID) in particular [6, 7]. However, the penetrance
and the contribution of CNVs to overall health is less
studied. Kirov et al. [8] and others [3, 9, 10] showed that
recurring CNVs associated with schizophrenia and ID-
associated phenotypes have wide-ranging penetrance esti-
mates. In two Finnish population-based studies, we have
also shown that CNVs are associated with risk for schi-
zophrenia, ID, lower educational attainment, and hearing
impairment [11, 12].
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Although the literature is still modest, previous work
[3, 13–15] has suggested that CNVs can associate with
lower general cognition and socioeconomic achievements in
otherwise unaffected carriers. Kendall et al. [14] showed a
cognitive and socioeconomic impact in unaffected carriers
of rare disease-associated CNVs in the UK Biobank, and in
a recent update [15] extended this analysis to reciprocal
CNVs of the same regions. Crawford et al. [16] reported
profound effects on non-cognitive traits, and health and
mortality more generally, in CNV carriers in UK Biobank
data. In neurodevelopmental disorders such as autism, de
novo variant analysis [17] has shown that extending the
phenotype from a dichotomous disease—no disease model
into a spectrum of subclinical categories can yield a
significant impact in otherwise unaffected carriers of
risk variants. Männik et al. [13] showed that rare CNVs
> 250 kb can be found in up to 10.5% of the population and
correlate with ID and lower educational attainment. Non-
neurological phenotypes such as anthropometric traits have
also been shown [18] to associate with rare and recurring
CNVs.

Polygenic risk scores (PRSs) have shown promise in
investigating the complex genetic architecture of neu-
ropsychiatric disorders. We [19] and others [20] have
implicated the role of neuropsychiatric PRSs in ID and
developmental delay. PRS for schizophrenia has been stu-
died in the context of other neuropsychiatric traits [21], but
earlier analyzes did not indicate a correlation between PRS
for schizophrenia and mortality [22] or educational attain-
ment [23] in individuals without schizophrenia. On the
other hand, there is an established positive genetic corre-
lation between educational attainment, intracranial volume,
cognitive ability, schizophrenia, and bipolar disorder [24].

Both CNVs and high PRS are observed in the general
population in individuals without obvious neurodevelop-
mental or neuropsychiatric disorders. Especially, given the
expected high-risk nature of CNVs, the clinical evaluation
and interpretation of their impact are challenging due to
their relatively high frequency in unaffected individuals. So,
if an adult with no history of severe neurological and psy-
chiatric disorders (SNPDs) is observed to carry a disease-
associated CNV, how much impact would that potentially
have on the life trajectory?

We hypothesized that even if the majority of individuals
carrying CNVs do not have a diagnosis of neurodevelop-
mental or neuropsychiatric diseases, CNVs might still
contribute to the overall health and socioeconomic outcome.
Thus, in participants without SNPD, we compared the
impact of CNVs to the impact of the PRSs for educational
attainment [24], schizophrenia [25], and general intelligence
[26] on general health, morbidity, mortality, and socio-
economic burden. We analyzed these effects in two cohorts:
one sampled at random from the Finnish working-age

population (FINRISK), the other a Finnish birth cohort
(Northern Finland Birth Cohort 1966; NFBC1966). Both
cohorts link to national health records, enabling analysis of
longitudinal health data and socioeconomic status data over
several decades.

Methods

We obtained phenotypic information on 35,231 individuals
from the national FINRISK study [27], an on-going popu-
lation study of the Finnish population. The data used for our
study was received from the THL Biobank (study number:
39/2016). We selected a subset of 26,717 individuals based
on the choice of SNP array applicable for CNV calling
(Illumina HumanCoreExome). The NFBC1966 [28, 29]
consisted of 5550 genotyped individuals (Illumina
HumanCNV370 DNA beadchip). NFBC1966 participants
were enrolled before birth and genotyped at age 31. After
genotyping, we performed principal component (PC) ana-
lysis for FINRISK and NFBC1966. After excluding related
individuals, duplicate samples, and PC outliers, 23,904
individuals in FINRISK and 4954 individuals in
NFBC1966 remained for analysis.

We detected CNVs using a custom-built pipeline pow-
ered by PennCNV [30] and iPsychCNV [31] in both
cohorts. Using our quality control criteria (Supplementary
Materials), we removed 851 individuals from FINRISK and
59 individuals from NFBC1966. This resulted in a final
count of 23,053 FINRISK and 4895 NFBC1966 partici-
pants. Table 1 presents the participant counts of both
cohorts at the different QC steps.

CNV calls were included only if they had a minimum of
ten consecutive probes supporting the call and were 100 kb
or greater in length. We joined adjacent CNVs with similar
copy number if the adjoining region was at most 20% of the
full joined CNV. We identified as probable or potential
artefacts any CNVs that overlapped an HLA- or immu-
noglobulin region by at least 50%, or that was within 500 kb
of telomere or centromere region. Finally, we visualized all
remaining CNV calls using the visualize_cnv.pl script

Table 1 Study participants in different cohorts, and individuals
remaining at each step.

Number of individuals FINRISK NFBC

Phenotyped 35,231 12,135

Passing genotype QC 23,053 4895

With no SNPD 22,210 4644

All individuals passing Sample QC were included in SNPD
association analysis. Only individuals with no SNPD were included
in the socioeconomic analysis.
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distributed via the PennCNV package, and manually cura-
ted for obvious artefacts.

After filtering out samples and CNV calls of insufficient
quality, we annotated CNVs as:

1. a DECIPHER CNV if at least 50% of the CNV
overlapped a region associated with a CNV syndrome
by the DECIPHER database [32];

2. an ID gene deletion if the CNV at least partially
deleted 50% or more of the exons of a gene
interpreted as monogenically causal for ID by the
G2P gene set [33];

3. a high pLI gene deletion if the CNV deleted 50% or
more of the exons of a gene with a high probability
(≥0.95) of loss-of-function intolerance [34].

We denote as a “high-risk CNV” a CNV that matches
any of these criteria or is greater than 1Mb in size. Indi-
viduals carrying no high-risk CNV were used as controls
(22,493 in FINRISK and 4724 in NFBC1966). We addi-
tionally tested CNVs specifically associated with the
socioeconomic phenotypes in UK Biobank (educational
attainment [15], household income [15], and medical con-
sequences [16]) at a threshold of p < 0.001, to separately test
for specific CNV impact (Supplementary Table 1).

We calculated PRS for educational attainment [24]
(PRSEA), general intelligence [26] (PRSIQ), and schizo-
phrenia [25] (PRSSZ) from previous large studies. LDpred
was used to account for linkage disequilibrium among loci
[35] using whole-genome sequencing data on 2690 Finns as
the LD reference panel. Final scores were generated with
PLINK2 [36, 37] by calculating the weighted sum of risk
allele dosages for each single nucleotide polymorphism
(SNP). We matched the case frequency for the total number
of high-risk CNV carries (n= 573 in FINRISK, n= 171 in
NFBC1966) by assigning case status to the same number of
individuals at the extreme end of the respective distribution
in each cohort. For PRSEA and PRSIQ, we, therefore, ana-
lyzed the impact on the 744 individuals in the lowest
extreme. For PRSSZ, we analyzed the 744 individuals in the
highest extreme. We compared these PRS extremes to the
middle 20–80% of the respective PRS distribution (13,831/
23,053 in FINRISK, 2937/4895 in NFBC1966). This was
done to prevent the overestimation of the impact of PRS
outlier status that would result from comparing one outlier
to its opposite extreme.

We performed a joint analysis to estimate the impact on
income, education, and subjective health by grouping
together individuals into three non-overlapping socio-
economic categories:

1. group, “low SES (socioeconomic status) and poor
health”, consisted of participants with

a. Subjective health “average” (3) or worse AND.
b. Education level corresponding to lower secondary

school or lower AND.
c. Household Income level 5/9 or lower.

2. group, “intermediate SES and health”, consisted of
participants that

a. did NOT belong to group 1 AND.
b. did NOT belong to group 3.

3. group, “high SES and good health”, consisted of
participants with

a. Subjective health “average” or better AND.
b. Education level corresponding to Upper Second-

ary School or higher AND.
c. Household Income level 5/9 or better.

The statistical models and phenotypic information are
described in the Supplementary Methods and Supplemen-
tary Table 2.

Results

To identify copy number variation, we ran PennCNV and
iPsychCNV on genotype data from 23,053 FINRISK and
4895 NFBC1966 participants. This yielded 16,079 high-
confidence calls (0.697 calls/individual) in FINRISK, and
3500 high-confidence calls in NFBC1966 (0.715 calls/
individual), all larger than 100 kb. A deletion >100 kb was
detected in 21.8% of FINRISK and 29.3% of NFBC1966
participants (Fig. 1A). A duplication >100 kb was detected
in 35.4% of FINRISK and 31.4% of NFBC1966 partici-
pants. The size of most CNVs was no greater than 250 kb,
criteria met by the largest variant of 69.0% of deletion
carriers and 71.9% of duplication carriers in FINRISK, and
80.5% and 52.2% in NFBC1966, respectively. The overall
distribution of the CNV sizes and types in NFBC1966 was
similar to that of FINRISK, with frequencies in NFBC1966
being slightly higher in most size categories.

Severe neurological and psychiatric disorders
(SNPDs)

To confirm that CNV associations in FINRISK and
NFBC1966 are in line with previous literature, we analyzed
the associations of different CNV classes to SNPD traits
(Supplementary Fig. 1). We selected these traits due to their
established association with structural variants. The specific
CNV classes referred to together as “high-risk CNVs”,
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consisted of calls that either: overlapped a previously
reported region (“DECIPHER CNV” for CNVs overlapping
at least 50% with DECIPHER regions; Supplementary
Table 3); resulted in the loss of a high-impact gene (see
“Methods”), or were large (>1Mb). Table 2 presents fre-
quencies of high-risk CNVs, along with the number of

carriers affected by SNPD traits. The size distribution of
CNVs was similar to previous studies [6, 13, 14] in both
FINRISK and NFBC1966.

To enumerate the impact of high-risk CNVs compared to
the common variant burden, we compared impacts to the
frequency-matched extremes of the distribution of three
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Odds Ratio (95% Confidence Interval)

Fig. 1 CNV size distribution and association with severe neurolo-
gical and psychiatric disorders. A Size distribution of largest CNV/
individual in the NFBC (left) and FINRISK (right) cohorts. B Meta-
analysis of SNPD association in individuals with high-risk CNVs and
matched extreme PRS outliers in the FINRISK and NFBC cohorts
(n= 27,948). Overall, high-risk deletions except high pLI gene dele-
tions were associated with SNPDs (Supplementary Fig. 3). We
ascertained the disease associations using a logistic regression model,
correcting for age (log), sex, PCs 1–10, and year of enrollment. ID was
the most enriched phenotype in high-risk CNV carriers, though not
significantly associated (OR= 3.9 [95% CI 1.7–8.6], padj= 0.080). In
CNV subgroups (Supplementary Fig. 5), ID was associated with

DECIPHER CNVs (OR= 11.8 [3.4–40.3], padj= 0.0074) and large
deletions (OR= 9.9 [3.4–28.3], padj= 0.0018). CNV associations
were overall stronger in NFBC (Supplementary Fig. 7) than FINRISK
(Supplementary Fig. 6). Schizophrenia was reported more commonly
among carriers of ID gene deletions (OR= 7.3 [1.7–31.0], p= 0.0070)
and large deletions (OR= 4.9 [1.7–14], p= 0.0024) than among non-
carriers, but these associations were not significant after correcting for
multiple testing. If no considerable heterogeneity was observed (see
Supplementary Methods), a fixed-effects model was assumed (circles),
otherwise a random-effects model (triangles) was used in meta-
analysis. The sole association significant after multiple testing (PRSSZ
and schizophrenia) is denoted with an asterisk.
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PRS: educational attainment (PRSEA), intelligence (PRSIQ),
and schizophrenia (PRSSZ). Among individuals at the
extreme end of PRSSZ, association with schizophrenia was
stronger (OR= 6.4 [3.9–10.7], padj= 5.8 × 10−11) than
among high-risk CNV carriers (Fig. 1B). PRSSZ also
showed a trend with SNPDs in general (OR= 2.2 [1.3–3.6],
padj= 0.088). Individuals at the low extreme of PRSIQ were
enriched for ID (OR= 4.7 [1.2–17.1], p= 0.020) more
modestly than most high-risk CNV subgroups (Supple-
mentary Fig. 2) and not significant after correction for
multiple testing. In individuals with low PRSEA, we
observed no enrichment of SNPD (Supplementary Figs. 3
and 4).

Despite the disease associations of high-risk CNV car-
riers, we observed that 708/744 (95.2%) of high-risk CNV
carriers had no SNPD [551/573 (96.2%) in FINRISK; 157/
171 (91.8%) in NFBC1966].

Socioeconomic impact in individuals without a
diagnosed SNPD

In FINRISK, there were 22,210 individuals (96.3%), and in
NFBC1966 4644 individuals (94.9%), who had no diag-
nosed SNPD (not counting depression). We wanted

specifically to analyze high-risk CNV carriers that had no
record of SNPD to establish whether there was any impact
on the general quality of life by analyzing overall health,
education, and socioeconomic outcomes in these indivi-
duals (Supplementary Fig. 5).

PRS had a higher impact on education than high-risk
CNVs (Fig. 2A). We modeled education in an ordered
logistic regression (ologit) model for the level of education,
correcting for age, sex, and PCs 1–10. In NFBC1966, we
excluded individuals who reported their highest educational
degrees as “unfinished” or “other” (final n= 3983). Our
analysis indicated lower odds for the subsequent level of
education among high-risk CNV carriers (OR= 0.77
[0.66–0.89]). Previously identified education-associated
CNVs were not significantly associated with lower educa-
tion (OR= 0.81 [0.64–1.01]). However, odds for sub-
sequent level of education were even lower at the matched
lowest extreme of PRSEA (OR= 0.31 [0.26–0.37]) and
PRSIQ (OR= 0.51 [0.44–0.60]). The impact of high-risk
CNVs was observed particularly with DECIPHER CNVs
(OR= 0.51 [0.34–0.75]), large deletions (OR= 0.56
[0.41–0.76]), and high pLI gene deletions (OR= 0.72
[0.58–0.89]). The level of education was not significantly
lower among individuals with a high PRSSZ.

Table 2 Number and frequency of high-risk CNV carriers along with number and fraction of diagnosed SNPDs among carriers.

Total ID SCZ EPI BD MDD Any SNPDa

n % n % n % n % n % n % n %

FINRISKb 23,053 100% 55 0.24% 118 0.51% 501 2.17% 158 0.69% 1416 6.14% 843 3.66%

DECIPHER CNV 64 0.28% 1 1.56% 1 1.56% 1 1.56% 1 1.56% 7 10.94% 3 4.69%

ID gene deletion 43 0.19% 1 2.33% 1 2.33% 3 6.98% 1 2.33% 6 13.95% 5 11.63%

High pLI gene deletion 264 1.15% 0 0.00% 1 0.38% 5 1.89% 1 0.38% 15 5.68% 8 3.03%

>1Mb deletion 129 0.56% 2 1.55% 2 1.55% 3 2.33% 1 0.78% 14 10.85% 7 5.43%

>1Mb duplication 202 0.88% 2 0.99% 2 0.99% 5 2.48% 1 0.50% 17 8.42% 8 3.96%

Any high-risk CNVc 573 2.49% 4 0.70% 4 0.70% 13 2.27% 3 0.52% 46 8.03% 22 3.84%

NFBC1966b 4895 100% 28 0.57% 62 1.27% 105 2.15% 40 0.82% 276 5.64% 251 5.13%

DECIPHER CNV 37 0.76% 2 5.41% 2 5.41% 0 0.00% 0 0.00% 5 13.51% 5 13.51%

ID gene deletion 17 0.35% 0 0.00% 1 5.88% 1 5.88% 1 5.88% 3 17.65% 3 17.65%

High pLI gene deletion 78 1.55% 2 2.56% 3 3.85% 4 5.13% 1 1.28% 11 14.10% 9 11.54%

>1Mb deletion 38 0.78% 2 5.26% 2 5.26% 0 0.00% 1 2.63% 6 15.79% 5 13.16%

>1Mb duplication 53 1.08% 1 1.89% 0 0.00% 1 1.89% 0 0.00% 4 7.55% 3 5.66%

Any high-risk CNVc 171 3.49% 3 1.75% 5 2.92% 5 2.92% 1 0.58% 18 10.53% 14 8.19%

The first column shows the total number of participants in the cohort, along with the total number of carriers and their frequency. Consecutive
columns indicate a number of carriers that have the relevant SNPD phenotype and the fraction of affected carriers. Not included are the diagnoses
of childhood behavioral disorders and disorders of psychiatric development, due to the very low frequency of cases; they were however included in
the “any SNPD” category. The percentage presented in the phenotype column is the fraction of carriers that have the disorder.

ID intellectual disability, SCZ schizophrenia, EPI epilepsy, BD bipolar disorder, MDD major depressive disorder.
aDepression was not included in this joint category.
bThese rows indicate the total number of participants in the cohort and the total number of cases with an SNPD diagnosis.
cThe number indicates individuals with any high-risk CNV. One individual might have more than one high-risk CNV, and one high-risk CNV can
belong to several categories.
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We employed a linear regression model in FINRISK to
estimate years of education (Fig. 2B), correcting for age,
sex, year of baseline survey, and PCs 1–10. Individuals at
the CNV-matched extreme of PRSEA or PRSIQ distributions
had a stronger effect on education (βEA=−19.3 [−2.22 to
−1.65] and βIQ=−1.17 [−1.46 to −0.88]) than high-risk
CNVs (βCNV=−0.31 [−0.60 to −0.02], padj= 1) or
education-associated CNVs (βEA-CNV=−0.52 [−1.01 to
−0.02], padj= 1). On average, each additional +1 SD of
PRSEA added 0.84 years [0.79–0.89] of education, and each
additional +1 SD of PRSIQ 0.54 years [0.50–0.59] of
education in FINRISK. Educational attainment in indivi-
duals at the high extreme of PRSSZ was not lower than in
controls (β= 0.03 [−0.25 to +0.32]).

Household income was conversely lower for carriers of
income-associated CNVs than for individuals at the PRS
extremes or for high-risk CNV carriers (Fig. 2C). We ana-
lyzed self-reported household income in an ologit model
correcting for age, sex, PCs 1–10, and the number of indi-
viduals in the household. The model indicated a lower
average income for individuals harboring income-associated
CNVs (OR= 0.50 [0.38–0.66]) and high-risk CNVs (OR=
0.77 [0.66–0.89]) than non-carriers. Individuals at the lowest
extreme of PRSEA and PRSIQ both reported lower household
income (OREA= 0.66 [0.57–0.77]; ORIQ= 0.68 [0.59–0.78])
than controls, though the confidence intervals overlapped
with the OR of high-risk CNVs. Each additional +1 SD of
PRSEA in FINRISK increased household income (OREA=

n.s.

0.035

6.1 × 10−52

1.2 × 10−17
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Fig. 2 Socioeconomic impact of high-risk CNVs and PRSs in
Finnish cohorts. A Ordered logit model of level of education for CNV
types and PRS extremes in individuals with no SNPD (n= 25,944).
Nine hundred and ten individuals were removed due to incomplete
information on education, education reported as “ongoing”, or edu-
cation reported as “other”. B Years of education lost due to CNV types
and PRS extremes in FINRISK individuals with no SNPD (n=
21,961). Two hundred and forty-nine participants were removed from
this analysis due to incomplete information on education. C Ordered
logit model of household income (1–9) for CNV types and matched
PRS extremes in individuals with no SNPD (n= 25,693). In total,
1161 participants were removed from analysis due to incomplete data

on income. D When adjusting for education, most economic impacts
from PRS and high-risk CNVs are accounted for. E Subjective health
of CNV types and PRS extremes in individuals with no diagnosis of
SNPD (n= 26,603). Subjective health was analyzed in an ordered
logit model, where covariates were age, sex, and PCs 1–10. Two
hundred and fifty-one participants were removed from the analysis due
to incomplete data on subjective health. A circle denotes the use of a
fixed-effect model; a triangle denotes a random effects model. Esti-
mated effect is plotted with 95% confidence intervals, with point
estimate denoted under the effect, and Bonferroni-corrected p-value
denoted above.
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1.22 [1.19–1.25]); the same was true for +1 SD of PRSIQ in
FINRISK (ORIQ= 1.13 [1.10–1.16]). In high-risk CNV
subgroups, household income was lower for carriers of large
deletions (OR= 0.51 [0.38–0.70]) and high pLI gene dele-
tions (OR= 0.66 [0.54–0.81]) (Supplementary Fig. 6). For
the schizophrenia-based PRS, we did not see an effect on
household income. When correcting for education (Fig. 2D),
the impact of income-associated CNVs was largely unchan-
ged (ORadj= 0.53 [0.40–0.71]) whereas household income
was not significantly lower in PRS extremes than in controls.

CNVs with reported medical consequences and PRS
extremes were associated with lower subjective health,
while high-risk CNVs reported similar health as controls
(Fig. 2E). We analyzed subjective health in an ologit model
corrected for age, sex, year of enrollment, and PCs 1–10.
Carriers of CNVs with medical consequences consistently
reported lower subjective health (OR= 0.48 [0.32–0.72]),
while high-risk CNVs did not (OR= 0.80 [0.61–1.05]). The

effect of high-risk CNVs differed between the cohorts (I2=
59.9%), associating with lower health in NFBC1966
(Supplementary Fig. 7) but not in FINRISK (Supplementary
Fig. 8). For common variation, individuals with the lowest
PRSEA had lower subjective health (OREA= 0.72
[0.61–0.83]). The impact of PRSIQ (OR= 0.76 [0.56–1.02])
differed between the cohorts (I2= 60.1%); low PRSIQ was
not associated with lower subjective health in NFBC1966
(p= 0.56) whereas it was in FINRISK (ORIQ= 0.67
[0.57–0.80], padj= 1.5 × 10−4).

Mortality was higher among individuals at the lowest
PRSEA extreme, but not in high-risk CNV carriers (Fig. 3A).
Estimating mortality in FINRISK using a Cox regression
model, we observed higher mortality among individuals at
the lowest extreme of PRSEA (HR= 1.55 [1.21–1.98])
compared to individuals within the middle 20–80% of the
PRSEA distribution. PRSEA had no effect on mortality when
taking lifestyle factors (smoking, BMI, alcohol consumption)
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Fig. 3 Health impact of high-risk CNVs and PRSs in Finnish
cohorts. A Hazard ratios in a Cox regression model for mortality in
unaffected carriers of high-risk CNVs and individuals at the PRS
extremes in FINRISK (n= 22,210). ID gene deletions are not pictured
as there were no deaths during follow-up for carriers of this type of
CNV. B Incidence rate ratio (IRR) of high-risk CNVs and PRS
extremes in a Poisson regression model of the Charlson comorbidity
index in FINRISK individuals with no SNPD (n= 22,210). The
incidence of one CCI unit was more than 3.5 higher in ID gene
deletion carriers than in individuals with no high-risk CNV.

C, D Impact of CNVs and PRS outlier status on socioeconomic status
and health. The odds of low SES and poor health were highest for
individuals with low PRSIQ, and to a lesser extent for individuals at the
lowest extreme of PRSEA (A). The odds of high SES and good health
was lowest for individuals at the lowest extreme of PRSEA, and to a
lesser extent for individuals at the lowest extreme of PRSIQ (B).
Effects meta-analyzed using a random-effects assumption are denoted
by triangles, otherwise, a fixed-effect assumption was made. The
Bonferroni-adjusted p-value is denoted above the point estimate of
each variant.
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into account. We did not observe higher mortality among
individuals at the extremes of PRSIQ (HR= 1.37
[1.06–1.76], padj= 1) or PRSSZ (HR= 1.06 [0.82–1.37]), or
among high-risk CNV carriers (HR= 1.39 [1.08–1.79],
padj= 0.82) or CNVs with medical consequences (HR=
1.71 [0.85–3.43]). We did not estimate mortality in
NFBC1966 due to the young age of the participants.

Only a small subgroup of high-risk CNVs showed higher
general morbidity (Fig. 3B, Supplementary Fig. 9). To
estimate morbidity, we computed the Charlson comorbidity
index (CCI) for FINRISK individuals based on 20 pheno-
types (Supplementary Table 4) with a high-impact on
mortality. This data was not available for NFBC1966. We
analyzed CCI in a Poisson regression model, correcting for
age, sex, PCs 1–10 and year of enrollment. In FINRISK, the
36 ID gene deletion carriers had on average more than a
three-fold incidence of CCI units (IRR= 3.4 [1.7–6.1],
padj= 0.0097; Supplementary Fig. 9).

Analyzing the general quality of life, we found common
variation, and PRSEA in particular, to have a more sub-
stantial impact than high-risk CNVs (Fig. 3c, d). We esti-
mated the general impact on both socioeconomic status and
general well-being by grouping the cohort into three non-
overlapping socioeconomic groups: low SES and poor
health (group 1), intermediate SES and health (group 2),
and high SES and good health (group 3; see Supplementary
Methods and Supplementary Table 5). Students and parti-
cipants aged > 65 were excluded (remaining n= 21,171).
We tested variant impacts in a multinomial logistic regres-
sion model using group 2 as a reference, with sex, age, year
of enrollment, and PCs 1–10 as covariates. We observed no
group 1 or group 3 enrichment in individuals carrying high-
risk CNVs (ORintermediate↔high= 0.72 [0.58–0.90], padj=
0.28) nor in any CNV subgroup (Supplementary Fig. 10).

The effect of PRS was clearer. Individuals at the lowest
extreme of PRSEA and PRSIQ were at higher odds of low
SES and poor health (EA: ORlow↔intermediate= 0.67
[0.54–0.83]; IQ: ORlow↔intermediate= 0.56 [0.45–0.69])
and at lower odds of high SES and good health (EA:
ORintermediate↔high= 0.37 [0.28–0.48]; IQ: ORintermediate↔high

= 0.64 [0.50–0.82]). Individuals at the highest extreme of
the PRSSZ distribution did not show enrichment or depletion
in any of the assigned groups. These analyzes suggest that
the polygenic component is likely to have a higher pre-
dictive value for socioeconomic status and general well-
being than the different CNV classes.

Discussion

Here we find that the majority of working-age individuals in
Finland carrying high-risk CNVs have a modest, if any,
increased risk for major health or socioeconomic

consequences. Only 4.8% of carriers had an associated
neuropsychiatric disease, but this is not an accurate reflec-
tion of the true population frequency, as the most severe
cases are underrepresented. We furthermore show no
increase in overall mortality or morbidity in most high-risk
CNVs. Unlike the relatively mild effect of most CNV
classes, we observed a clear polygenic effect on socio-
economic outcome with educational attainment and IQ PRS
scores. Belonging to the matched lowest PRS extremes
(lowest 2.66%) of educational attainment or IQ had an
overall stronger impact on the socioeconomic outcome than
belonging to most high-risk CNV groups, and a generally
stronger impact on health and survival, with the exception
of household income-associated CNVs. These results imply
that while on an individual level, high-risk variants can
show a significant burden on specific neuropsychiatric dis-
ease risk and personal health, for carriers without such
disease, the quality of life is expected to be comparable to
that of the general population.

In general, the effect of deleterious rare variants (CNVs
and protein truncating variants) on cognition and functional
outcomes is well-established [3, 13, 15, 16, 38, 39]. Rare
variants include both de novo variants and very rare variants
that have arisen recently and have not yet been purged by
negative selection [38]. Rare deleterious variants, including
CNVs, can have a major impact on health outcomes for an
individual and are thus under strong negative selection.
However, such variants might not always have a strong
phenotypic impact (incomplete penetrance), and as
observed here, can have a very modest—if any—effect on
well-being. The reason for this wide spectrum of outcomes
remains speculative. From a genetic perspective, one
hypothesis is that additional variants, both rare and com-
mon, modify the phenotypic outcome of a CNV carrier
(Supplementary Figs. 11 and 12). This type of effect is
observable in analyzes of hereditary breast and ovarian
cancer in the UK Biobank [40] and in FinnGen [41], where
strong-impacting variants’ penetrance is modified by com-
pensatory polygenic effects. Another potential modifier
could be a burden of rare variants, as reported by Ganna
et al. [39], who observed a 2.9–3.1 month reduction in years
of education for each disruptive or damaging mutation.
There are fewer reports comparing the strength of associa-
tions of PRS and rare variants with each other. Both Kurki
et al. [19] and Niemi et al. [20] demonstrated that both rare
and common variants can contribute to ID, a heterogenic
group of diseases that have typically been considered out-
comes of high-impact deleterious variants. Other examples
include cardiovascular diseases where the combination of
rare and common variants has been studied [42, 43].

It is important to highlight that the rare deleterious CNVs
studied here do not represent the full spectrum of the
categories used. Many of the CNVs highlighted by the
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DECIPHER study [32] have only been reported in a handful
of cases worldwide. Such high-penetrant variants and their
associated syndromes are strongly selected against [44], as
evidenced by the fact that DECIPHER CNVs were detected
in 0.28% of FINRISK participants, while in the EGCUT
cohort this same frequency was 0.71% [13]. That said, the
aim of this study was to understand the socioeconomic and
health outcomes of individuals without a clear SNPD
diagnosis, so an underrepresentation of diagnostically
severe cases is expected to increase the proportion of
unaffected individuals among carriers.

The broad impact of CNVs, pleiotropic both clinically
and subclinically, has been observed in numerous previous
studies [13–16]. Case-control studies [6, 11] have used a
number of CNV features for proxies of pathogenicity, and
the ones used here are not exhaustive. Kendall et al. and
Crawford et al., using the UK Biobank, have developed
further CNV subclasses that better reflect socio-economic
outcomes. Here we applied some of those new, proposed
subclasses to see that e.g., CNVs associated to household
income was replicated and exceeded the impact of PRSs.
Subsequent studies will help to further clarify the char-
acteristics of these potential new CNV subclasses.

The recent study by Männik et al. [13] in the Estonian
population used a similar strategy as here to study the
impact of CNVs on educational attainment by assigning
CNVs to different classes, instead of focusing on specific
chromosomal locations. They observed an association of
deletions >250 kb to poorer school performance (ability to
complete secondary education), which is in line with our
previous study from Northern Finland [12], but neither of
these previous studies reports on socioeconomic outcomes
beyond education.

As stated above, the observed effect of polygenic scores
was broader than that of structural variants. We observed
strong effects in PRSs for intelligence and educational
attainment on education, income and socioeconomic status.
In line with previous studies, PRS for schizophrenia is
mostly associated with schizophrenia with little effect on
other traits, including subclinical or socioeconomic effect
and educational attainment [22, 23]. Manifest schizophrenia
both interrupts education and lowers SES, as these are
associated with the chronic nature of the disease. The effect
of PRSs on household income was modest after adjusting for
education, but remained for income-associated CNVs. This
effect of common variants is in line with previous epide-
miological studies [45, 46], where education is a major factor
influencing income. It also holds true in Nordic countries,
where income levels are less unequal (as measured using the
GINI index) than in many other countries [47].

The study design has some limitations. Firstly, as an
observational and epidemiological study, no causal infer-
ence can be made. Second, analyzing CNVs in broad

categories does not provide an insight into the effect of
individual variants or loci, and can dilute the effect of these
variants and loci. Third, with the chosen CNV calling
method, we cannot separate between germline and somatic
variants. Fourth, the calling accuracy of CNVs (Supple-
mentary Methods) is outpaced by that of SNPs, potentially
biasing the observed CNV impact. Fifth, as a large pro-
portion of CNVs, are de novo, estimating their impact has
somewhat different confounding factors than common
variant-based polygenic scores. Sixth, diseases were mainly
captured from hospital records without primary care data,
potentially biasing the range of diseases captured. Finally,
due to the underrepresentation of severe and highly pene-
trant CNVs, the observed frequency of 4.8% affected
individuals does not accurately reflect the true disease risk
[3, 6, 48]. A similar limitation was highlighted in the
Kendall et al. study [14] in the UK Biobank.

There are also some differences between the two cohorts
used. The 5-yearly collected data of the FINRISK cohort
provides a good representation of the adult age spectrum
from most geographical regions of Finland from different
time points, different vocations, and different socioeconomic
backgrounds. However, it also ensures that differences in the
income and education distributions in the population are
subject to long-term trends and fluctuations in the economical
state and educational developments in the country [49–51].
While NFBC1966 is a birth cohort expected to give a more
representative cross-section of the population, participants
were sampled for DNA analysis at 31 years of age, selecting
against early-onset severe cases. A third aspect is that the
DNA chip used in NFBC1966 (CNV370) has 68.3% of the
probe count of the CoreExome chip used in FINRISK CNV
analysis. While this is not expected to impact noticeably on
imputation and consequent PRS calculation, CNV resolution
might be slightly different, despite the higher count of CNV
calls in NBFC than in FINRISK.

The finding that the polygenic association with both
education and the socioeconomic outcome is stronger than
for most structural variants when cases with SNPD were
excluded, highlights the polygenic background of these
traits. The polygenic contribution in many complex traits
has become evident in the wide GWAS literature. It seems
that the genetic background of socioeconomic outcome has
a strong polygenic component as well, which also modifies
the effect of rare, stronger effect variants [40, 41].

We conclude that while contributing significantly to the
risk for the development of neurological and psychiatric
disorders, the majority of working-age individuals carrying
high-risk CNVs have modest or no impact on morbidity and
mortality, as well as limited impact on income and educa-
tional attainment. The vast majority of working-age indi-
viduals with observable high-risk CNVs have no associated
SNPD. These unaffected carriers report on average lower
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subjective health, educational attainment, or income, but
this impact is generally more modest than that observed
among individuals at the extreme end of common genetic
variation, highlighting the polygenic genetic background.
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