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Abstract

Purpose In 2-dimensional lateral cephalometric radiographs, patients with severe obstructive sleep apnea (OSA) exhibit a more
crowded oropharynx in comparison with non-OSA. We tested the hypothesis that machine learning, an application of artificial
intelligence (Al), could be used to detect patients with severe OSA based on 2-dimensional images.

Methods A deep convolutional neural network was developed (n = 1258; 90%) and tested (n = 131; 10%) using data from 1389
(100%) lateral cephalometric radiographs obtained from individuals diagnosed with severe OSA (n = 867; apnea hypopnea index
> 30 events/h sleep) or non-OSA (n =522; apnea hypopnea index < 5 events/h sleep) at a single center for sleep disorders. Three
kinds of data sets were prepared by changing the area of interest using a single image: the original image without any modifi-
cation (full image), an image containing a facial profile, upper airway, and craniofacial soft/hard tissues (main region), and an
image containing part of the occipital region (head only). A radiologist also performed a conventional manual cephalometric
analysis of the full image for comparison.

Results The sensitivity/specificity was 0.87/0.82 for full image, 0.88/0.75 for main region, 0.71/0.63 for head only, and 0.54/0.80
for the manual analysis. The area under the receiver-operating characteristic curve was the highest for main region 0.92, for full
image 0.89, for head only 0.70, and for manual cephalometric analysis 0.75.

Conclusions A deep convolutional neural network identified individuals with severe OSA with high accuracy. Future research on
this concept using Al and images can be further encouraged when discussing triage of OSA.
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manuscript.
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Although focusing on this phenotypic feature in 2-
dimensional lateral cephalometric radiographs is not new in
itself [1, 3—6], it is still an appealing approach for the detection
of OSA because the use of images is simple and can help
prevent human subjectivity from influencing the diagnostic
process, as compared with questionnaires [8].
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on an OSA/non-OSA diagnosis by polysomnography, such
images may become an optimal target of machine learning.
Considering that patients with severe OSA exhibit a more
crowded oropharynx [2, 5], it would be reasonable to test
the hypothesis that a machine learning model could be used
to differentiate severe OSA and non-OSA by 2-dimensional
images: two different populations regarding craniofacial mor-
phology. The clinical implications of the findings will be
discussed later.

Methods
Study participants

The present study was conducted in accordance with the
amended Declaration of Helsinki and followed the Transparent
Reporting of a multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) reporting guidelines [13].
The study was designed and performed at the Yoyogi Sleep
Disorder Center (Tokyo, Japan) and the study protocol was ap-
proved by the Ethics Committee of the Institute of
Neuropsychiatry, Tokyo, Japan (approval no. 176). Individuals
who had undergone diagnostic polysomnography from
March 2006 to February 2017 provided their written informed
consent for the anonymous use of their data, including
polysomnography, laboratory values, and information on images
(n=18,807) (Fig. 1). Every patient who was suspected to have
OSA was diagnosed with either OSA or non-OSA based on
initial diagnostic polysomnography according to standard proce-
dures [14]. All of these patients underwent lateral cephalometric
radiography with the use of one identical device for the evalua-
tion of craniofacial and upper airway structure in the time frame
0f 2006 to 2017 (n = 6081). The severity of OSA was assessed in
terms of AHI (mild [AHI>5—< 15 events/h sleep], moderate
[AHI > 15 —<30 events/h sleep], or severe [AHI>30 events/h
sleep]) while subjects with AHI less than 5 were assumed to be
non-OSA [14]. We included male subjects in whom AHI was
more than and/or equal to 30 events/h sleep (patient group) or
less than 5 events/h sleep (controls). Exclusion criteria included
females (n=1101) and mild (m=1151) to moderate (n = 1158)
OSA patients. We also excluded patients under 20 years of age
due to the possibility of ongoing growth and development of
craniofacial bony tissues (n =66). Consequently, a total of
1389 consecutive patients who met the inclusion/exclusion
criteria were divided into 2 groups: OSA patients (n = 867) and
controls (n=522).

Deep convolutional neural network model
A deep convolutional neural network (DCNN) model called

the Visual Geometry Group (VGG-19), which is a deep learn-
ing architecture that is part of a broader family of machine
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learning methods in Al technology, was used (Fig. 2). This
type of DCNN is configured to automatically learn local fea-
tures of images and generate a classification model [15, 16].
The aspect ratio of the original images was 2010 x 1670
pixels; however, for the analysis, we changed the aspect ratio
of all input images and resized them to 128 x 128 pixels. As
the red-green-blue input of images had a range of 0-255, it
was first normalized to a range of 0—1 by dividing by 255.

The VGG-19 model is comprised of five blocks and three
fully connected layers. Each block includes convolutional
layers followed by a max pooling layer with decreasing posi-
tion sensitivity but greater generic recognition. Flattening of
the output from block 5 results in only three fully connected
layers. The first layer removes spatial information from the
extracted feature vectors, and the second layer is a classifica-
tion layer that uses feature vectors from target images acquired
in previous layers in combination with the softmax function
and binary classification. To improve generalization perfor-
mance, dropout processing was performed such that masking
was achieved with a probability of 50% in the first fully con-
nected layer. Fine tuning was used to increase the learning
speed and achieve higher performance with less data. We used
the following parameters from ImageNet: blocks 1 to 5 were
fixed, whereas the fully connected layers were trained. The
weights of the fully connected layers were optimized using a
stochastic gradient descent algorithm with momentum (learn-
ing coefficient = 0.00001, decay = 1e-6, momentum =0.9).

Prior to the input of images to the model at each epoch,
augmented processing of images with regard to rotation angle,
horizontal shift, vertical shift, and horizontal reversal was ran-
domly performed to obtain a robust model. Learning was car-
ried out with mini-batch processing of 2 images and an epoch
number of 1000. During the learning phase, we saved the
models after 100, 400, 700, and 1000 epochs. After learning,
we selected the model with the highest accuracy for test data
among these four deep learning models. For this purpose,
Keras (https://keras.io/ja/) was run on TensorFlow (https://
www.tensorflow.org/) written in Python and was used to
build and evaluate the model. We trained the model using a
Core™ i7-7700K CPU (Intel) and a GeForce GTX 1080 Ti
GPU (NVIDIA).

Image dataset

Every cephalometric image was taken of the natural head
posture determined by visual feedback in a mirror in accor-
dance with the established method [17]. Among the total 1389
images, 1251 (90%) images were used for training (i.e., learn-
ing images; 781 OSA images, and 470 non-OSA images) and
the remaining 138 (10%) images were used for testing (i.e.,
testing images, 86 OSA images, and 52 control images) in
accordance with recent reports [18-21]. To investigate which
part of the original image is focused upon when using DCNN,
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Fig. 1 Data sets for the
development and testing of a deep
convolutional neural network.
AHI, apnea hypopnea index;
OSA, obstructive sleep apnea;
PSG, polysomnography

28320 Individuals referred to sleep center
for assessment of suspected sleep
disorders including OSA

9513 Diagnostic PSG not considered on
the basis of a routine clinical evaluation by
sleep physicians
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three data sets were prepared by changing the area of interest
(Fig. 3). One set included full images without any modifica-
tion (full image; Fig. 3A upper). Another set included images
of the area of interest to which skilled sleep-related personnel
often pay particular attention in discussing the likelihood of
OSA (main region; Fig. 3B upper). When the forehead clamp
was present in an image, it was detected by a template
matching algorithm (matching rate 0.8 or more). Cropping
of the image was then executed by specifying the area with
reference to the detected coordinates. Consequently, the main
region includes the facial profile, upper airway, and craniofa-
cial soft/hard tissues such as the tongue, soft palate, maxilla,
mandible, teeth, and cervical bones from the lower right cor-
ner of the original image. The other set included images in
which part of the occipital region (head only; 400 x 400 pixels
from the upper left corner of the original image) was picked up
for comparison with the outcomes with the full image and

main region (Fig. 3C upper). For comparison with the results
of the DCNN analyses, cephalometric parameters were also
measured manually by a radiologist (YT) and an orthodontist
(ST) as described in our previous reports without knowledge
of the OSA severity of each participant (Fig. 3D upper) [3, 5].
Detailed information for this manual cephalometric measure-
ments and the analysis of intra-rater reliability were as de-
scribed previously (Online resource 1 and 2). The repeated
assessment of manual cephalometric measurements on differ-
ent days (day 1 vs day 2) yielded good reproducibility, with an
intraclass correlation coefficient (95% CI) 0£ 0.9970 (0.9951—
0.9982) [22].

Statistical analysis

Data are presented as the mean =+ standard deviation and un-
paired ¢ tests were used to compare each variable between the
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Size=2
Softmax

Fig. 2 Overall architecture of a deep convolutional neural network model for detection of obstructive sleep apnea. Conv, convolutional layer; FC, fully

connected layer; Maxpool, maximum pooling layer

OSA group and non-OSA group without adjusting for base-
line characteristics (SPSS version 25, SPSS Japan). The pri-
mary outcome was diagnostic accuracy in terms of area under
the curve (AUC) of the receiver-operating characteristic
(ROC) curve, both of which were computed with the use of
Matplotlib (version 3.0.3) for DCNN analysis (Fig. 3A, B, and
C) or SPSS for manual cephalometric analysis (Fig. 3D).
When the predictive score obtained from the DCNN analysis
exceeded the threshold (i.e., cutoff value =0.50), it was
judged to be positive (i.e., OSA). The DCNN model was fitted

a Full Image b Main Region

to only 90% of the test data while the remaining 10% of the
data were thinned out. For the manual cephalometric analysis,
the patients were divided into two groups according to the
degree of oropharyngeal crowding and further classified into
two subgroups based on hyoid position (Online Resource 3)
[3, 5]. We prepared a 2 x 2 cross table for the x~ test and a
similar table with two layers to evaluate the effects of the
combined use of the two parameters for the detection of
OSA. We further compared the predictive quality of the
DCNN model to that of manual cephalometric analyses using

¢ Head Only d Manual Analysis

5/—1
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— ROC curve (area = 0.89) 10
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—— ROC curve {area = 0.92}

00 00 02 04 06 08

True Positive Rate (Sensitivity)

L0 | — ROC curve (area = 0.70) "
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Fig. 3 Image data sets (upper) and area under the receiver-operating
characteristic (ROC) curve for detection of obstructive sleep apnea
(lower). AUC, area under the curve. Note that the ROC curve with the
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better AUC (i.e., 0.75) obtained by a less crowded oropharynx and hyoid
position is shown as the representative result of manual cephalometric
analyses (Table 3)
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sensitivity, specificity, positive likelihood ratio, negative like-
lihood ratio, positive predictive value, negative predictive val-
ue, and AUC [23, 24]. A p value of < 0.05 was considered to
indicate statistical significance.

Results

There were significant differences in age (p <0.01), AHI
(p<0.01), and body mass index (BMI) (p <0.01) between
patients with OSA and non-OSA samples (Table 1). After
the development of the DCNN model on the basis of 90% of
the total images (n = 1251), its ability to predict OSA was then
tested using the remaining 10% (n = 138). The DCNN as well
as manual cephalometric analyses significantly predicted the
presence of severe OSA: full image (X2:62.5, P<0.01),
main region (x°=59.2, p< 0.01), head only (x’=12.7,
p<0.01), and combinations of a more crowded oropharynx
and hyoid position (x’=39.7, p<0.01) and a less crowded
oropharynx (x°=31.8, p<0.01) (Table 2 and Online
Resource 3).

Table 3 shows the predictive qualities of the DCNN model
and manual cephalometric analyses. The sensitivity/
specificity and positive likelihood ratio/negative likelihood
ratio were 0.90/0.77 and 3.88/0.14 for full image, 0.84/0.81
and 4.35/0.20 for main region, and 0.71/0.63 and 1.91/0.46
for head only, respectively. Positive predictive value and neg-
ative predictive value were 0.87/0.82 in the full image group
and 0.88/0.75 and 0.85/0.42 in the main region and head only
groups, respectively. Test loss in the main region group (1.16)
was less than those in the full image (1.35) and head only
groups (3.08), while the full image group had the highest test
accuracy (0.85) of the three categories for DCNN analyses
(0.83 for main region and 0.69 for head only). Similarly, the
detailed results from the manual cephalometric analysis are
shown in Online Resource 3 and Table 3. Manual cephalo-
metric analyses demonstrated more oropharyngeal crowding
in terms of TG/LFC (p <0.01) and a lower hyoid with refer-
ence to MP-H (p < 0.01) in the OSA group in comparison with
the non-OSA group (Online Resource 3). The sensitivity/
specificity and positive likelihood ratio/negative likelihood

Table 1  Baseline demographics of the two populations

Patient characteristics OSA non-OSA
n (%) 867 522

Age (years) 49.7+8.9* 41.2+13.0
BMI (kg/m?) 282+55? 23.8+3.7
AHI (events/h sleep) 54.0£20.1% 2.5+14

AHI apnea hypopnea index, BMI body mass index, OSA obstructive sleep
apnea. *p<0.01 versus non-OSA

Table2 Detection of obstructive sleep apnea with a deep convolutional
neural network and manual cephalometric analysis
True label
Predicted OSA Non-OSA Total
DCNN analysis
Full image OSA 77 12 89
Non-OSA 9 40 49
Total 86* 52 138
Main region OSA 79 15 94
Non-OSA 7 37 44
Total 86° 52 138
Head only OSA 73 30 103
Non-OSA 13 22 35
Total 86° 52 138
Manual cephalometric analysis
More crowded oropharynx ~ Low hyoid 241 20 261
No low hyoid 82 40 122
Total 3234 60 383
Less crowded oropharynx ~ Low hyoid 108 21 129
No low hyoid 91 82 173
Total 199°¢ 103 302

The DCNN analyses were based on 138 test images. * X = 62.5, P<0.01
versus non-OSA. ®X? =59.2, P<0.01 versus non-OSA. X*> =12.7,
P<0.01 versus non-OSA. 4X* = 39.7, P<0.01 versus non-OSA.
°X* =31.8, P<0.01 versus non-OSA. DCNN deep convolutional neural
network, OSA obstructive sleep apnea

ratio for the combination of a more crowded oropharynx and
hyoid position were 0.75/0.67 and 2.24/0.38, respectively
(Table 3). The sensitivity/specificity and positive likelihood
ratio/negative likelihood ratio for the combination of a less
crowded oropharynx and hyoid position were 0.54/0.80 and
2.66/0.57, respectively. Higher positive predictive values
were observed for a more crowded oropharynx and hyoid
position (0.92) and for the combination of a less crowded
oropharynx and hyoid position (0.84), whereas negative pre-
dictive values for these combinations were 0.33 and 0.47,
respectively. The AUC in the main region group (0.92) was
higher than those in the full image (0.89) and head only (0.70)
groups, while those in the more crowded oropharynx group
and less crowded oropharynx group were 0.73 and 0.75, re-
spectively (Table 3 and Fig. 3). Accordingly, the AUCs ob-
tained in the full image and main region groups using DCNN
outperformed those from the manual cephalometric analysis.

Discussion

In this exploratory study, a DCNN identified individuals with
severe OSA through the use of 2-dimensional radiographs.

@ Springer
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Table 3 Comparison of

predictive qualities of the deep DCNN analysis Manual cephalometric analysis
convolutional neural network
model to that of manual Full Main Head More crowded Less crowded
cephalometric analysis image region only oropharynx oropharynx
and hyoid position and hyoid position
Sensitivity ~ 0.90 0.84 0.71 0.75 0.54
Specificity  0.77 0.81 0.63 0.67 0.80
LR+ 3.88 435 1.91 2.24 2.66
LR- 0.14 0.20 0.46 0.38 0.57
PPV 0.87 0.88 0.85 0.92 0.84
NPV 0.82 0.75 0.42 0.33 0.47
AUC 0.89 0.92 0.70 0.73 0.75

The best cutoff values for the hyoid position and oropharyngeal crowding in the manual cephalometric analyses
were determined by receiver-operating characteristic curves, respectively (Supplemental Table S1). AUC area
under the curve, DCNN deep convolutional neural network, LR+ positive likelihood ratio, LR- negative likelihood
ratio, NPV negative predictive value, PPV positive predictive value

Lateral cephalometric radiographs have not been used for the
diagnosis of OSA, but have been used to help with the eval-
uation of craniofacial morphology in OSA patients as well as
in subjects with dental malocclusion because the pathogeneses
of both OSA and dental malocclusions are closely related to
craniofacial soft and hard tissue structures [25]. However, it
may be reasonable to use DCNN and lateral cephalometric
radiographs for OSA detection considering the recent devel-
opment of machine learning technologies in parallel with, and
their high affinity for, medical images.

Although we succeeded in demonstrating that a DCNN dif-
ferentiated severe OSA and non-OSA, our current DCNN model
does not suggest at all that primary and/or tertiary care settings
are now better equipped to identify severe OSA solely by the use
of images because of significant limitations. First, as we men-
tioned in the “Introduction” section, our original purpose was to
test whether Al could identify patients with severe OSA who
have a more crowded oropharynx than non-OSA individuals
[2, 5]. Thus, before we considered developing a model for
predicting OSA that could be used in a clinical setting, we
exploratorily prepared labeled dichotomized samples as in the
standard method for supervised learning in deep learning ap-
proaches. As shown in Online Resource 4, we additionally
attempted to validate our model using another 269 consecutive
male samples with a wide range of OSA severity who visited our
center from May 2018 to December 2018. Within this more real-
world dataset, labeled patients with mild to moderate OSA (n =
148) had to be classified as either severe OSA (n =95) or non-
OSA (n =53) by the DCNN diagnosis, since our model did not
learn the craniofacial features of mild to moderate OSA. This
phenomenon is consistent with the recent speculation that “a
machine learning algorithm trained on a clinic sample of predom-
inantly men with mostly severe OSA would likely poorly per-
form in a population-based dataset of men and women with wide
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range of OSA severity and subtypes” [12]. On the other hand, it
is still notable that the main region model succeeded in detecting
92 (92%) of 100 severe OSA patients, while the full image model
found 87 (90%), among the above 269 samples (Online
Resource 4 and Online Resource 5). This supplementary data
suggests that recognition of a craniofacial structure specific for
OSA using 2-dimensional images may be a suitable application
of machine learning techniques and that extension of the concept
of our study to another study that includes mild to moderate OSA
samples may provide a practical model for predicting OSA in the
future. Second, subjects were all recruited from a single tertiary
sleep center and thus non-OSA subjects differ from community
samples, which is a significant limitation of our study and other
similar studies overall; it is not feasible to prospectively perform
polysomnography and label the ground truth in samples with
AHI less than 5 events/h sleep from the general population.
Third, the 1389 subjects analyzed in this study might be the
biggest data set for a cephalometric OSA study ever. However,
the subjects included only males because of both the limited
number of female learing/testing data and possible craniofacial
differences between sexes [26]. Our samples reflect the usual
demographics of sleep clinic populations and, therefore, replica-
tion of these findings in a larger set of female samples is neces-
sary. In addition, a neuromuscular compensation mechanism is
more augmented in defense of the upper airway in female OSA
patients as compared with male OSA individuals [27]. Therefore,
female OSA patients could have the more crowded oropharynx if
the severity of OSA is the same between male and female sam-
ples. This indicates that our DCNN model might detect female
OSA more easily: a better AUC than that from male samples
could be obtained. Fourth, we included only one ethnic group
and confirmation of our results by the inclusion of ethnic groups
other than Asian would be interesting and necessary. The authors
believe that these significant limitations do not necessarily
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undermine the concept of the future use of Al and images for
objectively detecting patients with OSA.

In the present study, we assumed that the DCNN model
achieved the higher accuracy of ROC analyses (i.e., AUC =
0.92 from the main region) when the predictive ability was
classified based on AUC (excellent=0.9 to 1, good=0.8 to
0.9, fair=10.7 to 0.8, poor = 0.6 to 0.7, or non-discriminative =
0.5 to 0.6) [23, 24]. The higher AUC from the main region
(0.92) relative to those from the full image (0.89) and head
only (0.70) may reflect a certain anatomical background that
supports our hypothesis; the DCNN, similar to a manual anal-
ysis, might also focus more on the oropharyngeal region,
which is an area of interest in OSA images for skilled
radiologist/sleep-related personnel (Fig. 3) [3, 5]. The higher
accuracy of ROC analyses with 2-dimensional images alone
using DCNN models may suggest that an anatomical compli-
cation is a major cause of OSA among various known/
unknown factors in the middle-aged OSA population. In the
present study, the impact of different OSA phenotypes other
than craniofacial anatomy (e.g., upper airway muscle respon-
siveness, breathing control, arousability, etc.) on the results is
unknown. However, clustering OSA in future studies could
contribute to increasing the accuracy of the DCNN analyses.
In contrast to good (full image) and excellent (main region)
accuracy, the fair accuracy (AUC 0.70) obtained solely from
the occipital region (head only) was unexpected, but of inter-
est [23, 24]. Since OSA patients are a significantly older and
more obese population than controls (Table 1), and the risk of
OSA increases with aging and obesity, the DCNN might rec-
ognize information related to age and/or obesity in an image
(e.g., loss of bone mineral density, subcutaneous fat thick-
ness), which is not apparent even to experts [28, 29].

A strength of this study was the quality of the training/test
data with a large sample size; samples were obtained from a
homogenous single cohort with the standard method for tak-
ing lateral cephalometric radiographs, and the diagnosis of
OSA/non-OSA was achieved by standard nocturnal
polysomnography, resulting in adequately labeled ground
truth and thereby maximally avoiding annotation noise [12].
Furthermore, there are some clinical implications. Since sim-
plicity, quickness, inexpensiveness, and low-dose radiation
support the practical use of 2-dimensional radiographs relative
to 3-dimensional images, the concept of the present study
could be widely applicable in dental offices as well as primary
care settings/satellite practices. Undoubtedly, the patient’s
subjective symptoms of OSA (i.e., excessive daytime sleepi-
ness, snoring, etc.) are the simplest signs for the early detec-
tion of OSA [8]. However, subjective assessment often intro-
duces noise to the initial diagnostic process and accuracy. The
machine learning technique is objective (i.e., no inclusion of
human subjectivity in the diagnostic process), less labor-in-
tensive, and less time-constrained and should be able to min-
imize the delay of both the diagnosis and the referral of

patients to secondary/tertiary care. Accordingly, the combina-
tion of demographic characteristics including anthropometric
features may provide different Al models that maintain the
clinical usefulness of a DCNN model in the detection of
OSA [30-32].

Conclusion

A deep convolutional neural network, a deep learning archi-
tecture that is part of a broader family of machine learning
methods in Al technology, accurately identified individuals
with severe OSA using 2-dimensional lateral cephalometric
radiographs. Future research on this concept using Al and 2-
dimensional images per se can be further encouraged when
discussing triage of OSA.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s11325-021-02301-7.
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