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Abstract

Objectives Deep learning has been proven to be able to stage liver fibrosis based on contrast-enhanced CT images. However,

until now, the algorithm is used as a black box and lacks transparency. This study aimed to provide a visual-based explanation of

the diagnostic decisions made by deep learning.

Methods The liver fibrosis staging network (LFS network) was developed at contrast-enhanced CT images in the portal venous

phase in 252 patients with histologically proven liver fibrosis stage. To give a visual explanation of the diagnostic decisions made

by the LFS network, Gradient-weighted Class Activation Mapping (Grad-cam) was used to produce location maps indicating

where the LFS network focuses on when predicting liver fibrosis stage.

Results The LFS network had areas under the receiver operating characteristic curve of 0.92, 0.89, and 0.88 for staging signif-

icant fibrosis (F2—F4), advanced fibrosis (F3-F4), and cirrhosis (F4), respectively, on the test set. The location maps indicated

that the LFS network had more focus on the liver surface in patients without liver fibrosis (F0), while it focused more on the

parenchyma of the liver and spleen in case of cirrhosis (F4).

Conclusions Deep learning methods are able to exploit CT-based information from the liver surface, liver parenchyma, and

extrahepatic information to predict liver fibrosis stage. Therefore, we suggest using the entire upper abdomen on CT images when

developing deep learning—based liver fibrosis staging algorithms.

Key Points

* Deep learning algorithms can stage liver fibrosis using contrast-enhanced CT images, but the algorithm is still used as a black
box and lacks transparency.

* Location maps produced by Gradient-weighted Class Activation Mapping can indicate the focus of the liver fibrosis staging
network.

* Deep learning methods use CT-based information from the liver surface, liver parenchyma, and extrahepatic information to
predict liver fibrosis stage.
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Abbreviations HU Hounsfield units

AUC Area under the receiver operating LFS network Liver fibrosis staging network
characteristic curve ROC Receiver operating characteristic

CNN Convolutional neural network

Grad-cam Gradient-weighted Class Activation Mapping
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important to adequately diagnose and stage liver fibrosis be-
fore its progression into irreversible, end-stage liver disease.
The current gold standard for liver fibrosis diagnosis and stag-
ing is histopathological examination of liver tissue obtained
through percutaneous biopsy. However, biopsy has several
drawbacks, such as peri-procedural pain or discomfort, major
hemorrhage with a reported mortality rate up to 1.6%, and the
risk of sampling error due to analysis of only a small liver
parenchyma specimen [3-5].

To overcome these disadvantages, non-invasive imaging-
based methods have been explored to replace biopsy [6, 7].
Several studies have shown deep learning methods to be able
to stage liver fibrosis on CT or MRI images [8—10]. However,
lack of transparency and explainability (black box principle)
can be considered barriers towards clinical acceptance and
implementation in standard practice. It is currently unclear
whether the convolutional neural network (CNN) is making
diagnostic decisions based on established radiological mor-
phologic features related to liver fibrosis (e.g., enhancing fi-
brotic septa, parenchymal changes including regenerative or
dysplastic nodules, and signs of portal hypertension) [6, 7], or
whether it uses other features or information [11]. To be able
to trust the diagnostic decisions made by deep learning
methods, it is important to understand how the system works.
Although understanding deep learning methods is still a tech-
nical challenge, algorithms have been developed to visualize
the region the network focuses on when making predictions
[12—14]. Gradient-weighted Class Activation Mapping (Grad-
cam) is a state-of-the-art technique producing localization
maps highlighting important regions, thereby providing visual
explanations for model decisions [12]. Because liver fibrosis
can be considered a systemic disease, we hypothesize that for
deep learning techniques, information outside the liver might
be just as important as the liver itself. This might further in-
crease clinicians’ trust in deep learning methods.

To test our hypothesis, this study aimed to provide a visual-
based explanation of the diagnostic decisions made by deep
learning in predicting liver fibrosis stages on abdominal CT
scans by using Grad-cam.

Materials and methods

This study is a retrospective and exploratory study investigating
the explainability of the LFS network. This study was approved
by the local institutional review board (number: 2018/139), and
the need for obtaining informed consent was waived.

Study population
Patients treated at our tertiary referral center between 2006 and

2018 who fulfilled the following criteria were included in the
study (Fig. 1): (i) age > 16 years; (ii) availability of a contrast-

enhanced CT scan in the portal venous phase without relevant
extrahepatic abnormalities and displaying the complete liver;
(iii) availability of histopathological proof of the degree of
liver fibrosis, either through liver biopsy, liver resection, or
after liver transplantation; (iv) time interval between CT im-
aging and obtaining histopathology < 6 months.

To obtain a sufficient number of patients without liver fi-
brosis (in whom generally no liver tissue samplings are per-
formed), a patient group was added in whom during the same
inclusion period a contrast-enhanced abdominal CT scan in
the portal venous phase was performed at the emergency de-
partment to rule out traumatic injuries. These patients were
included in case of absence of liver injuries or other morpho-
logic abnormalities of the liver, and when there was no history
of liver disease or associated risk factors. Subsequently, the
inclusion criteria were checked on each CT scan by board-
certified abdominal radiologists.

Of each patient, the following clinical variables were col-
lected: birth date, gender, cause of liver fibrosis, type of his-
topathological specimen, relevant medical history, (prior) use
of systemic chemotherapy, and tumor markers including al-
pha-fetoprotein, carbohydrate antigen 19-9, and
carcinoembryonic antigen levels.

Reference standard generation

The liver fibrosis stage was determined by a specialized liver
pathologist by using a staging system consisting of 5 stages
(stage 0, healthy liver without fibrosis; stage 1, fibrosis of portal
area without septa; stage 2, portal fibrosis with few septa; stage 3,
septal fibrosis without cirrhosis; stage 4, cirrhosis) [15].

Algorithm scheme

To investigate the importance of extrahepatic structures when
predicting liver fibrosis stages, we built the LFS network and
trained it with abdominal CT volumes. Grad-cam was inte-
grated between the final convolutional layers to visualize
which abdominal region the network is focusing on.
Subsequently, the reliability of the LFS network can be veri-
fied by the radiologist by checking whether the highlighted
abdominal regions are clinically relevant for liver fibrosis
staging. The overall scheme is shown in Fig. 2.

First, the CT scans were pre-processed. The density values
on the original CT scan ranged from —1024 to 3071
Hounsfield units (HU), but the density of abdominal tissue
only concerns a small part of the full range. Therefore, we
applied a soft tissue window ranging between —125 and
+225 HU on the input CT slices to remove irrelevant infor-
mation and enhance contrast among abdominal organs.

The processed CT scans were then passed to the LFS net-
work consisting of four convolutional layers, three pooling
layers, and two fully connected layers. The final fully
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Fig. 1 Flowchart of patient inclusion. Abbreviation: CT = computed tomography

connected layer puts out the predicted probabilities of each
liver fibrosis stage. Each convolutional layer has multiple
channels to extract different features from the original input,
and the feature maps keep the spatial information from the
input CT volume. The common practice is to interpret the
network based on this remained spatial information [12—14].
Grad-cam assigns weights to each feature map, which indicate
the degree of contribution of the features to the diagnostic
decision. The weight of each voxel on the location map rep-
resents the importance that the LFS network assigned to the

location on the input CT. Higher weights on the location maps
indicate a higher degree of attention of the LFS network to the
specific area on the corresponding input CT. By visualizing
the map generated by Grad-cam, spatial information of fea-
tures contributing to the diagnostic decision can be obtained.
More details regarding the training of the LFS network can be
found in Appendix 1.

The entire project was programmed in Python 3.0. Simple-
Insight Toolkit and Numpy libraries were used during pre-
processing [16, 17], and the LFS network was constructed

8 2 /
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Fig. 2 Overall scheme of liver fibrosis staging by deep learning. The
computed tomography (CT) scan was first pre-processed by tissue
windowing and standardized to [0,1]. Then, 32 consecutive slices of the
3D segmented liver were randomly selected as a patch per training iter-
ation to feed into the convolutional neural network. The network put out
the array of predicted probabilities at fibrosis stage (FO—F4). During test-
ing of'the trained liver fibrosis staging network, Grad-Cam was integrated
between the third convolutional layer and the final convolutional layer to
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generate the maps showing the location of the network’s focus.
Abbreviations: CT: computed tomography; Conv: convolutional layer;
Max_pool: maximum pooling layer; GradCam: Gradient-weighted
Class Activation Mapping; 5*5 kernel: a kernel with size [5] is used to
extract features in the convolutional layer; channel: number of kernels
applied in between convolutional layers; Softmax: softmax activation
function
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Table 1  Demographics of the study population
Variable Total cohort  Liver fibrosis stage
Fo F1 F2 F3 F4
Total number of patients 252 134 8 10 18 82
Median age (interquartile range) 59 (48-65) 63 (50-74) 64 (38-71) 57 (43-64) 48(43-62) 60 (54-65)
Gender Male 140 (55.6%) 68 (50.7%) 3 (37.5%s) 7 (70.0%) 11(61.1%) 51 (62.2%)
Female 112 (44.4%) 66 (49.3%) 5(62.5%) 3 (30.0%) 7 (38.9%) 31 (37.8%)
Origin of histopathology specimen ~ Biopsy 39 (33.1%) - 7 6 6 17
Resection 5(4.2%) - 0 0 0 5
Transplantation 74 (62.7%) - 1 4 12 57
Etiology of liver fibrosis Alcoholic 26 (22.0%) - 0 0 1 25
Autoimmune hepatitis 5 (4.2%) - 0 1 1 3
HBV 3(2.5%) - 0 0 0 3
HCV 10 (8.5%) - 0 0 1 9
PSC 3 (2.5%) - 0 2 1 0
Steatohepatitis 8 (6.8%) - 0 0 0 8
Wilson disease 1 (0.8%) - 0 0 0 1
Other 17 (14.4%) - 1 0 7 9
Unknown 45 (38.1) - 7 7 7 24

Abbreviations: HBV = hepatitis B virus; HCV = hepatitis C virus; PSC = primary sclerosing cholangitis

under the Tensorflow framework, which is an open-source
library for deep learning [18].

Evaluation metrics

The evaluation metrics consisted of two parts: the evaluation
metrics of liver fibrosis staging, and the metrics to analyze the
location maps indicating the regions the network focuses on.

Five-fold cross-validation was applied to evaluate the gen-
eralization ability of the trained LFS network. Similar to other
liver fibrosis staging studies [9, 10], the receiver operating char-
acteristic (ROC) curve of significant fibrosis (stages F2, F3, and
F4), advanced fibrosis (stages F3 and F4), and cirrhosis (stage
F4) was plotted. The sensitivity, specificity, accuracy, and area
under the ROC curve (AUC) were used to evaluate the LFS
network performance. Besides, micro- and macro-average
ROC curves were plotted to evaluate the LFS network perfor-
mance as a multi-stage classification. The macro-average ROC
curve reduces the FO-F4 stages’ classification to multiple sets
of binary classifications, while a micro-average ROC curve
averages each sample for an aggregate result.

The focus patterns on the location maps generated by Grad-
cam were assessed through visual inspection by three radiol-
ogists. To quantify the value of the liver parenchyma on the
location maps, a box plot of the mean value in the segmented
liver area on the Grad-cam location maps was generated.

The statistical analyses were performed in Python 3.0. The
ROC curves were plotted and the AUCs were calculated based
on scikit-learn library [19].

Results
Study population

A total number of 252 patients were included in the
study to develop the LFS network. The number of pa-
tients categorized according to liver fibrosis stage is
shown in Table 1. Two patients who underwent a liver
transplantation were included twice in the dataset, as the
histopathology results were based on different livers

Table 2 Summary of the
performance of the liver fibrosis

Significant fibrosis (F2-F4)

Advanced fibrosis (F3-F4) Cirrhosis (F4)

staging network in predicting
liver fibrosis severity in the test
set. The corresponding receiver
operating characteristic curves
can be found in Fig. 3

AUC

Specificity (%; 95% CI)
Sensitivity (%; 95% CI)
Accuracy (%; 95% CI)

0.92 [0.86, 0.97]
91.7[82.0, 96.8]
83.0 [71.7,94.7]
88.3 [81.5, 94.5]

0.89[0.83, 0.96
88.2[77.8,95.6
79.5[68.2,92.5
85.2[77.0,92.0

0.88[0.79, 0.94
86.5[78.9,94.4
75.1 [56.5, 86.7

]
]
]
] 83.3[76.2, 90.0

]
]
]
]

Abbreviations: AUC = area under the curve; CI = confidence interval
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Fig. 3 Receiver operating characteristic (ROC) curves of the test sets. a
ROC curves of the predicted liver fibrosis severity on the test sets, includ-
ing significant fibrosis, advanced fibrosis, and cirrhosis. b Macro-
averaged ROC curve reducing the FO—F4 stages’ classification to multiple
sets of two-class classifications, and micro-averaged ROC curve averag-
ing each sample of an aggregate result

(i.e., the native liver before transplantation and the
transplanted liver after re-transplantation).

LFS network accuracy on the test set

The AUCs of staging significant fibrosis, advanced fibrosis,
and cirrhosis were 0.92, 0.89, and 0.88, respectively, on the
test set, and the corresponding ROC curves can be found in
Fig. 3. The specificity, sensitivity, and accuracy values are
listed in Table 2.

Location map analysis

As mentioned before, the location maps indicate the areas con-
tributing to the diagnostic decisions made by the LFS network.

@ Springer

Two patterns on the location maps were identified: (i) when the
LFS network prediction is based on a CT scan from patients with
a healthy liver (fibrosis stage FO0), the surface of the liver is
highlighted on the location maps, but the central area of the liver
parenchyma is not; this pattern was observed in 91.0% of the
location maps in patients with FO liver fibrosis; (i) when the LFS
network prediction is based on a CT scan from patients with
cirrhosis (fibrosis stage F4), both the liver and spleen (mainly
central areas) are highlighted; this pattern was observed in 76.4%
of the location maps in patients with cirrhosis (F4 liver fibrosis).
Several examples are shown in Fig. 4.

In a post hoc analysis to further quantify the observed pat-
terns in the location maps, we selected the liver parenchyma as
region of interest, and calculated the average weights assigned
by the LFS network in the region of interest on the location
maps, with higher values indicating greater attention of the
network when predicting liver fibrosis stages. The liver paren-
chyma was segmented by the fine-tuned V-net with 0.99-pixel
accuracy and 0.90 F1 score (dice coefficient). The median and
interquartile range of weights in the liver parenchyma on the
location maps were 0.58 (0.43-0.75) and 1.43 (1.22—1.63) for
FO and F4 liver fibrosis, respectively. The difference between
the distribution of weights in the liver parenchyma on the
location maps was statistically significant (p < 0.001). The
distribution of two groups of weights is illustrated in the box
plot in Fig. 5.

Discussion

The aim of this study was to improve the explainability of the
liver fibrosis staging neural network. This was done by devel-
oping deep learning methods to stage liver fibrosis followed
by applying Grad-Cam to determine the region of interest of
the network when predicting the liver fibrosis stage of the test
set. By doing so, two patterns of regions of interest of the
neural network in the upper abdomen could be differentiated,
namely a highlighted liver surface on the location maps in
case of FO liver fibrosis, versus highlighted central areas in
the liver and spleen in patients with F4 liver fibrosis.

The diagnostic accuracy rates of predicting significant fi-
brosis, advanced fibrosis, and cirrhosis were 88.3%, 85.2%,
and 83.2%, respectively, and the AUCs were 0.92, 0.89, and
0.88. These diagnostic performance results are comparable to
several previous studies which investigated the possibilities of
deep learning to determine liver fibrosis stage. Yasaka et al
[10] trained a liver fibrosis staging CNN by cropped liver
patches on CT scans from 286 patients, leading to AUCs for
determining significant fibrosis, advanced fibrosis, and cirrho-
sis of 0.74, 0.76, and 0.73, respectively. Instead of cropped
patches, Choi et al [8] developed a liver fibrosis staging CNN
by using the segmented liver and evaluated the CNN with a
multicenter test dataset consisting of 6670 patients. The AUCs
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Fig.4 a Shown are location maps
overlaid on axial computed
tomography images of the upper
abdomen at different levels in
patients without liver fibrosis
(stage FO). The liver surface is
highlighted in these location
maps, which indicates that
information exploited from the
liver surface contributed to the
convolutional neural network's
prediction of FO liver fibrosis. b
Shown are location maps overlaid
on axial computed tomography
images of the upper abdomen at
different levels in patients with
cirthosis (stage F4). The liver
parenchyma and spleen are
highlighted in these location
maps, which indicates that
information exploited from the
liver parenchyma and spleen
contributed to the convolutional
neural network’s prediction of F4
liver fibrosis (cirrhosis)

2.0 A

1.5 8

1.0 A
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0.5 4

0.0 -

Fibrosis stage 0 Cirrhosis
The liver fibrosis stage predicted by LFS network

Weights assigned by LFS network in liver region on location maps

Fig.5 Distribution of mean weights assigned by the liver fibrosis staging
(LFS) network in the liver parenchyma on the location maps. The weights
represent the importance of the liver parenchyma on CT for the LFS
network when making diagnostic decisions. The two groups are divided
according to the liver fibrosis stage predicted by the LFS network

for diagnosing significant fibrosis, advanced fibrosis, and cir-
rhosis reached 0.96, 0.97, and 0.95, respectively [8].
Although deep learning methods have been shown to be
able to stage liver fibrosis based on CT images in both studies,
it is still unknown which part of the CT image is used by the
neural network for liver fibrosis staging. Also, it is unclear
whether the available information outside the liver in the up-
per abdomen contributes to the diagnostic decisions made by
the neural network. Location maps illustrating the spatial in-
formation of the areas contributing to the fibrosis stage pre-
diction can provide further explanation of the diagnostic deci-
sions made by the neural network. In the current study, we
observed that the neural network focused not only on liver
parenchyma but also on other information available on CT
scans of the upper abdomen when predicting liver fibrosis
stages, such as information derived from the liver and spleen.
When the network decided that it concerned a healthy liver,
the corresponding location map showed that the network
strongly focused on the liver surface instead of liver parenchy-
ma, while in the case of cirrhosis (F4 liver fibrosis), the
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network paid more attention to the central parts of the liver
parenchyma and spleen. The box plot of weights assigned by
the LFS network in liver parenchyma for FO and F4 further
supports our observations. Therefore, we believe the neural
network should be trained on CT slices including the complete
upper abdomen, instead of CT images including only the seg-
mented liver. From a clinical point of view, it seems logical
that in the case of cirrhosis the neural network focuses both on
the liver and spleen, because both organs undergo morpholog-
ic changes when cirrhosis develops (i.e., fibrotic changes in
the liver parenchyma, increased nodularity of the liver,
splenomegaly, and splenic siderotic nodules) [20-22]. To
our knowledge, this is the first study giving more insight into
decisions taken by deep learning techniques when staging
liver fibrosis.

Knowing that the neural network uses information of the
liver surface, liver parenchyma, and spleen on CT images
when staging liver fibrosis, improves the transparency and
interpretability of the network’s prediction of liver fibrosis
stages. The location maps can also be used as quality control
of the network’s fibrosis stage prediction. For example, phy-
sicians can reconsider the network’s prediction of liver fibro-
sis stages when the location maps show an abnormal pattern or
when these maps focus on regions not considered to be related
to liver fibrosis. Besides, it further underlines that extrahepatic
signs of liver fibrosis should be taken into consideration both
in clinical practice and when developing liver fibrosis staging
software.

Our study had some limitations. First, the training dataset
in our study was relatively small. Because deep learning
methods are data-driven, diagnostic accuracy and stability of
location maps highly depend on the variety and volume of the
training set. Therefore, our results should be confirmed in
larger (multicenter) studies. Second, the datasets of different
fibrosis stages were imbalanced, due to the fact that patients
with stage 1 or 2 liver fibrosis generally do not undergo liver
biopsy, and thus lack a reliable reference standard. This was
also observed in the studies of Yasaka et al [9, 10] and Choi
et al [8]. Finally, often, only the upper part of the abdomen
was available at the CT images, related to the indication for
the CT scan. Perhaps, CT images of the entire abdomen could
provide more information, thereby potentially improving deep
learning performance. This should be the topic of further
research.

In conclusion, the neural network for liver fibrosis staging
exploits CT-based information from the liver surface, liver
parenchyma, and spleen. Using the entire upper abdomen in-
stead of the segmented liver improves the development of
liver fibrosis staging algorithms. In addition, the application
of Grad-cam increases transparency, and thereby reliability, of
the liver fibrosis staging neural network by offering a visual
explanation of information used by the network. Our results
might also serve as a roadmap to unravel the black box
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principle of artificial intelligence in image analysis tasks in
other medical fields.
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