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Abstract

The circadian system regulates behavior and physiology in many ways important for health. 

Circadian rhythms are expressed by nearly every cell in the body, and this large system is 

coordinated by a central clock in the suprachiasmatic nucleus (SCN). Sex differences in daily 

rhythms are evident in humans and understanding how circadian function is modulated by 

biological sex is an important goal. This review highlights work examining effects of sex and 

gonadal hormones on daily rhythms, with a focus on behavior and SCN circuitry in animal models 

commonly used in pre-clinical studies. Many questions remain in this area of the field, which 

would benefit from further work investigating this topic.
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1. Introduction

Daily rhythms coordinate behavior and physiology to anticipate predictable changes in the 

environment. In nearly all cells of the body, a set of molecular gears counts down the 

hours of the day, programming ca. 24 h rhythms in gene expression and cellular physiology 

dictated according to the specialized functions of each tissue(124). This diverse system of 

biological clocks is coordinated by a central clock in the suprachiasmatic nucleus (SCN) of 

the hypothalamus. The SCN receives direct input from the retina and entrains the circadian 

system to the external 24 h solar day — a critical function without which the organism is 

poorly matched to environmental demands.

A wide range of studies indicates that biological sex interacts with circadian mechanisms in 

important ways relevant for human health. For example, sex differences in sleep amount and 

timing are well-recognized in humans and animal models (109). In particular, women tend to 

be “early birds” and have faster internal clocks relative to men (23, 39, 49). Beyond sleep, 

biological sex modulates daily rhythms in other critical processes, including hormonal, 
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metabolic, and cellular rhythms (11, 29, 34, 63, 151, 160). Daily rhythms are also modulated 

by reproductive state and gonadal steroids (15, 89), suggesting that hormones influence 

circadian processes. This area of work has significance from a women’s health perspective 

given circadian regulation of female reproduction (80, 106). Indeed, circadian disruption can 

reduce fecundity (84, 95) and cause other negative effects that differ by sex (7, 130, 139, 

153). Further work investigating sex differences in clock function is needed and may shed 

light on gender disparities in diseases involving circadian timekeeping (92, 94, 102).

In general, there are at least two approaches to study sex differences: 1) study mechanisms 

in both sexes and 2) manipulate gonadal hormones to evaluate resulting changes in behavior, 

physiology and/or cellular function (99). Classic circadian studies using the second approach 

have established that daily rhythms are modulated by activational and organizational effects 

of gonadal steroids (11, 61, 81, 120). Activational effects are tested in adulthood using 

gonadectomy and hormone replacement, whereas organizational effects are more permanent 

changes caused by exposure to sex steroids during critical developmental periods. Sex 

differences can also be driven by non-hormonal mechanisms, such as sex chromosomes, 

which can be studied in mice using the four core genotypes model (99). Sex differences 

in behavior often motivate further research, but lack of behavioral dimorphism does not 

preclude sex differences in cellular function (38). Indeed, there is growing awareness that 

differences in cellular mechanisms may provide convergence of function under the different 

hormonal and genetic conditions present in each sex.

There is a long-standing interest in sex differences in circadian rhythms (11, 61, 81, 120), 

but many questions remain because very few circadian studies include females (83, 87). 

Recent metaanalyses indicate that females are not more variable than males in neuroscience 

studies using rats and mice (12, 128), supporting the call for greater inclusion of female 

subjects. Here we review current understanding of sex differences in circadian timekeeping. 

We first introduce basic principles by defining key concepts in the field and describe the 

neurobiological basis of circadian rhythms. Next, we discuss interactions between circadian 

and reproductive function, followed by a review of work examining effects of sex and 

gonadal hormones on circadian rhythms. We focus here on sex differences in behavioral 

rhythms and SCN circuits in animal models commonly used in pre-clinical studies. We 

conclude with general inferences that can be drawn from this work and considerations for 

future studies in this area.

2. Formal and cellular basis of circadian rhythms

Circadian rhythms can be defined by several parameters, including period, precision, phase, 

amplitude, and waveform (Figure 1A–B). Daily time cues can entrain a circadian rhythm 

by resetting its phase and/or modulating its period (Figure1C). Period is the duration of one 

full cycle, typically quantified under free-running conditions devoid of exogenous time cues. 

Rhythm precision can be measured by the standard deviation of period length over multiple 

cycles. Phase is one specific timepoint in the rhythm (e.g., onset of locomotor activity), 

amplitude is the magnitude of change across one cycle, and waveform describes the shape 

of the rhythm. A phase shift describes the size and direction by which an external stimulus 

resets a rhythm, either shifting it later (phase delay) or earlier (phase advance) on subsequent 
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cycles. Although changes in phase are most well studied, the amplitude, waveform, and 

period of a rhythm can also be altered by external stimuli in a phase-dependent manner. 

Phase angle of entrainment describes the difference between the phase of an endogenous 

rhythm and that of the entraining stimulus. Lastly, limits of entrainment are the range of 

external periods to which the rhythm can be entrained (e.g., 22-26 h). Due to its critical role 

in dictating overt rhythms, many rhythmic parameters are thought to reflect SCN function, 

but may also be influenced by the properties of other clock tissues.

The circadian system is often depicted using a 3-part model (Figure2A). Central to this 

model is a “clock” that displays self-sustained circadian rhythms, receives inputs, and sends 

outputs to effector systems. Over the last few decades, this model has expanded to include 

a multitude of cellular clocks regulated by the central clock in the SCN (108). Cellular 

circadian rhythms are coordinated by transcriptional-translational feedback loops (TTFLs) 

that modulate gene and protein expression across the day (124). In mammals, the core TTFL 

is a negative feedback loop involving activation of repressive elements PERIOD (PER) and 

CRYPTOCHROME (CRY) by the transcription factors CLOCK and BMAL1 (Figure2B). 

During the repressive phase, PER and CRY feedback to inhibit their own transcription by 

interfering with CLOCK: BMAL1-mediated transcription. As PER and CRY are degraded, 

the repressive phase ends and active CLOCK-BMAL transcription resumes the next day. 

Additional molecular loops regulate the precision, robustness, and amplitude of core clock 

gene expression (Figure2B). In addition, clock gene expression can be regulated by other 

elements in response to extrinsic signals (e.g., cAMP response element). Lastly, there are 

numerous “clock-controlled genes” regulated by the molecular clock, which is estimated to 

be 40-60% of protein-coding genes expressed across all tissues in the body (121, 169).

For optimal circadian timekeeping, SCN neurons interact as a network and provide time of 

day cues to cellular and tissue clocks (9, 43). In addition to clock gene expression, many 

cellular processes fluctuate over the day in SCN neurons (60), including daily rhythms 

in membrane potential, with highest firing during the day (21, 31). Daily rhythms in 

electrical activity reflect not only the influence of the molecular clock, but also cytosolic 

rhythms that interact with the TTFL to regulate cellular physiology (122, 158). Nearly 

all SCN neurons produce γ-aminobutyric acid (GABA), but different neuronal classes can 

be distinguished based on peptide expression (Figure 2C). The SCN is often divided into 

two compartments: the shell and the core (9, 43). Among other cell types, the SCN shell 

contains a dense population of arginine vasopressin (AVP) neurons, and the SCN core 

contains vasoactive intestinal polypeptide (VIP) and gastrin releasing peptide (GRP) neurons 

(Figure 2C). Intercellular communication among SCN neurons is critical for maintaining 

network function and ensuring coherent output signals can coordinate rhythms at the overt 

level. For instance, isolated SCN neurons display different periods but coupled SCN cells 

coordinate to adopt a common speed. Further, cellular rhythms in the SCN network are 

more precise and robust than in isolated SCN neurons, which ensures daily rhythms are 

stable from cycle to cycle. Finally, SCN neurons adopt specific phase relationships with one 

another that encode salient features of the environment, such as seasonal changes in day 

length (33, 46). The SCN network transmits time of day cues to downstream tissues through 

synaptic projections and paracrine release of humoral signals (Figure2D). In addition, the 

SCN controls behavioral and physiological rhythms (e.g., body temperature, glucocorticoids, 
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and melatonin) that can serve as entraining signals for downstream tissues. Finally, the 

SCN expresses melatonin and sex steroid receptors (11), suggesting that these signals can 

modulate its function.

In addition, the SCN processes extrinsic time cues to synchronize the circadian system to 

the 24 h day. Light is the principle entraining cue for the SCN, and photic stimuli are 

conveyed directly from melanopsin-expressing intrinsically photosensitive retinal ganglion 

cells (ipRGCs) that release glutamate, GABA, and PACAP (10) via the retinohypothalamic 

tract (RHT). Photic stimuli induce phase shifts during subjective night, causing phase delays 

during early night and phase advances during late night (Figure 1C). SCN neurons respond 

to photic inputs with tonic/phasic excitation or inhibition as well as increased expression 

of immediate early genes (e.g., cFos) and Period through calcium-dependent signaling 

pathways (31). Tract tracing studies indicate there is a denser retinal projection to the SCN 

core than the SCN shell (3, 91), which maps onto findings that light-activated changes in 

gene expression in the SCN core precede those in the SCN shell (36, 116, 166, 167). Like 

regional patterning of photic inputs, the SCN core also receives dense inputs from the raphe 

nuclei and the intergeniculate leaflet (via the geniculohypothalamic tract, GHT). Thus, it 

is hypothesized that SCN core neurons process inputs, which are relayed to neurons in the 

SCN shell.

3. Interactions between circadian and reproductive function in females

The circadian system plays a critical role in female reproduction by timing ovulation to 

coincide with behavioral receptivity (14, 80, 106). In spontaneously ovulating mammals, 

reproductive rhythms occur with a circadian harmonic and require an intact SCN (50, 146). 

In most laboratory rodent species, the estrous cycle is a 4-5 day rhythm with four stages: 

metestrus, diestrus, proestrus, and estrus (Figure3A), with cyclical changes in reproductive 

hormones and vaginal cytology (4, 101). During metestrus, estradiol levels are low but 

slowly increasing due to growth of the ovarian follicle. Follicular growth and estradiol 

release increases through diestrus. On the afternoon of proestrus, high estradiol levels 

positively feedback to increase hypothalamic release of gonadotropin-releasing hormone 

(GnRH), which induces a surge in luteinizing hormone (LH) from the anterior pituitary to 

stimulate ovulation. The LH surge is eliminated by ovariectomy in adulthood demonstrating 

that it is dependent on activational effects of ovarian hormones. The LH surge is also 

sexually dimorphic (i.e., absent in male rodents of many laboratory species) due to 

organizational effects of gonadal hormones during development that are eliminated by 

postnatal castration of males or perinatal testosterone administration in females. In addition, 

the SCN provides a neural signal that causes the LH surge to specifically occur before 

the active phase of the circadian cycle. The SCN provides this signal every day, but it is 

only effective at stimulating GnRH release when it coincides with high estradiol levels. As 

such, the LH surge occurs daily in females given estradiol implants that mimic proestrus 

levels (106). The SCN signal is transmitted through multiple pathways that modulate GnRH 

release either directly or indirectly (14, 80, 106). SCN AVP- and VIP-ergic inputs to 

regions controlling reproduction display sexually dimorphic patterns of innervation (68, 

134). Reflecting this regulation, changes in the state of the circadian system can impact 

reproduction (84, 95, 133, 165).
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In turn, female reproductive cycles modulate daily rhythms, with changes in both the levels 

and phase of locomotor activity observed in multiple mammalian species (81). In hamsters, 

activity onsets exhibit a well-defined “scalloping” pattern, with an earlier phase angle of 

entrainment, higher levels, and/or more consolidated activity on proestrus and estrus (113, 

150, 172). Rats also exhibit higher levels of activity levels on estrus along with advanced 

phase angle of entrainment, increased activity duration, and a more consolidated active 

phase (6, 164). Likewise, female degus display increased activity levels and a 5 h advance 

of activity onset on the day of estrus(85). Estrus can modulate daily rhythms in mice 

(Figure3B), but reports of estrus effects are more varied in this species, with increased 

activity on proestrus (78, 127), overall more activity in females than males (17), or no 

difference by sex or estrous phase (83, 123). Discrepancies across studies may reflect 

differences in mouse strain, diet composition, and/or housing conditions, such as access 

to a running wheel (78, 104). Further, estrous modulation of activity rhythms can interact 

with photoperiod and entrainment history (129, 162). Additional studies are needed to 

evaluate whether estrous modulation of activity rhythms reflects changes in the period, 

organization, and/or photic responses of the central SCN clock versus properties of other 

tissues regulating locomotor activity.

4. Effects of sex and hormones on behavioral timekeeping

Sex differences have been reported in many circadian parameters, including period, 

precision, waveform, and levels of activity. Where possible, we discuss activational and 

organizational effects of gonadal hormones on behavioral rhythms below, though the loci 

of these effects remain unclear because steroid receptors are present in many tissues of the 

circadian system (11). In addition, sex chromosomes can influence circadian rhythms in 

mice (83).

4.1 Period

In general, sex differences in circadian period are modest in size and variable in direction 

across species. The largest sex difference in circadian period is seen in the diurnal degu, 

where adult females display free-running rhythms that are 18-36 min longer than adult males 

(59, 70). In hamsters and rats, the direction of sex difference is reversed, with females 

displaying 2-30 min shorter free-running rhythms relative to males (37, 58, 140). In contrast, 

most studies using mice have found that circadian period is similar in females and males (17, 

20, 71, 83), although period is 6-30 min shorter in female mice in some studies (47).

Most rodent species display changes in circadian period when gonadal hormones are 

manipulated in adulthood. Ovariectomy can increase period length in hamsters and rats 

(152, 172), although this effect may depend on the presence of a running wheel (138). 

After ovariectomy, estradiol replacement shortens free-running period by 10-20 min in 

female hamsters, rats, and mice (5, 113, 137, 150, 172). In ovariectomized female mice, 

the period-shortening effects of estradiol can be mimicked by agonists for both the estrogen 

receptor subtype 1 (ESR1) and estrogen receptor subtype 2 (ESR2), with ESR1 agonists 

effective at lower doses (137). In contrast, progesterone alone does not alter circadian 

period, but it effectively blocks the effects of estradiol in ovariectomized hamsters (113, 
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150) Progesterone interference may be important under physiological conditions because 

period shortening effects of estradiol can persist for 20-65 days after implant removal in 

hamsters (113). In contrast, activational effects of androgens do not influence period in 

hamsters, rats, degus, or voles (73, 100, 111, 136). In mice, castration lengthens period by 

12-34 min, which can be at least partially restored by testosterone replacement (20, 22, 35, 

77, 107). However, individual responses are variable and period lengthening after castration 

is not universally observed across studies (141). Subsequent work suggests that the effect 

of castration and exogenous androgens on period in mice is dependent on dim red light 

exposure during free-running conditions (22). Lastly, gonadectomy and exogenous hormone 

exposure does not alter period in adult male or female degus (70, 85, 88), indicating that 

the sex difference in period does not require activational effects of gonadal hormones in this 

species.

Consistent with classic organizational effects, female hamsters and rats treated with perinatal 

testosterone do not shorten period in response to estradiol administration in adulthood (5, 

172). Further, estradiol shortens period in adult male hamsters castrated at birth (172). 

Interestingly, this study also found that very few male hamsters castrated at birth exhibited 

sustained, stable free-running rhythms in adulthood regardless of androgen replacement. 

In addition, blocking organizational effects of estradiol with aromatase knockout lengthens 

period in both male and female mice (20). Circadian period is lengthened in male mice 

by non-classical estrogen receptor knock-in (17), which abolishes genomic effects of ESR1 

signaling, but preserves ESR2 and non-genomic effects of ERS1. Lastly, castration prior 

to puberty prevents age-associated shortening of period in adult male degus (70, 88), 

suggesting that organizational effects at puberty cause sex differences that manifest later 

in life in this species.

4.2 Precision

Relative to males, females tend to have less precise activity rhythms due to estrous-related 

changes in phase and activity levels in mice, hamsters, and rats (81). Female rats exhibit less 

stable, lower amplitude rhythms, largely driven by higher daytime activity relative to males 

(24). However, variability of locomotor activity and core body temperature across the day 

is larger in male BALB/c mice (145). Castration decreases precision of activity rhythms in 

male hamsters, which is restored by testosterone administration (111). In male and female 

mice, gonadectomy decreases precision, which is increased by androgen exposure in both 

sexes (22, 71). Taken together, these findings suggest that activational effects of gonadal 

hormones influence rhythm precision, which may reflect modulation of interactions between 

circadian and sleep/wake centers in the brain.

4.3 Locomotor Activity Levels

Higher activity levels are reported in female hamsters, rats, mice, and gerbils (17, 20, 40, 

71, 135, 140, 147). However, this finding is not observed in mice given running wheels 

(83), which may reflect important sex differences in motivational and/or motor circuits that 

influence wheel running. Gonadectomy reduces activity levels in both sexes in most rodent 

models, which can be restored at least partially with androgen or estradiol replacement 

(5, 20, 22, 35, 42, 71, 74, 83, 85, 111, 113, 150). Testosterone and the non-aromatizable 
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dihydrotestosterone (DHT) will at least partially restore activity levels in adult mice of 

both sexes (5, 71), indicating a key role for androgen signaling. Estrogen signaling also 

modulates activity levels in male and female mice through multiple mechanisms involving 

both ERS1 and ERS2 (17, 18, 123). Lastly, progesterone administration decreases activity 

levels in hamsters and degus (85, 150), complementing its antagonistic effects on circadian 

period. In addition to modulating activity levels over the estrus cycle, this action of 

progesterone may also serve to suppress activity levels during pregnancy and lactation.

4.4 Waveform

Although not examined as frequently as other circadian parameters, sex differences in the 

waveform or distribution of activity have been reported in studies using rats, gerbils, degus, 

and mice. In one early study conducted in rats, sex differences in activity waveform were 

mentioned, but were not quantified due to variation in activity levels over the estrous cycle 

(140). In another study, female gerbils were found to be more nocturnal compared to male 

gerbils due to more daytime activity in males (135). In rats and degus, sex differences 

in activity distribution emerge after puberty (58, 59), with a switch from crepuscular to 

a more diurnal pattern of activity in male but not female degus (59). A delay in activity 

onset also occurs at puberty in both male and female degus, suggesting that distribution of 

activity is modulated by gonadal steroids, with either both sexes responding to the same 

steroid or convergent responses to different steroids. In rats, there is also a post-pubertal 

switch from bimodality to a more unimodal activity rhythm, which manifests in females 4-7 

days earlier (58). As in other circadian parameters, studies examining activity waveform in 

mice vary in whether sex differences are evident. Activity duration has been found to be 

longer in female mice than in male mice in some studies (83, 147), but not others (17). 

The reasons for this discrepancy are unclear, but it could reflect difficulty in measuring sex 

differences in circadian waveform using average activity profiles given estrus-modulation 

and individual differences in the timing of the nocturnal “siesta” (Figure3B). Although 

activity waveform can be difficult to quantify, it remains an important parameter because 

it may reflect differences in neural circuits regulating circadian timekeeping, wakefulness/

sleep, and/or the interaction of these systems.

Activational effects of gonadal hormones modulate activity waveform in a variety of 

species. In female ovariectomized hamsters held under constant darkness, estradiol increases 

activity levels specifically during early subjective night (113), suggesting an interaction 

with timekeeping mechanisms in circadian, motivational and/or motor circuits. Castration of 

male hamsters causes activity rhythms to become more fragmented, with the appearance of 

more activity bouts < 6 min, which is reversed by testosterone replacement (111). In mice, 

castration can alter activity waveform, but ovariectomy does not (20, 71). After castration, 

activity rhythms in male mice often become more bimodal (22, 35, 71, 77, 107), but 

the effect on activity duration varies across studies — either becoming longer or shorter 

depending on the relative intensity of each activity bout. Activational effects of androgen 

signaling are indicated by studies finding that castration-induced changes in waveform are 

fully reversed by high doses of testosterone, with partial or full restoration with DHT 

administration (22, 35, 71, 77). In contrast to peripheral administration, bimodal rhythms 

may persist when testosterone capsules are implanted directly into the brain (107), although 
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activity waveform was not directly examined in this study. Thus, it remains unknown 

whether the effects of androgen signaling on activity waveform reflect changes in the SCN, 

other central circuits, or peripheral tissues.

Sex differences in activity waveform may also reflect organizational and non-hormonal 

mechanisms. For instance, gonadectomy in adulthood does not fully eliminate the sex 

difference in activity distribution that emerges after puberty in rats and degus (58, 59). 

Gonadectomy prior to puberty will eliminate the sex difference in activity offset in male 

degus; however, differences in circulating hormones cannot fully account for this effect 

given that it emerges many months after puberty (70). Interestingly, activity duration is 

longer in XX mice regardless of gonadal sex (83), which was the circadian parameter most 

strongly modulated by sex chromosome in this study. This finding is consistent with work 

demonstrating that sex differences in activity duration persist after reproductive senescence 

in female mice (147). Although many studies suggest potent effects of androgen signaling 

on activity waveform in mice (22, 35, 71, 77), effects of estrogen signaling cannot be 

discounted given that ESR1 deletion causes activity rhythms to become more bimodal in 

both male and female mice (17).

5. Effects of sex and hormones on circadian responses to inputs

Entrainment is the process by which the internal rhythm is adjusted to match the 

environmental cycle by an external stimulus (e.g., zeitgeber). Daily rhythms can be adjusted 

by many types of stimuli, although light is the principal stimulus for the SCN and the 

one for which the most is known. However, a recent metanalysis found that fewer than 

7% of behavioral studies on circadian responses to light included females (87). Below we 

review sex differences in three main types of responses to external stimuli: changes in phase, 

period, and waveform. Our discussion largely focuses on responses to photic stimuli, though 

sex differences in non-photic responses are also discussed.

5.1 Light-induced changes in phase

Changes in phase occur in response to a stimulus pulse delivered under otherwise constant 

conditions (e.g., a bright light pulse in constant darkness), which is often referred to as 

non-parametric response. The magnitude and direction by which the rhythm is reset is 

time-dependent and typically illustrated by a phase response curve (PRC, Figure4A). Daily 

resetting can correct the discrepancy between the internal and external period to promote 

entrainment. In fact, the period and PRC of a species can be used to predict the phase 

angle of entrainment, limits of entrainment, and latency to jetlag recovery. Further, daily 

application of two short pulses of light at dusk and dawn is sufficient for entrainment of 

nocturnal mammals under a wide variety of circumstances (Figure4B). However, this type of 

skeleton photoperiod is insufficient to maintain stable entrainment under simulated long day 

lengths (Figure4B), suggesting that full photophases are necessary in some circumstances.

The general shape of the photic PRC is similar in males and females, but sex differences 

in the magnitude of photic resetting have been reported in mice and hamsters. Relative to 

males, female hamsters exhibit 30 min smaller phase delays to light pulses delivered at 

CT12-14 (37). In mice, the sex difference is reversed, with females displaying larger phase 
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delays (19, 20). Ovariectomy reduces phase delays and potentiates phase advances in female 

wild-type mice, but not mice lacking aromatase (20). Similarly, ESR1 knockout also reduces 

phase delays and potentiates phase advances in female mice (19). Lastly, a primary role of 

circulating ovarian hormones in modulating photic resetting is supported by results using 

the four core genotype model (83). Gonadal females displayed larger phase delays than 

gonadal males regardless of chromosomal complement, although phase delays were greatest 

in XX mice with ovaries. Activational effects of circulating androgens also modulate photic 

resetting, although the results vary by study. In one study, castration reduced both phase 

advances and delays in wild-type mice, with reduced phase advances in aromatase knockout 

mice (20). In another study the opposite effects was observed; castration increased phase 

delays in male wild-type mice, which was restored by DHT administration (76).

Sex differences in photic resetting correspond with differences in entrainment between 

males and females. In hamsters, the sex difference in photic resetting is consistent with the 

advanced phase angle of entrainment in females and their reduced capacity to entrain to 

cycles longer than 24 h (37). However, the phase of activity onset after release into constant 

conditions does not differ by sex or estrous phase (37), suggesting that the sex difference in 

phase angle of entrainment is caused by a sex difference in the acute response to light (i..e, 

masking response). In addition, adult ovariectomy of female hamsters eliminates the sex 

difference in the phase angle of entrainment, which was restored by estradiol administration 

(113). Further, perinatal testosterone administration to female hamsters abolishes the sex 

difference in phase angle of entrainment (113), indicating that both activational and 

organizational effects of gonadal hormones modulate photic processing in hamsters. In 

mice, phase angle of entrainment does not differ by sex (19, 20, 83), at least not until 

after 24 weeks of age (147). Nevertheless, jetlag recovery is faster in female mice than 

males when eastward travel is simulated (47, 132). Jetlag recovery is faster in female mice 

shifted on the day of proestrus compared to males and females in metestrus, and accelerated 

re-entrainment is mimicked by estradiol treatment (126). Although the cellular mechanisms 

by which estrogen signaling modulates photic resetting and jetlag recovery remain unclear, 

it has been suggested that an ESR1-independent mechanism modulates phase angle and 

photic resetting in mice (16, 18, 137). Collectively these data suggest that activational 

and organizational effects of gonadal hormones modulate photic processing, although these 

results may also reflect a sex difference in pacemaker interactions with sleep/wake circuits 

and/or peripheral tissues (34, 47, 126, 150).

5.2 Light-induced changes in period and waveform

Changes in period can occur in response to longer stimulus exposure (e.g., constant light), 

which is often referred to as a parametric response. In nocturnal rodents, exposure to 

constant bright light lengthens period, suppresses activity levels (i.e., negative masking), and 

can disrupt consolidation of activity rhythms such that they become bimodal or ultradian 

(46). Although the neurobiological bases of parametric responses remain unclear, these are 

relevant for stable entrainment to long day photoperiods (Figure4B) and entrainment in 

diurnal species such as humans.
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Sex differences in parametric responses to light have been reported in hamsters, rats, 

and mice. Gonadectomized hamsters displayed sex differences in the emergence of split 

rhythms under constant light, with ovariectomized females displaying more rapid rhythm 

disturbance that does not resolve into two stable components like in castrated males 

(112). Estradiol administration after ovariectomy prevents constant-light-induced rhythm 

disturbances in female hamsters (110), suggesting that estradiol increases the robustness 

of circadian rhythms in female hamsters. Progesterone does not produce a similar effect 

(110), nor does manipulation of testicular hormones in male hamsters (112). Similarly, male 

rats exhibited a higher coherence of rhythms under constant light, and females exhibited 

longer latency to reconsolidate rhythms after release into constant darkness (24). Further, 

the strength of circadian rhythms under constant light was decreased after ovariectomy in 

adult female rats, which was prevented by estradiol treatment (152). In addition, exposing 

rat pups to constant light during lactation prevents constant-light-induced arrythmia in 

adulthood (26). The protective effects of constant light during lactation is greater in female 

rats, suggesting that perinatal light conditions can re-wire circadian circuits in a sexually 

dimorphic manner. Relative to males, constant light lengthens period more in female mice, 

and ESR1 knockout attenuates the period lengthening effect in both sexes (17). Lastly, 

castration lengthens period of male mice exposed to constant dim light, which is blocked 

by testosterone administration (22). Collectively, these results suggest that estrogens and 

androgens modulate parametric responses to constant light in a species-specific manner, but 

the exact cellular mechanisms remain unclear.

Dim nighttime illumination can increase the plasticity of circadian entrainment under exotic 

lighting conditions in a manner influenced by sex. Under 24 h light:dark:light:dark cycles, 

hamsters and mice will adopt bimodal activity rhythms when the two daily scotophases are 

dimly lit (53). Bifurcated activity rhythms under these conditions correspond to bimodal 

markers of subjective day and night (52, 53) and transients after release into constant 

conditions (44), indicating that this is bona fide entrainment rather than masking. Under 

these conditions, female mice exhibit more symmetric bifurcated entrainment that can be 

induced at a lower critical photophase duration (157). Further, symmetry of bifurcated 

entrainment decreases in male mice with age, but older females retain high levels of 

symmetry (157). Females also display stronger entrainment under non-24 h photoperiods 

(156). Lastly, there is evidence to suggest that there are sex differences in behavioral and 

physiological responsiveness to seasonal changes in day length (13, 45, 161), which may 

have relevance for understanding gender disparities in seasonal disease in humans (92, 94, 

102). Given the importance of photo-entrainment for circadian function, the cellular basis of 

sex differences in photic responses warrant further investigation.

5.3 Non-photic responses

Non-photic stimuli include food, melatonin, locomotor activity, and social cues (28). 

Nonphotic cues typically induce phase advances during subjective daytime and phase delays 

during subjective night (Figure4A), which is associated with downregulation of SCN gene 

expression (32, 98, 103). The response to non-photic cues interacts with estrous in hamsters; 

novelty-induced wheel-running delays the estrous cycle by 1 day when the stimulus is 

presented on the afternoon of proestrus (168). Further, the resetting response to a novel 
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wheel is smaller on the day of estrus (168). In addition, the response to time restricted 

food access differs by sex in mice (69, 105), with lower levels of food-anticipatory activity 

displayed by females. This suggests that there are sex differences in circadian responses to 

food cues, which may be important to consider in studies evaluating the positive effects of 

time-restricted eating (27). Lastly, social cues can accelerate recovery to simulated jetlag in 

degus, with sex and gonadal hormones modulating this effect (51, 72, 75).

6. Effects of sex and hormones on SCN structure and cellular function

In most studies, the gross anatomy of the SCN is similar in males and females, but sex 

differences in general SCN morphology have been reported. In humans, SCN volume does 

not differ by sex (64, 65, 148), although it is 14% smaller in men when measurements 

are adjusted for brain size (64). Likewise, overall cell number, cell density and cellular 

diameter does not differ by sex in humans (64). However, a sex difference has been found 

in the shape of the human SCN, with the anteroposterior axis 40% longer in women and 

the mediolateral axis 35% more spherical in men (64, 66, 148). The functional significance 

of a sex difference in SCN shape is unclear, although it has been speculated that this could 

reflect sex differences in subregional SCN organization. As in humans, SCN volume and cell 

number does not differ by sex in most studies using rat models (25, 65, 93, 154). However, 

SCN volume was found to be 26% larger in males in one study using rats (131) and up 

to 45% larger in two studies using gerbils (30, 67). The sex difference in SCN volume 

in gerbils was eliminated by perinatal castration due to a 62% reduction in males (67). 

Although there do not appear to be overall sex differences in the number of SCN neurons, 

the developmental patterns of neurogenesis in the middle and caudal SCN differs by sex in 

rats, with lower numbers in males due to organizational effects of gonadal hormones (2). 

In addition, the number of SCN neurons in the ventrolateral core was reported to be lower 

in males rats (154), although age was not strictly controlled in this study. Sex differences 

in cellular morphology have also been reported, with larger mean area and nucleoli of SCN 

neurons in female rats (8, 55). Further, increased neuronal area in female rats is blocked by 

prepubertal ovariectomy (114, 115), suggesting that gonadal hormones at puberty can alter 

SCN organization and function.

Other morphological measures indicate SCN circuits differ by sex and gonadal status in 

rodents. Male rats have a greater number of SCN synapses due to organizational effects 

of gonadal hormones (86), although perinatal androgen administration markedly disrupted 

female SCN development in this study. Similarly, it has been reported that male rats 

display a larger number of axo-somatic, axo-spinal, and asymmetric synapses with more 

post-synaptic density material relative to females (56, 57). These studies suggest that there 

are sex differences in SCN signaling, but the exact type and origin of synapses evaluated in 

these studies is not clear. Further, samples did not always derive from the same region of the 

SCN, making it difficult to draw rigorous conclusions. Sex differences in SCN organization 

have also been inferred from GFAP staining, with lower levels in male gerbils and rats 

(25, 30, 55, 154). In mice, SCN GFAP expression is increased by castration and reduced 

by DHT administration, with opposite effects on synaptophysin and PSD95 levels (76). 

Activational effects of ovarian hormones may also modulate SCN circuits, with estradiol 
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injections increasing connexin-36 and connexin-32 levels in the SCN of female rats (142, 

143).

Activational and organizational effects of gonadal hormones on SCN organization may 

reflect local signaling of sex steroids or actions in tissues afferent to the SCN (11). 

Androgen, estrogen, and progesterone receptors are expressed in the human SCN, with 

higher levels of androgen receptors in men and higher levels of ESR1 in women (48, 82). 

Both androgen and estrogen receptors are expressed in the SCN of mice, rats, and degus, 

often with sex differences in levels (41, 71, 83, 88, 144, 155, 163). It is noteworthy that SCN 

sex steroid receptor expression tends to be sex-specific in a manner aligned with gonadal 

output, likely magnifying effects of sex steroid signaling under physiological conditions. In 

male mice, androgen receptors are expressed constitutively across the day, with the highest 

levels in SCN GRP neurons, modest expression in VIP neurons, and very little expression in 

AVP neurons (77). Similarly, AVP neurons do not express androgen receptors in the rat SCN 

(171). In contrast, ESR1 and ESR2 are highest in the SCN shell of mice, with highest co-

expression in neurons positive for calretinin or calbindin (155). SCN androgen and estrogen 

receptors are modulated by activational effects of gonadal hormones. Specifically, SCN 

androgen receptor levels are reduced by castration and elevated by androgen administration 

in both males and females (22, 71, 77, 83, 107). Androgen receptor expression in the SCN 

is most influenced by gonadal sex, but XX mice with ovaries display the lowest levels (83). 

In gonadectomized mice, estradiol decreases ESR2 expression in the SCN of both female 

and male mice but does not influence ESR1 expression (155). In addition, there is a diurnal 

rhythm of ESR2 expression in the SCN of female rats that peaks at dawn and is reduced in 

magnitude at 19-24 month of age (163). Thus, androgen and estrogen receptors in the SCN 

differ in both the spatial and temporal patterns of expression, but modulation by gonadal 

hormones appears to be retained in both sexes in adulthood despite sex-specific behavioral 

responses to hormone administration.

In addition, sex differences in SCN neurochemistry are reported in humans and rodent 

models. Men have twice the number of VIP neurons over 10-40 years of age; however, this 

sex difference reverses at older ages (149, 170). In contrast, the number of AVP neurons 

in the SCN does not differ by sex in humans (66, 148). In nocturnal and diurnal rats, sex 

also modulates SCN expression of VIP, but not AVP (54, 79, 96). In whole hypothalamic 

punches, higher Vip levels were detected in female rats compared to males (54). This may 

reflect a sex difference in the rhythm of SCN Vip expression, with an 8-9 h difference in 

peak time and higher daytime levels in the female SCN of both nocturnal and diurnal rats 

(79, 96). There also appears to be a sex difference in the phase of expression for the VIP 

receptor Vipr2 in the SCN of diurnal grass rats (96). Activational and organizational effects 

of gonadal hormones modulate VIP expression in the SCN (54, 79, 96, 159), although 

differences across studies limit understanding of the precise nature of this relationship. 

First, gonadectomy was found to decrease VIP expression in the hypothalamus of female 

rats, but not male rats (54). Further, VIP levels were increased by estradiol in females and 

testosterone in males (54). However, subsequent work found that ovariectomy in adulthood 

produced the opposite effect to increase VIP levels in the rat SCN (79).
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In diurnal grass rats, ovariectomy in adulthood delays the phase of Vip rhythms in the 

female SCN to more resemble that in males, and estradiol replacement will restore the 

daytime peak of Vip but blunts its expression (96). Lastly, perinatal estradiol treatment 

increases VIP levels in the SCN when measured in adult female rats (159), although 

rhythmicity was not considered in this study. Given the phenotypic response to VIP and 

AVP deficiency can differ between male and female mice (90, 132), the relationship between 

SCN neurochemistry, biological sex, and gonadal hormones warrants further study.

Although females are rarely included in studies investigating SCN function, some work 

indicates that sex and gonadal hormones modulate cellular physiology in the central clock. 

Relative to intact male rats, ovariectomized females display lower glucose utilization 

in the rostral SCN, which was further decreased by estradiol replacement in a phase-

specific manner (62). In addition, sex differences have been reported in ex vivo SCN 

electrical activity, with higher daytime firing in dorsal SCN neurons from male mice (83). 

Interestingly, this sex difference was abolished by application of the GABAA receptor 

antagonist due to reduced spontaneous daytime firing in dorsal SCN neurons from male 

mice (83), suggesting there are sex differences in SCN GABA circuits. Sex differences 

in intrinsic membrane properties were also evident in this study, with male SCN neurons 

displaying lower nighttime action potential thresholds and larger day-night differences in 

after-hyperpolarization relative to female SCN neurons. In contrast to sex differences in 

electrical activity, PER2::LUC rhythms do not differ by sex (83). Further, estradiol does 

not alter SCN period of PER2::LUC rhythms in mice or Per1-luc rhythms in rats (118). 

Nevertheless, in vivo administration of estradiol to ovariectomized female rats advances the 

phase of Per2 rhythms and decreases Cry2 in the SCN (117, 119). Although a more indirect 

measure of SCN activity, daily rhythms in Fos-related antigen differs by sex in degus, with 

lower peak levels at dusk in the female SCN (97). Daytime expression of cFos measured at 

a single timepoint does not differ by sex in rats or mice (19, 125); however, ovariectomy 

reduced daytime cFos expression in the dorsal SCN of female rats in an estradiol dependent 

manner (125). This same study found that castration increased daytime cFos expression in 

the ventral SCN of male rats (125), although the meaning of this result is unclear given cFos 

expression in this compartment is most strongly associated with photic resetting at night.

There is limited work examining sex differences in SCN responses to light. SCN electrical 

response to NMDA application in vitro does not differ by sex in mice (83), but the 

spatiotemporal patterning of light-induced molecular responses may differ by sex in degus 

(97) and mice (19).

However, effects of sex were not compared directly in these studies. Gonadal hormones 

modulate SCN responses to light in mice, with effects of both androgen and estrogen 

signaling. In male mice, light-induced cFos expression is reduced by castration and restored 

by DHT administration (77). Effects of castration and DHT on light-induced clock gene 

expression have also been described in male mice (76), which are more complex in 

nature. Castration reduces light-induced Per2 during early subjective night and increases 

light-induced Per1 during late subjective night. Both responses were normalized by DHT 

administration (76). These studies indicate that activational effects of androgen signaling 

modulate SCN molecular responses to light; however, the interpretation of these results 
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is difficult given castration increases phase delays of behavioral rhythms. In contrast, 

the effects of estrogen signaling are easier to reconcile. Estradiol increases light-induced 

cFos and pCREB in the SCN of female rats (1), consistent with increases in behavioral 

resetting (83). It remains unclear whether gonadal hormones modulate photic responses of 

the SCN directly, via changes in the retina, or other light-responsive structures afferent to 

the SCN (11). Additional studies investigating how sex and gonadal hormones modulate 

the spatiotemporal patterning of SCN responses to light may provide further insight into 

mechanisms of photic signaling in both sexes.

7. Conclusions

Sex hormones and genetic sex regulate nearly all circadian parameters, but many of 

these effects are species-specific and vary across studies for reasons that remain unclear. 

Consistent with classic effects, circadian parameters can be modulated by gonadal hormones 

in a sex-dependent manner (i.e., only one sex responds). For example, ovariectomy 

lengthens period in female hamsters, but castration does not. However, some work suggests 

that sex hormones may elicit similar responses in both sexes (e.g., testosterone increases 

SCN androgen receptors) or induce responses that are distinct in each sex (e.g., phase 

advances are increased in female mice and decreased in male mice by gonadectomy). It 

is also suggested that gonadal hormones can act through multiple cellular mechanisms to 

modulate circadian behavior in a parameter-specific manner. For instance, ESR1 agonists 

increase wheel running activity, lengthen activity duration, consolidate activity into the dark 

phase, whereas ESR2 signaling alters distribution of nocturnal activity and activity onset 

(18, 137). These findings suggest that distinct effects of estradiol on circadian parameters 

are mediated by specific receptor subtypes. Across studies in mice, there are effects of 

both gonadal hormones and sex chromosomes, however the precise locus relevant for these 

effects remains unclear. In particular, it is unknown whether the effects of sex and gonadal 

hormones on behavioral rhythms reflects changes in the SCN itself because steroid receptors 

are present in many tissues of the circadian system (11).

More work using both sexes is expected to increase understanding of how sex and 

gonadal hormones influence cellular mechanisms of circadian timekeeping. Since estrous 

can influence activity levels and timing in mammals, reductionism has understandably 

favored the use of male rodents in circadian studies. However, the paucity of female data 

has impeded our understanding of how circadian clocks function in both sexes. Previous 

estimates have found that fewer than 20% of circadian studies include females (83), 

and a recent meta-analysis of published work spanning 1964-2017 found that fewer than 

7% of rodent behavioral studies on circadian responses to light included females (87). 

Federal funding agencies now emphasize the use of both sexes; thus, it is expected that 

representation in circadian studies will increase in the future. One useful approach to comply 

with this mandate that has been employed in recent studies is to evaluate average effects 

across both sexes. However, if adequate numbers of males and females are not included 

to permit statistical evaluation of sex differences, this will continue to be an obstacle in 

understanding how circadian circuits may differ by sex. Additional work designed with 

these considerations in mind can reveal novel mechanisms that have developed under 

different hormonal and genetic circumstances. Further, better understanding of circadian 

Joye and Evans Page 14

Semin Cell Dev Biol. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanisms in each sex is an important goal given that sex differences in daily rhythms 

and consequences of circadian disruption impact human health. Lastly, this work may 

shed additional light on mechanisms underlying circadian and/or seasonal regulation of 

reproduction and mental health in women (84, 95, 133, 165).
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Figure 1. 
Formal properties of circadian rhythms. A. Schematic illustrating parameters commonly 

used to quantify circadian rhythms. A sine wave is used to represent the output of the rhythm 

(e.g., PER2 expression in the SCN). Gray and black bars on the abscissa represent subjective 

day and subjective night, respectively. B. Schematic illustrating changes in circadian period 

and waveform. C. Schematic illustrating photic phase resetting. A light pulse during early 

subjective night causes a phase delay (blue) and a light pulse during late subjective night 

causes a phase advance (green).
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Figure 2. 
Organization of the circadian system at the conceptual, cellular, network, and systems 

levels. A. Conceptual three-part model of the circadian system. B. Cellular timekeeping 

involves transcriptional-translational feedback loops that can be modified by inter- and 

intracellular signaling. Arrows indicate activation and bars indicate repression. C. The SCN 

network comprises multiple neuronal subtypes organized into shell and core compartments. 

Schematic illustrates the location of neuronal subtypes mentioned in text. AVP: arginine 

vasopressin, VIP: vasoactive intestinal polypeptide, GRP: gastrin releasing peptide, CB: 

calbindin, CR: calretinin. D. The SCN sends time of day cues to other clock tissues in the 

brain and body.
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Figure 3. 
Reciprocal interactions between reproduction and circadian timekeeping. A. The SCN 

provides a time-of-day signal to regulate timing of the LH surge. Changes in hormone 

release and vaginal cytology are represented for the mouse. B. Representative single-plotted 

actograms of wheel-running rhythms in a female and male mouse illustrating cyclical 

changes in activity levels across the 4–5-day estrus cycle. In the actogram, each line depicts 

24 h, with the time of darkness indicated by the black bar above the actogram and the 

internal gray shading.
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Figure 4. 
Circadian responses to photic and non-photic cues. A. Schematic phase response curves 

illustrating that resetting responses to photic and non-photic stimuli dependent on time of 

day. B. Representative double-plotted actogram illustrating unstable entrainment of running 

wheel activity under skeleton photoperiods simulating long day lengths. Each line of the 

actogram depicts 48 h, with the second day of each line also plotted as the first day in the 
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following line. , Darkness is indicated by the black bar above the actogram and the internal 

gray shading.
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