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Local DNA shape is a general principle of
transcription factor binding specificity in
Arabidopsis thaliana

Janik Sielemann® 23, Donat Wulf® 123, Romy Schmidt 4 & Andrea Brautigam 12,384

Understanding gene expression will require understanding where regulatory factors bind
genomic DNA. The frequently used sequence-based motifs of protein-DNA binding are not
predictive, since a genome contains many more binding sites than are actually bound and
transcription factors of the same family share similar DNA-binding motifs. Traditionally, these
motifs only depict sequence but neglect DNA shape. Since shape may contribute non-linearly
and combinational to binding, machine learning approaches ought to be able to better predict
transcription factor binding. Here we show that a random forest machine learning approach,
which incorporates the 3D-shape of DNA, enhances binding prediction for all 216 tested
Arabidopsis thaliana transcription factors and improves the resolution of differential binding by
transcription factor family members which share the same binding motif. We observed that
DNA shape features were individually weighted for each transcription factor, even if they
shared the same binding sequence.
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hanges in gene expression during development and

invoked by environmental perturbations are critical to

organismal function and these changes are influenced by
DNA-binding transcription factors (TFs). Arabidopsis thaliana
encodes 1533 DNA-binding TFs! many of which occur in protein
families of a few to over a hundred members2. Gene expression of
a particular gene is a complex read-out based on the presence of
TFs and their spacing on the DNA, chromatin status, histone
marks and presence of co-activators or repressors. Improving the
understanding of those regulatory relations and pathways is
necessary to tackle current agricultural challenges®. Hundreds of
sequence motifs to which TFs bind have been characterised®>,
but currently it is impossible to look at a promoter and under-
stand its regulatory syntax. DNA is a very constrained molecule
since its phosphate sugar backbone runs antiparallel while its
bases are paired and arranged in rungs on a helical ladder.
However, despite the constraints, the exact position of each base
pair and each base in a pair is influenced by its surrounding bases.
The pairs can be tilted, shifted, slid, rolled, risen and twisted
relative to each other (Fig. 1d;®7). The bases in a pair can be
buckled, sheared, stretched, twisted, opened and staggered
(Fig. 1d;%). The width of the minor groove is also influenced by
the surrounding bases3. This DNA shape has been demonstrated
to influence protein-DNA binding, for instance, of the Drosophila
Scr Hox Protein®? and the S. cerevisiae bHLH proteins Cbfl and
Tye710.

Many members of a particular TF family bind the same motif*.
The A. thaliana genome contains 74 members of the WRKY TF
family!! regulating diverse processes from trichome and seed
development to roles in biotic and abiotic stresses!2. All WRKYs
analysed bind to a consensus motif, the W-box, which is char-
acterised by the TTGAC pentamer followed by C or T!3. TFs of
the 133 member bHLH family bind DNA via basic amino acids at
the N-terminal end of the bHLH domain and bind a variation of
the motif CANNTG, frequently the so-called G-box CACGTG!4.
This G-box motif is also bound by many bZIP TFs whose core
motif is ACGT, the central nucleotides of the G-box
CACGTG!>16. ChIP-seq data clearly indicates that only a sub-
set of potential binding sites are indeed occupied at any given
time in a particular tissue!”-1°. We hypothesised that DNA shape
was a critical element for determining TF specificity within a TF
family.

In amplified DNA affinity purification sequencing (ampDAP-
seq) experiments amplified DNA devoid of methylation marks is
bound to an in vitro produced TF and sequenced. For motif
detection in ampDAP-seq or ChIP-seq, the DNA sequences
bound by the TF are mined by motif search algorithms such as
MEME or MEME-ChIP, which identify overrepresented motifs
among the sequences?’. For many TFs, biochemical experiments
such as electrophoretic mobility shift assays (EMSAs) have con-
firmed that the motif is necessary for binding?!-23. However, the
comparison between the measured binding events from DAP-seq
data and the frequency of the derived motif in the genome
indicates that during motif prediction information is lost
(Fig. 1a). In our analysis, the identified binding motif occurrence
is on average 14-fold higher than the number of verified binding
events (Supplementary Fig. 1). We hypothesised that binding
specificity of a particular TF is encoded in DNA shape. To
decipher the predictive power of DNA shape regarding protein
binding, we trained a random forest model. This approach
enables the detection of non-linear relationships between the
shape of the bases and DNA-binding affinity. In addition, it
allows the capture of possibly important combinatorial infor-
mation of non-adjacent bases. We hypothesised that machine
learned models trained on DNA shape within and surrounding
the binding motif recover the lost information during motif

detection and generally improve prediction for TF binding in A.
thaliana. In this work, we contribute to the understanding of
protein-DNA recognition and demonstrate that DNA shape
features enable a robust prediction of binding affinity regarding
randomly generated motif containing sequences. In addition, we
show that the models, trained on DNA shape, improve the dis-
tinguishability of binding locations for TFs that share the same
binding motif. Understanding TF binding as a combination of
motif sequence and motif shape brings us closer to predicting
gene expression directly from sequence.

Results

DNA shape features explain large part of protein-DNA bind-
ing affinity. To generate the datasets necessary for training, test,
and validation, for each TF the sequence-based binding motif
(henceforth called “core motif”) was determined with MEME-
ChIP using all ampDAP-seq peaks. Sometimes a motif is reported
based on only the 600 peaks with the largest height; we opted to
capture all binding events. The genome was scanned with the
motif generating two classes of events: motifs, which are not
underneath a peak and hence not bound and motifs underneath a
peak which were bound. Peak height is taken as a proxy for
affinity. If a motif based on only the top 600 peaks was used, the
number of sequence-only-based potential binding sites was
increased (Supplementary Fig. 2) likely because those larger
motifs reach the threshold for FIMO24-based extraction more
easily compared to smaller motifs. A random forest decision tree
(RF)-based regressor?> was trained for each TF on the raw
binding data using the peak height in ampDAP-seq as a proxy for
binding affinity after binding data was filtered for single motif
occurrences. On average, 146,326 sequences, which contain the
binding motif, were extracted to train the models. For the TF with
the least amount of training data we extracted 18,210 sequences,
whereas the largest dataset for a TF contained 640,292 sequences.
To ensure consistent 3D structure learning, the sequences were
reverse complemented if the binding sequence was located on the
reverse strand. We split the motif occurrences into a training and
a validation set?> using the measured signal value within the peak
calling of the ampDAP-seq experiments as the numeric label. The
training dataset was again split into train and test set (ratio 4:1)
while performing cross-validation. In addition, we explored dif-
ferent ratios of train to test set (4:1, 3:1, 2:1 and 1:1) and observed
no difference in performance (Supplementary Fig. 3). This indi-
cates that the size of the input dataset is sufficient for robust
training.

In total, 216 individual models for 216 TFs were generated. In
each case, the shape-based predictor outperformed the motif
search, based on the area under the precision recall curve
(AUPRC). AUPRC improved between 2.8% and 362.7%, with an
average of 93.2% (Fig. 1b). 33 TFs reach AUPRC of more than 0.8
indicating that the motif plus shape information suffices for
prediction (Fig. 1b). 101 TFs show medium AUPRC between 0.5
and 0.8. The remaining 82 TFs show improved AUPRC
compared to motif alone but does not exceed 0.5 (Fig. 1b). To
investigate the influence of dimensionally reduced input features
on model performance, all models were additionally trained after
performing PCA on the shape features (Supplementary Fig. 4).
The prediction performance was substantially lower when the
models were trained on the dimensionally reduced features rather
than the direct shape features. This observation also implies that
the features are not considerably redundant.

Prediction of binding improved for all TF families, however,
some families increased in prediction precision more than others
(Supplementary Figs. 5 and 6). We analysed whether this
discrepancy could be explained by the different dataset sizes,
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Fig. 1 Overview of workflow and performance of shape-based binding site identification. a Example workflow illustrating the computational steps from
publicly available data to trained models capable of predicting protein-DNA binding affinity. b Performance of the random forest classifier using the border
width (number of upstream and downstream bases) with the highest area under the precision recall curve (AUPRC) for each TF. ¢ AUPRC for differing
sequence widths. The width was increased upstream and downstream of the core motif sequence, respectively. d The different DNA shape features which
were considered to analyse TF specificity. A query table was used for shape calculation®.

which is the number of genomic sequences containing the motif
(Supplementary Fig. 7). Indeed, we observed a slightly negative
correlation between performance and dataset size with an R? of
0.154. Hence, on average the prediction performance is slightly
worse for TFs whose sequence motif is more abundant in the
genome. An additional comparison between ampDAP-seq and
ChIP-seq data was performed for five TFs, for which data of both
experimental procedures were available (Supplementary Fig. 8).
We observed that ampDAP-seq outperformed ChIP-seq for each
TF with an average of 98.6% higher AUPRC. This observation is
in line with our expectation, as ampDAP-seq identifies binding
events independent from conditions in the cell and uses
unmethylated naked DNA for the identification of binding sites,
whereas ChIP-seq captures the binding events in specific in vivo

conditions. To test the contribution of shapes surrounding the
motif, the amount of sequence, and therefore shape information,
given to the regressor was varied and the training was repeated.
The major contribution of shape information was localised to the
core motif plus two bases on each side of the motif (Fig. 1c).
These adjacent bases influence the shape of the bases and base
pairs in the core®. Beyond the core motif shape, the information
gain quickly levelled (Fig. 1c and Supplementary Fig. 9).

Two additional machine learning approaches were evaluated
and compared with RF performance (Supplementary Fig. 10).
The baseline neural network implementation performed overall
slightly worse than the gradient boosting and random forest
implementation. This relation would likely change with dedicated
hyperparameter tuning. However, to be able to test the
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importance of the different DNA shape features, we chose the RF-
based machine learning approach to enable reliable feature
extraction?0.

The models generated by the shape-based regressor show
which shapes are important to the binding for each of 216 TFs
tested as shown in the source data file. To test if any shape, shape
type (intra-base pair vs. inter-base pair) or any position
contribute a larger amount of information to the binding, the
top five features were extracted for each TF. The 3D configuration
of bases within the core binding sequence occupied 68% of the
top five feature positions (Supplementary Fig. 11) as expected
(Fig. 1c). Intra-base pair shapes contributed 39% and inter-base
pair shapes contributed 61% (Supplementary Fig. 11) of the top
five shapes within the core motif. Outside of the motif, the
proportions reversed since intra-base pair shapes contributed
72% and inter-base pair shapes contributed 28% (Supplementary
Fig. 11). Further outside of the core motif, the shear feature was
overrepresented among the top five features (Supplementary
Fig. 11).

Improved resolution of differential binding by transcription
factor family members. If DNA shape predicts binding better
than the motif alone and shape information used by TFs is varied,
the prediction algorithm should be able to distinguish the binding
between two TFs, which are predicted to bind the same motif
sequence. To test this hypothesis, the models for TF pairs with the
same sequence-only-based binding motifs were analysed.

The ERF/AP2 TFs CBF4 (AT5G51990) and ERF036
(AT3G16280) both bind the GTCGGT/C motif which occurs
31,155 times in the A. thaliana genome. According to ampDAP-
seq, both TFs have 9910 binding sequences in common (Fig. 2a).
ERF036 binds 2581 sequences which are not bound by CBF4, and
CBF4 binds 6996 sequences not bound by ERF036. Using the
published motif derived from the top 600 binding events results
in a smaller overlap but leads to 103,779 extracted genomic
sequences (Supplementary Fig. 12). To test whether the shape
indeed encodes specificity, binding vs. non-binding was predicted
by the models (Fig. 2b).

The shape information of the 31,155 genomic sequences,
allows the regressor models to distinguish the binding events
between the two TFs (Fig. 2b, c), even though the core sequence is
the same and the majority of sequences are bound by both TFs
according to ampDAP-seq. Each Venn diagram in Fig. 2c shows
the distribution of binding sites applying the cut-off represented
by the dashed line. For ERF036, 2162 out of the 2581 uniquely
bound sequences were correctly identified as binding sequences,
whereas only 416 out of the 6996 sequences bound uniquely by
CBF4 were wrongly predicted as binding sequences (Fig. 2¢). In
total, the number of false-positive binding sequences from the
motif search dropped from 18,664 (11,668 4+ 6996) to 1384
(968 + 416), which is an improvement of 93% less false-positive
predictions when using the RF model. Likewise, for CBF4 84% of
uniquely bound sequences were correctly predicted and only 15%
of sequences bound uniquely by ERF036 are predicted as false
positives (Fig. 2c). Here, the total improvement regarding false
positives amounts to 86%, as the number of false-positive
predictions dropped from 14,249 to 2038. To identify the features
which contribute specificity to each TF, we extracted feature
importances using ‘shapley additive explanations’ (SHAP)%®
(Fig. 2d). The outputs of the regressor models are influenced by
different features. For ERF036, the slide at position -1 relative to
the motif and the helix twist at position 5 in the motif is most
influential, whereas for CBF4 the minor groove width at position
6 and the helix twist at position —1 contribute most to the
decision of the RF model. This observation underlines that the

TFs, even though binding to the same core motif, are dependent
on different peculiarities regarding the shape of the DNA (Fig. 2).
These results are not family specific since TFs of the NAC family
binding to the C(G/T)TNNNNNNNAAG motif (Fig. 2e, f), TFs
of the WRKY family binding to TTGAC(T/C) motif, TFs of the
bZIP family binding to ACGTCA motif and TFs of the C2H2
family binding to TTGCTINT motif show similar results
(Supplementary Figs. 13-15). In summary, the features defined
by the shape-based regressor are able to explain differential
binding of two TFs binding to the same sequence motif.

Binding affinity prediction on randomly generated sequences.
The models generated by machine learning improve binding site
prediction (Fig. 1) and distinguish binding events for TFs binding
the same motif (Fig. 2). To test if the models are able to produce
novel information they were used to predict TF binding to
sequences not present in the A. thaliana genome. For the HY5
(AT5G11260) TF of the bZIP family with the core motif ACGT,
six DNA sequences with high (>150 peak height units) and low
(<15 peak height units) regressor binding predictions were gen-
erated. For this purpose, 100,000 sequences not present in the
genome of A. thaliana consisting of 18 bases with ACGT as core
sequence were randomly created and the regressor model was
applied. Similarly, six DNA sequences were generated for the TF
ANACO050 (AT3G10480). The predicted binding affinity was
experimentally tested by performing an EMSA (Fig. 3a, b and
Supplementary Figs. 16 and 17). Without any competing unla-
belled DNA added, a shifted band compared to the negative
control indicates TF:DNA binding that is absent upon the
addition of unlabelled DNA probe of the same sequence (Fig. 3a,
b). In the comparative competition experiment with HY5, adding
competing DNA with shapes with low regressor values, all
labelled bands are still visible (Fig. 3a). Those shapes are not able
to out-compete the labelled sequence and are thus apparently not
bound with high affinity by HY5. For the shapes with high
regressor values predicted to be bound, two out of three do not
show any labelled band and are therefore bound by HY5 with
sufficient affinity to out-compete the labelled sequence. For
ANACO050 the EMSA shows similar results with five out of six
predictions being correct (Fig. 3b). In total, we observed that 10
out of 12 predictions were experimentally validated for both TFs.
Given that the AUPRC:s for both proteins yielded 0.72 and 0.78
(Fig. 3¢, d), the validation of binding and non-binding events
occur within the expected error rate. To illustrate the subtle
relevant factors, schematic models of the DNA sequences were
plotted. For HY5, the schematic model of base and base pair
shape shows clear differences on the buckle at position +3 and
the shear of position —1 between the bound and not bound
sequences (Fig. 3¢). Additionally, important positions for binding
extracted with SHAP are the helix twist at positions 5 and +1 and
the opening at position —1. (Fig. 3¢ and Supplementary Fig. 18).
For the ANACO050 protein, the most obvious difference between
the bound and not bound sequence is that the bound sequence is
overall more stretched out. The main reason for this observation
is that the average roll for the bound sequence is approximately
—0.88°, whereas the bases of the sequence which is not suffi-
ciently bound are rolled on average by approximately —1.77°
(Fig. 3d). The EMSA confirmed the predictive capability of the
models constructed by machine learning.

Discussion

Our results show that the binding behaviour of TFs depends on
the 3D formation of its binding site, where different TFs favour
different formations even within the same protein family. In
contrast to ChIP-seq data, ampDAP-seq data, which uses naked
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Fig. 2 Differentiation of binding specificity of intra-familiar proteins with the same binding motif. a, e Occurrence of the GTCGG(T/C) and C(G/T)
TNNNNNNNAAG binding motifs in the A. thaliana genome sequence and the experimentally validated binding sequences of the AP2/EREBP TFs
AT5G51990 and AT3G16280 and NAC TFs ANACO50 (AT3G10480) and BRN2 (AT4G10350). b, f Performance of the random forest regressor trained on
the genomic 3D shape. Each line represents the ratio of correctly predicted binding sites regarding all validated binding sites for different affinity prediction
cut-offs. The dark blue line corresponds to binding sequences which are bound by both TFs and the light blue lines correspond to the uniquely bound
binding sequences. ¢ The Venn diagrams show the sequence distributions according to the cut-off represented by the dashed line, respectively. Fields with
light colours show the overlap of predicted and validated binding sequences. Dark coloured fields show the quantity of sequences, which were not
predicted as bound by the model regarding the shown cut-off. d Influence of different local shape features on the prediction of the regressor model. The
most influential features are at the top. Each row represents one shape feature at a single position within the sequence.
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binding sequences.

genomic DNA%, allows a more precise identification of 3D feature
importances for each TF individually. Large experimental efforts
have been designed to precisely assign binding sites to TFs?” and
to use this knowledge to describe transcriptional regulation?8.
Our analyses (Figs. 1-3) show that a combination of motif
sequence and motif shape enables improved prediction of TF
binding on genomic sequence. The models generate a catalogue of
potential binding sites in a genome and their predicted affinity.
This information forms a base on which additional information
layers (i.e. spacing of binding sites?®, chromatin openness3’,
histone marks3, and quantity of TFs and their interactors) can be
stacked to enable prediction of gene expression. In synthetic
biology, binding events for heterologously expressed TFs can be
predicted more precisely, and rationally designed promoter
sequences are one step closer.

In the future, it will be critical to study evolutionary trajectories
of transcriptional regulation to determine changes to binding sites
present in genomes and changes to shape preferences of TFs.
Precise understanding of TF binding will allow us to build pre-
dictive regulatory networks and hence enable us to understand
agriculturally important complex traits, such as differential
responses to heat, drought and pathogens and control of yield.

Methods

Data processing and extraction. The ampDAP-seq peak calling data were
obtained from the Plant Cistrome Database (neomorph.salk.edu/dap_web/pages/
index.php)*. Only datasets with a fraction of reads in peaks (FRiP) value >5% were
considered for further analyses. All peak sequences were extracted from the A.
thaliana reference genome sequence (TAIR10), obtained from https://
www.arabidopsis.org/. The peak sequences were then used as input for the MEME-
ChIP tool! to detect binding motifs. The motif with the lowest E-value was chosen
as core motif for each TF. Peaks, which appeared in more than one-third of all
datasets, are considered as artefacts and were discarded.

To determine motif frequency in the genome, core motif occurrences were
searched within the A. thaliana genome sequence using FIMOZ?4, All motifs located
within 80 base pairs of a peak summit were considered as experimental validated
binding events. Multiple motif occurrences within this defined peak area were
classified as homodimer binding sites to enable a more precise signal value

interpretation. The calculation of the DNA shape was performed using a publicly
available query table®32 provided from https://rohslab.usc.edu/DNAshape-/.

The RF classifier as well as the RF regressor models were generated and trained
using the python module scikit-learn?>. Hyperparameter grid search and 5-fold
cross-validation were performed to generate each model. A more detailed
explanation of the data pre-processing and model generation is provided in the
subsection below. Code is available from GitHub (https://github.com/
janiksielemann/shape-based-TF-binding-prediction). Required python packages
are pandas, numpy>*, scikit-learn?5, biopython3>, matplotlib®®, shap?S, scipy>’
and dabest3s.

Pre-processing and training of the random forest regressor. To perform data
pre-processing and training of a random forest model an ampDAP-seq peak file
(from http://neomorph.salk.edu/dap_web/pages/browse_table_aj.php) and the A.
thaliana genome (from arabidopsis.org) is necessary. Only peak files with FriP
value >5% were considered and after motif extraction each peak file was filtered for
peaks that appear in less than 66% of all ampDAP-seq available peak files, as those
peaks were considered artefacts due to the ampDAP-seq procedure. Peak regions
were extracted from the Arabidopsis genome using a custom python script, which
expects one peak file (-p) and the corresponding genome (-g) as input. The
resulting fasta file with genomic peak regions was used as input for the MEME-
ChIP3! (MEME-suite? v 5.0) tool with default parameters, so that the only given
parameters were an output folder (-oc) and the peak regions fasta file (-dna). The
sequence motif with highest E-value (--motif 1) from the resulting combined.meme
file was searched in the A. thaliana genome using the FIMO%* (MEME-suite2 v
5.0) tool with a cut-off (--thresh) of 5e-4. To ensure that no matches were dis-
carded the maximum number of stored matches --max-stored-scores) were set to
1,000,000. The parameter --max-strand was set to 1 so that palindromic sequences
would not match two times in the same locations and an output folder (--oc) was
declared.

To allow a more accurate interpretation of binding affinities, the areas of motif
matches were scanned for multiple motif occurrences using a custom python script.
For this, each peak, which always has a length 200 base pairs, was tested for
multiple FIMO matches. If more peaks had multiple motif occurrences than single
motif occurrences, the corresponding TF was considered for homodimeric binding
events and vice versa. In that case, the random forest regressor was only trained on
those peaks with multiple motif occurrences.

All genomic locations with sequence motif matches were translated into 13
DNA shape features using a publicly available query table®, which was
implemented into a custom Python script. Chloroplast and mitochondrial motif
occurrences were discarded, as those sequences were not part of the in vitro
experiment. Additionally, all sequences that were initially hit on the reverse strand
were reverse complemented. The sequence window, for which the DNA shape was
calculated, was set to 32 additional bases upstream and downstream from the
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sequence motif. Experimentally recorded signal values were normalised to range
from 0 to 1000 using sklearn pre-processing module?®. Since some shape features
are mirrored for palindromic sequences, each matched sequence window on the
minus strand was reverse complemented, so that the matrix of 3D shape values
always correspond to the same direction.

DNA shape-based training to learn protein binding affinities was performed
with the RandomForestRegressor class from the sklearn module. The number of
considered positions upstream and downstream of the sequence motif can be
specified using the custom Python script by setting the -b parameter, which has a
default value of 4. If the ratio of experimentally verified binding sites and genomic
binding site occurrences was too high (>1:5), this ratio was forced to be 1-5 by
discarding random genomic positions. If this procedure would still yield more than
120,000 locations, the ratio was forced to be 1-3. This ratio between validated
binding sites and binding site occurrences was always calculated for each TF and
used as sample weight for training the random forest regressor to prevent bias
towards false negatives. The whole dataset was split into a train set (80%) and a
validation set (20%) using the train_test_split function provided by the sklearn
module, applying stratification to ensure even distributions of validated binding
sites in the train and test set. The train set was used for 5-fold cross-validation
learning and the validation set was used for evaluation. Within the 5-fold cross-
validation, the train set was split into train and test set with a ratio of 4:1. The
model was then trained five times so that each instance was part of the test set once.
To finetune the learning process, randomised hyperparameter grid search was
performed for 75 iterations including the parameters “n-estimators” (ranging from
10 to 200), “max_features” (auto, square root or log2) and “max_depth” (ranging
from 4 to 12). As each of the 75 iterations for hyperparameter tuning was 5-fold
cross-validated as described, a total number of 375 training procedures for each
respective TF was performed. The mean squared error was used as loss. For
evaluation purposes the precision recall curve function, which is also provided by
the sklearn module, was applied on the validation data. The validation data was not
used for hyperparameter tuning but solely for evaluation, as it was separated from
the train data within pre-processing. After training the model, sequences of interest
can be checked for putative binding affinity.

Training of other baseline models. To perform the comparative analysis between
machine learning approaches we trained gradient boosting models and neural
networks for each TF, respectively. The pre-processing steps were the same for each
approach, so that each approach had the same input dataset.

For the gradient boosting approach we used the “GradientBoostingRegressor”
class from the sklearn python package. Besides setting a random state, the default
parameters were used for the baseline model.

To build the neural network model, the “Sequential” class from the keras API
was used. The input shape was defined according to the number of input features
for the respective TF, as the length of the core motif differed from protein to
protein. A dense layer with 200 neurons and ReLU as activation function was
added, as well as an output layer to predict the signal value. The model was
compiled, defining the mean squared error as loss and keras “Adam” class as
optimiser with a learning rate of 0.001.

Example application based on the transcription factor HY5. For the TF HY5,
the peak calling of the in vitro ampDAP-seq experiment identified 10,140 DNA-
binding sites (Fig. 1a). Those binding sites were used to calculate the sequence
motif using MEME-ChIP3!, We referred to the resulting sequence motif as “core
motif”, as we took additional bases upstream and downstream from the motif to
convert the sequence into shape features as described. Using this sequence motif of
HYS5 to extract all genomic sequences that contain the motif yields 55,740 genomic
sequences (Fig. 1a). The mitochondrion, as well as the chloroplast were not
considered.

The extracted 55,740 potential HY5 binding sequences were converted to DNA
shape features®. In the case of HY5, four bases upstream and downstream of the
core motif were incorporated to convert the sequence into shape features. As
shown in the illustration, additional pre-processing steps like the calculation of the
sample weights were conducted. All samples were labelled according to the
measured signal value within the peak calling of the ampDAP-seq experiment to
enable the regression task.

A validation set which contained 20% of the dataset was separated to ensure an
independent evaluation. This dataset was not used for hyperparameter tuning. The
random forest regression model was trained on the remaining 80% of the dataset,
which was again split into train and test set within the 5-fold cross-validation
procedure (Fig. 1a). For hyperparameter tuning a grid search was performed. The
best performing model for HY5 ended up with the parameters of ‘n_estimators’ =
190, ‘max_features’ = ‘sqrt’ and ‘max_depth’ = 11. This model was used to predict
the signal values of the samples in the validation set and the performance was
evaluated by calculating a precision recall curve.

Experimental procedure. The HY5 (AT5G11260) and ANAC50 (AT3G10480)
coding sequences were cloned with Gibson assembly in pFN19A HaloTag” T7 SP6
Flexi® Vector (Promega, Madison, WI, USA; Cat.: G921A; Batch: 0000341144; 1:10,000)
in an N-terminal fusion with the Halo-tag. Plasmid DNA was isolated with the

ZymoPURE Plasmid Midiprep kit (ZymoGenetics, Seattle, WA, USA). The HY5
protein was expressed with TnT” SP6 High-Yield Wheat Germ Protein Expression
System (Promega, Madison, W1, USA) using 2 pug plasmid DNA per 50 L expression
reaction. The ANACO50 protein was purified with the HaloTag” Protein Purification
System (Promega, Madison, WI, USA) using 20 uL expression reaction for each EMSA
reaction. Expression was validated by Halo-tag detection (Supplementary Fig. 14).
Double-stranded DNA sequences (20 uM) were generated by annealing synthesised
DNA (98-21°C, 9h) and diluted to 0.25 uM. The binding reaction was incubated for
2hat 21 °C. A 5% native polyacrylamide gel containing 0.5 TBE and 2.5% glycerol was
pre-run for 30 min. The samples were loaded with 1 uL orange loading dye (Thermo
Fisher Scientific, Waltham, MA, USA) and the gel (10 x 7.5 cm) was run at 80 V until
the OrangeG front was 1 cm before the end of the gel. The gel was blotted on a
positively charged nylon membrane (Hybond™, GE Healthcare, Chicago, IL, USA) at
fixed current of 0.8 mA/cm? for 90 min. The DNA was fixed by UV for 10 min. Biotin
labelled DNA was detected with 1:5000 solution of an anti-biotin HRP-conjugated
antibody (BioLegend, San Diego, CA, USA; Cat.: 405210; Batch: B293545; 1:5000) in
TBST with 5% BSA. Detection was performed using Pierce™ ECL Western Blotting
Substrate (Thermo Fisher Scientific, Waltham, MA, USA) as described by the manu-
facturer and the imaging system Fusion Fx7 (Vilber, Collégien, France).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Source data are provided with this paper, containing the sequences used for the EMSA,
uncropped gel images and resulting values, which were used to create the figures. To
translate DNA sequence into shape features, the publicly available query table (https://
rohslab.usc.edu/DNAshape-+/) was used®. The ampDAP-seq peak calling data, which
were used as ground truth to train the models, were obtained from the Plant Cistrome
Database (neomorph.salk.edu/dap_web/pages/index.php). Source data are provided with
this paper.

Code availability

The code to train a model and predict binding affinities for a given transcription factor is
available from GitHub (https://github.com/janiksielemann/shape-based-TF-binding-
prediction)3.

Received: 8 March 2021; Accepted: 21 October 2021;
Published online: 12 November 2021

References

1. Riechmann, J. L. et al. Arabidopsis transcription factors: genome-wide
comparative analysis among eukaryotes. Science 290, 2105-2110 (2000).

2. Bowman, J. L. et al. Insights into land plant evolution garnered from the
Marchantia polymorpha genome. Cell 171, 287-304.e15 (2017).

3. Bailey-Serres, ], Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D. & Schroeder,
J. 1. Genetic strategies for improving crop yields. Nature 575, 109-118 (2019).

4. O’Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory
DNA landscape. Cell 165, 1280-1292 (2016).

5. Fornes, O. et al. JASPAR 2020: update of the open-access database of
transcription factor binding profiles. Nucleic Acids Res. 48, D87-D92 (2020).

6. Li, J. et al. Expanding the repertoire of DNA shape features for genome-scale
studies of transcription factor binding. Nucleic Acids Res. 45, 12877-12887
(2017).

7. Chiu, T.-P,, Xin, B., Markarian, N., Wang, Y. & Rohs, R. TFBSshape: an
expanded motif database for DNA shape features of transcription factor
binding sites. Nucleic Acids Res. 48, D246-D255 (2020).

8. Rohs, R et al. The role of DNA shape in protein-DNA recognition. Nature
461, 1248-1253 (2009).

9. Abe, N. et al. Deconvolving the recognition of DNA shape from sequence. Cell
161, 307-318 (2015).

10. Gordén, R. et al. Genomic regions flanking E-box binding sites influence DNA
binding specificity of bHLH transcription factors through DNA shape. Cell
Rep. 3, 1093-1104 (2013).

11. Rushton, P. J., Somssich, L. E., Ringler, P. & Shen, Q. J. WRKY transcription
factors. Trends Plant Sci. 15, 247-258 (2010).

12. Ulker, B. & Somssich, I. E. WRKY transcription factors: from DNA binding
towards biological function. Curr. Opin. Plant Biol. 7, 491-498 (2004).

13. Ciolkowski, I., Wanke, D., Birkenbihl, R. P. & Somssich, I. E. Studies on DNA-
binding selectivity of WRKY transcription factors lend structural clues into
WRKY-domain function. Plant Mol. Biol. 68, 81-92 (2008).

14. Heim, M. A. The basic helix-loop-helix transcription factor family in plants: a
genome-wide study of protein structure and functional diversity. Mol. Biol.
Evolution 20, 735-747 (2003).

| (2021)12:6549 | https://doi.org/10.1038/s41467-021-26819-2 | www.nature.com/naturecommunications 7


https://rohslab.usc.edu/DNAshape+/
https://rohslab.usc.edu/DNAshape+/
https://github.com/janiksielemann/shape-based-TF-binding-prediction
https://github.com/janiksielemann/shape-based-TF-binding-prediction
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Foster, R,, Izawa, T. & Chua, N. Plant bZIP proteins gather at ACGT elements.
FASEB J. 8, 192-200 (1994).

Jakoby, M. et al. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7,
106-111 (2002).

Chow, C.-N. et al. PlantPAN3.0: a new and updated resource for
reconstructing transcriptional regulatory networks from ChIP-seq
experiments in plants. Nucleic Acids Res. 47, D1155-D1163 (2019).

Burko, Y. et al. Chimeric activators and repressors define HY5 activity and
reveal a light-regulated feedback mechanism. Plant Cell 32, 967-983 (2020).
Birkenbihl, R. P., Kracher, B., Roccaro, M. & Somssich, L. E. Induced genome-
wide binding of three Arabidopsis WRKY transcription factors during early
MAMP-triggered immunity. Plant Cell 29, 20-38 (2017).

Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching.
Nucleic Acids Res. 37, W202-W208 (2009).

Yu, C.-P. et al. Transcriptome dynamics of developing maize leaves and
genomewide prediction of cis elements and their cognate transcription factors.
Proc. Natl Acad. Sci. USA 112, E2477-E2486 (2015).

Gao, F. et al. Blocking miR396 increases rice yield by shaping inflorescence
architecture. Nat. Plants 2, 15196 (2016).

Dror, I, Golan, T., Levy, C., Rohs, R. & Mandel-Gutfreund, Y. A widespread
role of the motif environment in transcription factor binding across diverse
protein families. Genome Res. 25, 1268-1280 (2015).

Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a
given motif. Bioinformatics 27, 1017-1018 (2011).

Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825-2830 (2011).

Lundberg, S. M. et al. From local explanations to global understanding with
explainable Al for trees. Nat. Mach. Intell. 2, 56-67 (2020).

Ambrosini, G. et al. Insights gained from a comprehensive all-against-all
transcription factor binding motif benchmarking study. Genome Biol. 21, 114
(2020).

Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the
sequence specificities of DNA- and RNA-binding proteins by deep learning.
Nat. Biotechnol. 33, 831-838 (2015).

Freire-Rios, A. et al. Architecture of DNA elements mediating ARF
transcription factor binding and auxin-responsive gene expression in
Arabidopsis. Proc. Natl Acad. Sci. USA 117, 24557-24566 (2020).

Lu, Z. et al. The prevalence, evolution and chromatin signatures of plant
regulatory elements. Nat. Plants 5, 1250-1259 (2019).

Machanick, P. & Bailey, T. L. MEME-ChIP: motif analysis of large DNA
datasets. Bioinformatics 27, 1696-1697 (2011).

Chiu, T.-P. et al. DNAshapeR: an R/Bioconductor package for DNA shape
prediction and feature encoding. Bioinformatics 32, 1211-1213 (2016).
McKinney, W. Data structures for statistical computing in Python. In Proc. of
the 9th Python in Science Conference. (Editors: van der Walt, S. & Millman, J.)
56-61 (2010).

Harris, C. R. et al. Array programming with NumPy. Nature 585, 357-362
(2020).

Cock, P.J. A. et al. Biopython: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics 25, 1422-1423 (2009).
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9,
90-95 (2007).

Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing
in Python. Nat. Methods 17, 261-272 (2020).

Ho, J., Tumkaya, T., Aryal, S., Choi, H. & Claridge-Chang, A. Moving beyond P
values: data analysis with estimation graphics. Nat. Methods 16, 565-566 (2019).

39. Sielemann, J. janiksielemann/shape-based-TF-binding-prediction: first release.
zenodo. https://doi.org/10.5281/ZENODO.5559534. (2021).

Acknowledgements

We thank the Bioinformatic Resource Facility team at the Center for Biotechnology
(Bielefeld University) for technical support. J.S. is funded by the Digital Infrastructure in
the Life Sciences graduate school (Bielefeld University). D.W. is supported by core
funding, Bielefeld University.

Author contributions

J.S. designed and carried out the computational experiments including programming,
interpreted the data and co-wrote the paper. D.W. designed and carried out the wet lab
experiments, interpreted data and edited the paper. R.S. assisted with the wet lab
experiments, interpreted data and edited the paper. A.B. conceived the initial idea and
the study, interpreted data and co-wrote the paper.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-26819-2.

Correspondence and requests for materials should be addressed to Andrea Briutigam.

Peer review information Nature Communications thanks Xiangfeng Wang and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons
37 Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

| (2021)12:6549 | https://doi.org/10.1038/541467-021-26819-2 | www.nature.com/naturecommunications


https://doi.org/10.5281/ZENODO.5559534
https://doi.org/10.1038/s41467-021-26819-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Local DNA shape is a general principle of transcription factor binding specificity in Arabidopsis thaliana
	Results
	DNA shape features explain large part of protein&#x02013;nobreakDNA binding affinity
	Improved resolution of differential binding by transcription factor family members
	Binding affinity prediction on randomly generated sequences

	Discussion
	Methods
	Data processing and extraction
	Pre-processing and training of the random forest regressor
	Training of other baseline models
	Example application based on the transcription factor HY5
	Experimental procedure

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




