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Abstract

We introduce a generative smoothness regularization on manifolds (SToRM) model for the

recovery of dynamic image data from highly undersampled measurements. The model assumes

that the images in the dataset are non-linear mappings of low-dimensional latent vectors. We use

the deep convolutional neural network (CNN) to represent the non-linear transformation. The

parameters of the generator as well as the low-dimensional latent vectors are jointly estimated only

from the undersampled measurements. This approach is different from traditional CNN

approaches that require extensive fully sampled training data. We penalize the norm of the

gradients of the non-linear mapping to constrain the manifold to be smooth, while temporal

gradients of the latent vectors are penalized to obtain a smoothly varying time-series. The

proposed scheme brings in the spatial regularization provided by the convolutional network. The

main benefit of the proposed scheme is the improvement in image quality and the orders-of-

magnitude reduction in memory demand compared to traditional manifold models. To minimize

the computational complexity of the algorithm, we introduce an efficient progressive training-in-

time approach and an approximate cost function. These approaches speed up the image

reconstructions and offers better reconstruction performance.
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I. Introduction

The imaging of time-varying objects at high spatial and temporal resolution is key to several

modalities, including MRI and microscopy. A central challenge is the need for high

resolution in both space and time [1], [2]. Several computational imaging strategies have

been introduced in MRI to improve the resolution, especially in the context of free-breathing

and ungated cardiac MRI. A popular approach pursued by several groups is self-gating,

where cardiac and respiratory information is obtained from central k-space regions

(navigators) using bandpass filtering or clustering [3]–[7]. The data is then binned to the

respective phases and recovered using total variation or other priors. Recently, approaches

using smooth manifold regularization have been introduced. These approaches model the

images in the time series as points on a high-dimensional manifold [8]–[12]. Manifold

regularization algorithms, including the smoothness regularization on manifolds (SToRM)

framework [8]–[10], have shown good performance in several dynamic imaging

applications. Since the data is not explicitly binned into specific phases as in the self-gating

methods, manifold algorithms are less vulnerable to clustering errors than navigator-based

corrections. Despite the benefits, a key challenge with the current manifold methods is the

high memory demand. Unlike self-gating methods that only recover specific phases,

manifold methods recover the entire time series. The limited memory on current GPUs

restricts the number of frames that can be recovered simultaneously, which makes it

challenging to extend the model to higher dimensionalities. The high memory demand also

makes it difficult to use spatial regularization priors on the images using deep learned

models.

Our main focus is to capitalize on the power of deep convolutional neural networks (CNN)

to introduce a memory efficient generative or synthesis formulation of SToRM. CNN based

approaches are now revolutionizing image reconstruction, offering significantly improved

image quality and fast image recovery [13]–[19]. In the context of MRI, several novel

approaches have been introduced [20], [21], including transfer-learning [22], domain

adaptation [23], learning-based dynamic MRI [24]–[26], and generative-adversarial models

[27]–[29]. Unlike many CNN-based approaches, the proposed scheme does not require pre-

training using large amounts of training data. This makes the approach desirable in free-

breathing applications, where the acquisition of fully sampled training data is infeasible. We

note that the classical SToRM approach can be viewed as an analysis regularization scheme

(see Fig. 1.(a)). Specifically, a non-linear injective mapping is applied on the images such

that the mapped points of the alias-free images lie on a low-dimensional subspace [10], [30],

[31]. When recovering images from undersampled data, the nuclear norm prior is applied in

the transform domain to encourage their non-linear mappings to lie in a subspace.

Unfortunately, this analysis approach requires the storage of all the image frames in the time

series, which translates to high memory demand. The proposed generative SToRM

formulation offers quite significant compression of the data, which can overcome the above

challenge. Both the relation between the analysis and synthesis formulations and the relation

of the synthesis formulation to neural networks were established in earlier work [31].
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We assume that the image volumes in the dataset are smooth non-linear functions of a few

latent variables, i.e., xt = 𝒢θ zt , where zt are the latent vectors in a low-dimensional space. xt

is the t-th generated image frame in the time series. This explicit formulation implies that the

image volumes lie on a smooth non-linear manifold in a high-dimensional ambient space

(see Fig. 1.(b)). The latent variables capture the differences between the images (e.g., cardiac

phase, respiratory phase, contrast dynamics, subject motion). We model the 𝒢 using a CNN,

which offers a significantly compressed representation. Specifically, the number of

parameters required by the model (CNN weights and latent vectors) are several orders of

magnitude smaller than required for the direct representation of the images. The compact

model proportionately reduces the number of measurements needed to recover the images.

In addition, the compression also enables algorithms with much smaller memory footprint

and computational complexity. We propose to jointly optimize for the network parameters θ
and the latent vector zt based on the given measurements. The smoothness of the manifold

generated by 𝒢θ z  depends on the gradient of 𝒢θ with respect to its input. To enforce the

learning of a smooth image manifold, we regularize the norm of the Jacobian of the mapping

Jz𝒢θ
2. We experimentally observe that by penalizing the gradient of the mapping, the

network is encouraged to learn meaningful mappings. Similarly, the images in the time

series are expected to vary smoothly in time. Hence, we also use a Tikhonov smoothness

penalty on the latent vectors zt to further constrain the solutions. We use the ADAM

optimizer with stochastic gradients, where random batches of zi and bi are chosen at

iteration to determine the parameters. Unlike traditional CNN methods that are fast during

testing/inference, the direct application of this scheme to the dynamic MRI setting is

computationally expensive. We use approximations, including progressive-in-time

optimization and an approximated data term that avoids non-uniform fast Fourier

transforms, to significantly reduce the computational complexity of the algorithm.

The proposed approach is inspired by deep image prior (DIP), which was introduced for

static imaging problems [32], as well as its extension to dynamic imaging [33]. The key

difference of the proposed formulation is the joint optimization of the latent variables z and

𝒢. The work of Jin ea tl. [33] was originally developed for CINE MRI, where the latent

variables were obtained by linearly interpolating noise variables at the first and last frames.

Their extension to real-time applications involved setting noise latent vectors at multiples of

a preselected period, followed by linearly interpolating the noise variables. This approach is

not ideally suited for applications with free breathing, when the motion is not periodic.

Another key distinction is the use of regularization priors on the network parameters and

latent vectors, which encourages the mapping to be an isometry between latent and image

spaces. Unlike DIP methods, the performance of the network does not significantly degrade

with iterations. While we call our algorithm “generative SToRM”, we note that our goal is

not to generate random images from stochastic inputs as in generative-adversarial networks

(GAN). In particular, we do not use adversarial loss functions where a discriminator is

jointly learned as in the literature [34], [35].

Zou et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



II. Background

A. Dynamic MRI from undersampled data: problem setup

Our main focus is to recover a series of images x1, ..xM from their undersampled

multichannel MRI measurements. The multidimensional dataset is often compactly

represented by its Casoratti matrix

X = x1 … xM . (1)

Each of the images is acquired by different multichannel measurement operators

bi = 𝒜i xi + ni, (2)

where ni is zero mean Gaussian noise matrix that corrupts the measurements.

B. Smooth manifold models for dynamic MRI

The smooth manifold methods model images xi in the dynamic time series as points on a

smooth manifold ℳ. These methods are motivated by continuous domain formulations that

recover a function f on a manifold from its measurements as

f = argmin
f

∑
i

f xi − bi
2 + λ∫

ℳ
∇ℳ f 2dx (3)

where the regularization term involves the smoothness of the function on the manifold. This

problem is adapted to the discrete setting to solve for images lying on a smooth manifold

from its measurements as

X = argmin
X

∑
i = 1

M
𝒜 xi − bi

2 + λtrace XLXH , (4)

where L is the graph Laplacian matrix. L is the discrete approximation of the Laplace-

Beltrami operator on the manifold, which depends on the structure or geometry of the

manifold. The manifold matrix L is estimated from k-space navigators. Different

approaches, ranging from proximity-based methods [8] to kernel low-rank regularization

[10] and sparse optimization [12], have been introduced.

The results of earlier work [10], [30] show that the above manifold regularization penalties

can be viewed as an analysis prior. In particular, these schemes rely on a fixed non-linear

mapping φ of the images. The theory shows that if the images x1, ..xM lie in a smooth

manifold/surface or union of manifolds/surfaces, the mapped points live on a subspace or

union of subspaces. The low-dimensional property of the mapped points φ(x1), ..φ(xM) is

used to recover the images from undersampled data or derive the manifold using a kernel

low-rank minimization scheme:
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X* = argmin
X

∑
i = 1

M
𝒜 xi − bi

2 + λ φ x1 , …, φ xN * . (5)

This nuclear norm regularization scheme is minimized using an iterative reweighted

algorithm, whose intermediate steps match (4). The non-linear mapping φ may be viewed as

an analysis operator that transforms the original images to a low-dimensional latent

subspace, very similar to analysis sparsity-based approaches used in compressed sensing.

C. Unsupervised learning using Deep Image Prior

The recent work of DIP uses the structure of the network as a prior [32], enabling the

recovery of images from ill-posed measurements without any training data. Specifically, DIP

relies on the property that CNN architectures favor image data more than noise. The

regularized reconstruction of an image from undersampled and noisy measurements is posed

in DIP as

θ* = argmin
θ

𝒜(x) − b 2 such that x = 𝒢θ[z] (6)

where x = 𝒢θ *[z] is the recovered image, generated by the CNN generator 𝒢θ * whose

parameters are denoted by θ. Here, z is the random latent variable, which is chosen as

random noise and kept fixed.

The above optimization problem is often solved using stochastic gradient descent (SGD).

Since CNNs are efficient in learning natural images, the solution often converges quickly to

a good image. However, when iterated further, the algorithm also learns to represent the

noise in the measurements if the generator has sufficient capacity, resulting in poor image

quality. The general practice is to rely on early termination to obtain good results. This

approach was recently extended to the dynamic setting by Jin et al. [33], where a sequence

of random vectors was used as the input.

III. Deep generative SToRM model

We now introduce a synthesis SToRM formulation for the recovery of images in a time

series from undersampled data (see Fig. 1.(b)). Rather than relying on a non-linear mapping

of images to a low-dimensional subspace [10] (see Fig. 1.(a)), we model the images in the

time series as non-linear functions of latent vectors living in a low-dimensional subspace.

A. Generative model

We model the images in the time series as

xi = 𝒢θ zi , i = 1, .., M, (7)

where 𝒢θ is a non-linear mapping, which is termed as the generator. Inspired by the

extensive work on generative image models [32], [36], [37], we represent 𝒢θ by a deep

CNN, whose weights are denoted by θ. The parameters zi are the latent vectors, which live
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in a low-dimensional subspace. The non-linear mapping 𝒢θ may be viewed as the inverse of

the image-to-latent space mapping φ, considered in the SToRM approach.

We propose to estimate the parameters of the network θ as well as the latent vectors zi by

fitting the model to the undersampled measurements. The main distinction of our framework

with DIP, which is designed for a single image, is that we use the same generator for all the

images in the dynamic dataset. The latent vector zi for each image is different and is also

estimated from the measurements. This strategy allows us to exploit non-local information in

the dataset. For example, in free-breathing cardiac MRI, the latent vectors of images with the

same cardiac and respiratory phase are expected to be similar. When the gradient of the

network is bounded, the output images at these time points are expected to be the same. The

proposed framework is hence expected to learn a common representation from these time-

points, which are often sampled using different sampling trajectories. Unlike conventional

manifold methods [8], [10], [12], the use of the CNN generator also offers spatial

regularization.

It is often impossible to acquire fully-sampled training data in many free-breathing dynamic

imaging applications, and a key benefit of this framework over conventional neural network

schemes is that no training data is required. As discussed previously, the number of

parameters of the model in (7) is orders of magnitude smaller than the number of pixels in

the dataset. The dramatic compression offered by the representation, together with the mini-

batch training provides a highly memory-efficient alternative to current manifold based and

low-rank/tensor approaches. Although our focus is on establishing the utility of the scheme

in 2-D settings in this paper, the approach can be readily translated to higher dimensional

applications. Another benefit is the implicit spatial regularization brought in by the

convolutional network as discussed for DIP. We now introduce novel regularization priors on

the network and the latent vectors to further constrain the recovery to reduce the need for

manual early stopping.

B. Distance/Network regularization

As in the case of analysis SToRM regularization [8], [10], our interest is in generating a

manifold model that preserves distances. Specifically, we would like the nearby points in the

latent space to map to similar images on the manifold. With this interest, we now study the

relation between the Euclidean distances between their latent vectors and the shortest

distance between the points on the manifold (geodesic distance).

We consider two points z1 and z2 in the latent space, which are fed to the generator to obtain

𝒢 z1  and 𝒢 z2 , respectively. We have the following result, which relates the the Euclidean

distance z1 − z2
2 to the geodesic distance distℳ 𝒢 z1 , 𝒢 z2 , which is the shortest distance

on the manifold. The setting is illustrated in Fig. 2, where the geodesic distance is indicated

by the red curve.

Zou et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proposition 1.—Let z1, z1, z2 ∈ ℝn be two nearby points in the latent space, with mappings

denoted by 𝒢 z1 , 𝒢 z2 ∈ ℳ. Here, ℳ = G(z) ∣ z ∈ ℝn . Then, the geodesic distance on the

manifold satisfies:

distℳ 𝒢 z1 , 𝒢 z2 ≤ z1 − z2 F
Jz 𝒢 z1 F

. (8)

Proof:  The straight-line between the latent vectors is denoted by c(s), s ∈ [0,1] with c(0) =

z1 and c(1) = z2. We also assume that the line is described in its curvilinear abscissa, which

implies c′(s) = 1; ∀s ∈ [0, 1]. We note that 𝒢 may map to the black curve, which may be

longer than the geodesic distance. We now compute the length of the black curve 𝒢[c(s)] as

d = ∫
0

1
∇s𝒢[c(s)] ds . (9)

Using the chain rule and denoting the Jacobian matrix of 𝒢 by Jz, we can simplify the above

distance as

d = ∫
0

1
Jz(𝒢)c′(s)

F
ds

≤ ∫
0

1
Jz(𝒢)

F
c′(s) F

1
ds

= Jz 𝒢 z1 F ∫
0

1
ds

z1 − z2

.

(10)

We used the Cauchy-Schwartz inequality in the second step and in the last step, we use the

fact that Jz𝒢(c(t)) = Jz𝒢 z1 + 𝒪(t) when the points z1 and z2 are close. Since the geodesic

distance is the shortest distance on the manifold, we have distℳ 𝒢 z1 , 𝒢 z2 ≤ d and hence

we obtain (8).

The result in (8) shows that the Frobenius norm of the Jacobian matrix Jz𝒢  controls how

far apart 𝒢 maps two vectors that are close in the latent space. We would like points that are

close in the latent space map to nearby points on the manifold. We hence use the gradient of

the map:

Rdistance = Jz(𝒢(z))
F
2

(11)

as a regularization penalty. We note that the above penalty will also encourage the learning

of a mapping 𝒢 such that the length of curve 𝒢(c(t)) is the geodesic distance. We note that

the above penalty can also be thought of as a network regularization. Similar gradient

penalties are used in machine learning to improve generalization ability and to improve the
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robustness to adversarial attacks [38]. The use of gradient penalty is observed to be

qualitatively equivalent to penalizing the norm of the weights of the network.

C. Latent vector regularization penalty

The time frames in a dynamic time series have extensive redundancy between adjacent

frames, which is usually capitalized by temporal gradient regularization. Directly penalizing

the temporal gradient norm of the images requires the computation of the entire image time

series, which is difficult when the entire image time series is not optimized in every batch.

We consider the norm of the finite differences between images specified by ∇pG zp
2
.

Using Taylor series expansion, we obtain ∇pG zp = Jz(𝒢[z])∇pz + 𝒪(p). We thus have

∇p𝒢 zp ≈ Jz(𝒢[z])∇pz ≤ Jz(𝒢[z]) ∇pz . (12)

Since Jz(𝒢[z]) is small because of the distance regularization, we propose to add a temporal

regularizer on the latent vectors. For example, when applied to free-breathing cardiac MRI,

we expect the latent vectors to capture the two main contributors of motion: cardiac motion

and respiratory motion. The temporal regularization encourages the cardiac and respiratory

phases change slowly in time.

D. Proposed optimization criterion

Based on the above analysis, we derive the parameters of the network θ and the low-

dimensional latent vectors zi; i = 1, .., M from the measured data by minimizing:

𝒞(z, θ) = ∑
i = 1

N
𝒜i 𝒢θ zi − b 2

data term

+ λ1 Jz𝒢θ(z) 2

distance regularization

+ λ2 ∇tzt
2

latent regularization

(13)

with respect to z and θ. We use the ADAM optimization to determine the optimal

parameters, and random initialization is used for the network parameters and latent

variables.

A potential challenge with directly solving (13) is its high computational complexity. Unlike

supervised neural network approaches that offer fast inference, the proposed approach

optimizes the network parameters based on the measured data. This strategy will amount to

a long reconstruction time when there are several image frames in the time series.

E. Strategies to reduce computational complexity

To minimize the computational complexity, we now introduce some approximation

strategies.
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1) Approximate data term for accelerated convergence:

When the data is measured using non-Cartesian sampling schemes, M non-uniform fast

Fourier transform (NUFFT) evaluations are needed for the evaluation of the data term,

where M is the number of frames in the dataset. Similarly, M inverse non-uniform fast

Fourier transform (INUFFT) evaluations are needed for each back-propagation step. These

NUFFT evaluations are computationally expensive, resulting in slow algorithms. In addition,

most non-Cartesian imaging schemes over-sample the center of k-space. Since the least-

square loss function in (5) weights errors in the center of k-space higher than in outer k-

space regions, it is associated with slow convergence.

To speed up the intermediate computations, we propose to use gridding with density

compensation, together with a projection step for the initial iterations. Specifically, we will

use the approximate data term

D(z, θ) = ∑
i = 1

M
𝒫i 𝒢θ zi − gi

2
(14)

instead of ∑i 𝒜i 𝒢 zi − bi
2 in early iterations to speed up the computations. Here, gi are

the gridding reconstructions

gi = 𝒜i
H𝒜i

†𝒜i
H bi ≈ 𝒜i

H𝒲b, (15)

where, 𝒲 are diagonal matrices corresponding to multiplication by density compensation

factors. The operators 𝒫i in (14) are projection operators:

𝒫ix = 𝒜i
H𝒜i

† 𝒜i
H𝒜i x ≈ 𝒜i

H𝒲𝒜i x (16)

We note that the term 𝒜i
H𝒲𝒜i x can be efficiently computed using Toeplitz embedding,

which eliminates the need for expensive NUFFT and INUFFT steps. In addition, the use of

the density compensation serves as a preconditioner, resulting in faster convergence. Once

the algorithm has approximately converged, we switch the loss term back to (5) since it is

optimal in a maximum likelihood perspective.

2) Progressive training-in-time:

To further speed up the algorithm, we introduce a progressive training strategy, which is

similar to multi-resolution strategies used in image processing. In particular, we start with a

single frame obtained by pooling the measured data from all the time frames. Since this

average frame is well-sampled, the algorithm promptly converges to the optimal solution.

The corresponding network serves as a good initialization for the next step. Following

convergence, we increase the number of frames. The optimal θ parameters from the previous

step are used to initialize the generator, while the latent vector is initialized by the

interpolated version of the latent vector at the previous step. This process is repeated until

the desired number of frames is reached.
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This progressive training-in-time approach significantly reduces the computational

complexity of the proposed algorithm. In this work, we used a three-step algorithm.

However, the number of steps (levels) of training can be chosen based on the dataset. This

progressive training-in-time approach is illustrated in Fig. 3.

IV. Implementation details and datasets

A. Structure of the generator

The structure of the generator used in this work is given in Table. I. The output images have

two channels, which correspond to the real and imaginary parts of the MR images. Note that

we have a parameter d in the network. This user-defined parameter controls the size of the

generator or, in other words, the number of trainable parameters in the generator. We also

have a number ℓ(z) as a user-defined parameter. This parameter represents the number of

elements in each latent vector. In this work, it is chosen as ℓ(z) = 2 as we have two motion

patterns in cardiac images. We use leaky ReLU for all the non-linear activations, except at

the output layer, where it is tanh activation.

B. Datasets

This research study was conducted using data acquired from human subjects. The

Institutional Review Board at the local institution (The University of Iowa) approved the

acquisition of the data, and written consents were obtained from all subjects. The

experiments reported in this paper are based on datasets collected in the free-breathing mode

using the golden angle spiral trajectory. We acquired eight datasets on a GE 3T scanner. One

dataset was used to identify the optimal hyperparameters of all the algorithms in the

proposed scheme. We then used the hyperparameters to generate the experimental results for

all the remaining datasets reported in this paper. The sequence parameters for the datasets

are: TR = 8.4 ms, FOV = 320 mm× 320 mm, flip angle = 18°, slice thickness = 8 mm. The

datasets were acquired using a cardiac multichannel array with 34 channels. We used an

automatic algorithm to pre-select the eight best coils, that provide the best signal to noise

ratio in the region of interest. The removal of the coils with low sensitivities provided

improved reconstructions [39]. We used a PCA-based coil combination using SVD such that

the approximation error < 5%. We then estimated the coil sensitivity maps based on these

virtual channels using the method of Walsh et al. [40] and assumed they were constant over

time.

For each dataset in this research, we binned the data from six spiral interleaves

corresponding to 50 ms temporal resolution. If a Cartesian acquisition scheme with TR =

3.5ms were used, this would correspond to ≈14 lines/frame; with a 340×340 matrix, this

corresponds roughly to an acceleration factor of 24. Moreover, each dataset has more than

500 frames. During reconstruction, we omit the first 20 frames in each dataset and use the

next 500 frames for SToRM reconstructions; this is then used as the simulated ground truth

for comparisons. The experiments were run on a machine with an Intel Xeon CPU at 2.40

GHz and a Tesla P100-PCIE 16GB GPU. The source code for the proposed GenSToRM

scheme can be downloaded from this link: https://github.com/qing-zou/Gen-SToRM.

Zou et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/qing-zou/Gen-SToRM


C. Quality evaluation metric

In this work, the quantitative comparisons are made using the Signal-to-Error Ratio (SER)

metric (in addition to the standard Peak Signal-to-Noise Ratio (PSNR) and the Structural

Similarity Index Measure (SSIM)) defined as:

SER = 20 ⋅ log10
xorig

xorig − xrecon
.

Here xorig and xrecon represent the ground truth and the reconstructed image. The unit for

SER is decibel (dB).

The SER metric requires a reference image, which is chosen as the SToRM reconstruction

with 500 frames. However, we note that this reference may be imperfect and may suffer

from blurring and related artifacts. Hence, we consider the Blind/referenceless Image Spatial

Quality Evaluator (BRISQUE) [41] to evaluate the score of the image quality. The

BRISQUE score is a perceptual score based on the support vector regression model trained

on an image database with corresponding differential mean opinion score values. The

training image dataset contains images with different distortions. A smaller score indicates

better perceptual quality.

D. State-of-the-art methods for comparison

We compare the proposed scheme with the recent state-of-the-art methods for free-breathing

and ungated cardiac MRI. We note that while there are many deep learning algorithms for

static MRI, those methods are not readily applicable to our setting.

• Analysis SToRM [9], [10], published in 2020: The manifold Laplacian matrix is

estimated from k-space navigators using kernel low-rank regularization, followed

by solving for the images using (4).

• Time-DIP [33] implementation based on the arXiv form at the submission of this

article: This is an unsupervised learning scheme, that fixes the latent variables as

noise and solves for the generator parameters. For real-time applications, Time-

DIP chooses a preset period, and the noise vectors of the frames corresponding to

the multiples of the period were chosen as independent Gaussian variables [33].

The latent variables of the intermediate frames were obtained using linear

interpolation. We chose a period of 20 frames, which roughly corresponds to the

period of the heart beats.

• Low-rank [2]: The image frames in the time series are recovered using the

nuclear norm minimization.

E. Hyperparameter tuning

We used one of the acquired datasets to identify the hyperparameters of the proposed

scheme. Since we do not have access to the fully-sampled dataset, we used the SToRM

reconstructions from 500 images (acquisition time of 25 seconds) as a reference. The

smoothness parameter λ of this method was manually selected as λ = 0.01 to obtain the best
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recovery, as in the literature [9]. All of the comparisons relied on image recovery from 150

frames (acquisition time of 7.5 seconds). The hyperparameter tuning approach yielded the

parameters d = 40, λ1 = 0.0005, and λ2 = 2 for the proposed approach. We demonstrate the

impact of tuning d in Fig. 6, while the impact of choosing λ1 and λ2 is shown in Fig. 4. The

hyperparameter optimization of SToRM from 150 frames resulted in the optimal smoothness

parameter λ = 0.0075. For Time-DIP, we follow the design of the network shown by Jin et

al. [33], where the generator consists of multiple layers of convolution and upsampling

operations. To ensure fair comparison, we used a similar architecture, where the base size of

the network was tuned to obtain the best results.

We use a three-step progressive training strategy. In the first step, the learning rate for the

network is 1 × 10−3 and 1000 epoches are used. For the second step of training, the learning

rate for the network is 5 × 10−4 and the learning rate for the latent variable is 5×10−3. In this

stage, 600 epoches are used. In the final step of training, the learning rate for the network is

5×10−4, the learning rate for the latent variable is 1×10−3, and 700 epoches are used.

V. Experiments and results

A. Impact of different regularization terms

We first study the impact of the two regularization terms in (13). The parameter d
corresponding to the size of the network (see Table I) was chosen as d = 24 in this case. In

Fig. 4 (a), we plot the reconstruction performance with respect to the number of epoches for

three scenarios: (1) using both regularization terms; (2) using only latent regularization; and

(3) using only distance/network regularization. In the experiment, we use 500 frames of

SToRM (~ 25 seconds of acquisition) reconstructions, which is called “SToRM500”, as the

reference for SER computations. We tested the reconstruction performance for the three

scenarios using 150 frames, which corresponds to around 7.5 seconds of acquisition. From

the plot, we observe that without using the network regularization, the SER degrades with

increasing epoches, which is similar to that of DIP. In this case, an early stopping strategy is

needed to obtain good recovery. The latent vectors corresponding to this setting are shown in

(c), which shows mixing between cardiac and respiratory waveforms. When latent

regularization is not used, we observe that the SER plot is roughly flat, but the latent

variables show quite significant mixing, which translates to blurred reconstructions. By

contrast, when both network and latent regularizations are used, the algorithm converges to a

better solution. We also note that the latent variables are well decoupled; the blue curve

captures the respiratory motion, while the orange one captures the cardiac motion. We also

observe that the reconstructions agree well with the SToRM reconstructions. The network

now learns meaningful mappings, which translate to improved reconstructions when

compared to the reconstructions obtained without using the regularizers.

B. Benefit of progressive training-in-time approach

In Fig. 5, we demonstrate the significant reduction in runtime offered by the progressive

training strategy described in Section III-E2. Here, we consider the recovery from 150

frames with and without the progressive strategy. Both regularization priors were used in this

strategy, and d was chosen as 24. We plot the reconstruction performance, measured by the
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SER with respect to the running time. The SER plots show that the proposed scheme

converges in around ≈ 200 seconds, while the direct approach takes more than 2000

seconds. We also note from the SER plots that the solution obtained using progressive

training is superior to the one without progressive training.

C. Impact of size of the network

The architecture of the generator 𝒢θ is given in Table I. Note that the size of the network is

controlled by the user-defined parameter d, which dictates the number of convolution filters

and hence the number of trainable parameters in the network. In this section, we investigate

the impact of the user-defined parameter d on the reconstruction performance. We tested the

reconstruction performance using d = 8, 16, 24, 32, 40, and 48, and the obtained results are

shown in Fig. 6. From the figure, we see that when d = 8 or d = 16, the generator network is

too small to capture the dynamic variations. When d = 8, the generator is unable to capture

both cardiac motion and respiratory motion. When d = 16, part of the respiratory motion is

recovered, while the cardiac motion is still lost. The best SER scores with respect to SToRM

with 500 frames is obtained for d = 24, while the lowest Brisque scores are obtained for d =

40. We also observe that the features including papillary muscles and myocardium in the d =

40 results appear sharper than those of SToRM with 500 frames, even though the proposed

reconstructions were only performed from 150 frames. We use d = 40 for the subsequent

comparisons in the paper.

D. Comparison with the state-of-the-art methods

In this section, we compare our proposed scheme with several state-of-the-art methods for

the reconstruction of dynamic images.

In Fig. 7, we compare the region of interest for SToRM500, SToRM with 150 frames

(SToRM150), the proposed method with two different d values, the unsupervised Time-DIP

approach, and the low-rank algorithm. From Fig. 7, we observe that the proposed scheme

can significantly reduce errors in comparison to SToRM150. Additionally, the proposed

scheme is able to capture the motion patterns better than Time-DIP, while the low-rank

method is unable to capture the motion patterns. From the time profile in Fig. 7, we notice

that the proposed scheme is capable of recovering the abrupt change in blood-pool contrast

between diastole and systole. This is due to inflow effects associated with gradient echo

(GRE) acquisitions. In particular, the blood from regions outside the slice enters the heart,

which did not experience any of the former slice-selective excitation pulses; the differences

in magnetization of the blood with no magnetization history, and that was within the slice,

results in the abrupt change in intensity. We note that some of the competing methods such

as Time-DIP and low-rank, blur these details.

We also perform the comparisons on a different dataset in Fig. 8. We compare the proposed

scheme with SToRM500, SToRM150, Time-DIP, and the low-rank approach. The results are

shown in Fig. 8. From the figure, we see that the proposed reconstructions appear less

blurred than those of the conventional schemes.
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We also compared the proposed scheme with SToRM500, SToRM150, and the unsupervised

Time-DIP approach quantitatively. We omit the low-rank method here because low-rank

approach often failed in some datasets. The quantitative comparisons are shown in Table II.

We used SToRM500 as the reference for SER, PSNR, and SSIM calculations. The

quantitative results are based on the average performance from six datasets.

Finally, we illustrate the proposed approaches in Fig. 9 and Fig. 10, respectively. The

proposed approach decoupled the latent vectors corresponding to the cardiac and respiratory

phases well, as shown in the representative examples in Fig. 9 (a) and Fig. 10 (a).

VI. Conclusion

In this work, we introduced an unsupervised generative SToRM framework for the recovery

of free-breathing cardiac images from spiral acquisitions. This work assumes that the images

are generated by a non-linear CNN-based generator 𝒢θ, which maps the low-dimensional

latent variables to high-resolution images. Unlike traditional supervised CNN methods, the

proposed approach does not require any training data. The parameters of the generator and

the latent variables are directly estimated from the undersampled data. The key benefit for

this generative model is its ability to compress the data, which results in a memory-effective

algorithm. To improve the performance, we introduced a network/distance regularization and

a latent variable regularization. The combination of the priors ensures the learning of

representations that preserve distances and ensure the temporal smoothness of the recovered

images; the regularized approach provides improved reconstructions while minimizing the

need for early stopping. To reduce the computational complexity, we introduced a fast

approximation of the data loss term as well as a progressive training-in-time strategy. These

approximations result in an algorithm with computational complexity comparable to our

prior SToRM algorithm. The main benefits of this scheme are the improved performance and

considerably reduced memory demand. While our main focus in this work was to establish

the benefits of this work in 2D, we plan to extend this work to 3D applications in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Illustration of (a) analysis SToRM and (b) generative SToRM. Analysis SToRM considers a

non-linear (e.g. exponential) lifting of the data. If the original points lie on a smooth

manifold, the lifted points lie on a low-dimensional subspace. The analysis SToRM cost

function in (5) is the sum of the fit of the recovered images to the undersampled

measurements and the nuclear norm of the lifted points. A challenge with analysis SToRM is

its high memory demand and the difficulty in adding spatial regularization. The proposed

method models the images as the non-linear mapping 𝒢θ of some latent vectors zi, which lie

in a very low-dimensional space. Note that the same generator is used to model all the

images in the dataset. The number of parameters of the generator and the latent variables is

around the size of a single image, which implies a highly compressed representation. In

addition, the structure of the CNN offers spatial regularization as shown in DIP. The

proposed algorithm in (13) estimates the parameters of the generator and the latent variables

from the measured data. A distance regularization prior is added to the generator to ensure

that nearby points in the latent subspace are mapped to nearby points on the manifold.

Similarly, a temporal regularization prior is added to the latent variables. The optimization is

performed using ADAM with batches of few images.
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Fig. 2.
Illustration of the distance penalty. The length of the curve connecting the images

corresponding to z1 and z2 depends on the Frobenius norm of the Jacobian of the mapping 𝒢
as well as the Euclidean distance z1 − z2

2. We are interested in learning a mapping that

preserves distances; we would like nearby points in the latent space to map to similar

images. We hence use the norm of the Jacobian as the regularization prior, with the goal of

preserving distances.
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Fig. 3.
Illustration of the progressive training-in-time approach. In the first level of training, the k-

space data of all the frames are binned into one and we try to solve for the average image in

this level. Upon the convergence of the first step, the parameters and latent variables are

transferred as the initialization of the second step. In the second level of training, we divide

the k-space data into M groups and try to reconstruct the M average images. Following the

convergence, we can move to the final level of training, where the parameters obtained in the

second step and the linear interpolation of the latent vectors in the second step are chosen as

the initializations of the final step of training.
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Fig. 4.
Illustration of the impact of the regularization terms in the proposed scheme with d = 24. We

considered three cases in the experiment: (1) using both regularizations, (2) using only latent

regularization, and (3) using only network regularization; these correspond to the blue,

orange, and yellow curves in (a). In (b), (c), and (d), we showed the learned latent vectors for

the three cases. The visual and quantitative comparisons of the three cases are shown in (e).
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Fig. 5.
Comparisons of the reconstruction performance with and without the progressive training-

in-time strategy using d = 40. From the plot of SER vs. running time, we can see that the

progressive training-in-time approach yields better results with much less running time

comparing to the training without using progressive training-in-time. Two reconstructed

frames near the end of systole and diastole using SToRM500, the proposed scheme with

progressive training-in-time and the proposed scheme without using the progressive training-

in-time are shown in the plot as well for comparison purposes. The average Brisque scores

for SToRM500, the reconstruction with progressive training-in-time, and the reconstruction

without progressive training-in-time are 36.4, 37.3 and 39.1 respectively.
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Fig. 6.
Impact of network size on reconstruction performance. In the experiments, we chose d = 8,

16, 24, 32, 40 and 48 to investigate the reconstruction performance. We used 500 frames for

SToRM reconstructions (SToRM500) as the reference for SER comparisons. For the

investigation of the impact of network size on the reconstructions, we used 150 frames. The

diastolic and systolic states and the temporal profiles are shown in the figure for each case.

The Brisque scores and average SER are also reported. It is worth noting that when d = 40,

the results are even less blurred than the SToRM500 results, even though only one-third of

the data are used.
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Fig. 7.
Comparisons with the state-of-the-art methods. The first column of (a) corresponds to the

reconstructions from 500 frames (~ 25s of acquisition time), while the rest of the columns

are recovered from 150 frames (~ 7.5s of acquisition time). The top row of (a) corresponds

to the diastole phase, while the third row is the diastole phase. The second row of (a) is an

intermediate one. Fig. (b) corresponds to the time profiles of the reconstructions. We observe

that the proposed (d = 40) reconstructions exhibit less blurring and fewer artifacts when

compared to SToRM150 and competing methods.
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Fig. 8.
Comparisons with the state-of-the-art methods. The first column of (a) corresponds to the

reconstructions from 500 frames (~ 25s of acquisition time), while the rest of the columns

are recovered from 150 frames (~ 7.5s of acquisition time). The top row of (a) corresponds

to the diastole phase, while the third row is the diastole phase. The second row of (a) is an

intermediate one. Fig. (b) corresponds to the time profiles of the reconstructions. We chose d
= 40 for the proposed scheme. We observe that the proposed reconstructions appear less

blurred when compared to the conventional schemes.
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Fig. 9.
Illustration of the framework of the proposed scheme with d = 40. We plot the latent

variables of 150 frames in a time series on the first dataset. We showed four different phases

in the time series: systole in End-Expiration (E-E), systole in End-Inspiration (E-I), diastole

in End-Expiration (E-E), and diastole in End-Inspiration (E-I). A thin green line surrounds

the liver in the image frame to indicate the respiratory phase. The latent vectors

corresponding to the four different phases are indicated in the plot of the latent vectors.
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Fig. 10.
Illustration of the framework of the proposed scheme with d = 40. We plot the latent

variables of 150 frames in a time series. We showed four different phases in the time series:

systole in End-Expiration (E-E), systole in End-Inspiration (E-I), diastole in End-Expiration

(E-E), and diastole in End-Inspiration (E-I). The latent vectors corresponding to the four

different phases are indicated in the plot of the latent vectors.
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TABLE I

Architecture of the generator 𝒢θ. ℓ(z) means the number of elements in each latent vector.

Input size filter sz # filters Padding Stride Output size

1 × 1 × ℓ(z) 1 × 1 100 0 1 1 × 1 × 100

1 × 1 × 100 3 × 3 8d 0 1 3 × 3 × 8d

3 × 3 × 8d 3 × 3 8d 0 1 5 × 5 × 8d

5 × 5 × 8d 4 × 4 4d 1 2 10 × 10 × 4d

10 × 10 × 4d 4 × 4 4d 1 2 20 × 20 × 4d

20 × 20 × 4d 3 × 3 4d 0 2 41 × 41 × 4d

41 × 41 × 4d 5 × 5 2d 1 2 85 × 85 × 2d

85 × 85 × 2d 4 × 4 d 1 2 170 × 170 × d

170 × 170 × d 4 × 4 d 1 2 340 × 340 × d

340 × 340 × d 3 × 3 2 1 2 340 × 340 × 2
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TABLE II

Quantitative comparisons based on six datasets: We used six datasets to obtain the average SER, PSNR, SSIM,

Brisque score, and time used for reconstruction.

Methods SToRM500 SToRM150 Propsed Time-DIP

SER (dB) NA 17.3 18.2 16.7

PSNR (dB) NA 32.7 33.5 32.0

SSIM NA 0.86 0.89 0.87

Brisque 35.2 40.2 37.1 42.9

Time (min) 47 13 17 57
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