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Abstract

How do brains shape social networks, and how do social ties shape the brain? Social networks are 

complex webs by which ideas spread among people. Brains consist of webs by which information 

is processed and transmitted among neural units. While brain activity and structure offer biological 

mechanisms for human behaviors, social networks offer external inducers or modulators of those 

behaviors. Together, these two axes represent fundamental contributors to human experience. 

Integrating foundational knowledge from social and developmental psychology and sociology on 

how individuals function within dyads, groups, and societies with recent advances in network 

neuroscience can offer new insights in both domains. We use the example of how ideas and 

behaviors spread to illustrate the potential of multi-layer network models.
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The structure of our social world is incredibly complex and involves multiple interacting 

units [1]. Questions that hinge on understanding when, how, and why these units interact 

require theories and methods that address this heterogeneous pattern of interpersonal 

connectivity. Network science offers theories and methods that can capture the richness 

of interconnection patterns [2], pinpoint local network nodes that influence global function 

[3], and offer tools to intervene in a way that drives social network change [4,5]. Integrating 
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these theories and methods with empirical studies offers a powerful means to uncover 

a set of principles that describe behavior in terms of network structure and function 

across domains. For example, there are intriguing similarities between the patterns of 

interconnectivity among individuals in a close-knit family [6], members in a team [7], 

activists in political uprisings [8], companies in the corporate world [9], and countries 

engaging in efforts supporting global diplomacy [10]. Indeed, the term “social network” is 

perhaps a misnomer – a general term for what is in fact a set of interacting networks at 

multiple levels of analysis that form the fabric of our social and cultural lives.

Although units in social networks can be countries, companies, or compatriots, typically 

the smallest unit studied in social network research is that of a single person: the atom of 

the social network universe. Yet, as the atom is composed of first protons and neutrons, 

then quarks – a person is in fact composed of smaller units that interact in networks of 

their own [11]. This is the fodder of the emerging field of network neuroscience [12], 

which pursues new ways to map, record, analyze, and model the elements and interactions 

of neurobiological systems. In humans, this enterprise seeks to understand the pattern of 

connections in an individual’s brain that code for their personality [13,14], behavior [15,16], 

and risk for disease [17–19], as well as their potential to adapt to their surroundings [20], 

engage in meaningful relationships with others [21], and participate in a larger team [22]. 

Such predictive patterns of connections exist across diverse spatiotemporal scales [23] 

and can be argued to form a separate intra-human layer in the multiscale social network 

hierarchy. These recent advances in network neuroscience complement substantial advances 

in social and cognitive neuroscience that have mapped patterns of activity and the structure 

of the human brain within and across brain regions.

Here, we review recent studies that have brought together questions of brain structure and 

function with insights from social network analysis. It is beyond the scope of this piece 

to provide a substantial review of the foundational literatures in social and developmental 

psychology and sociology, on how individuals function within dyads, groups, and societies, 

and within neuroscience on how brain structure and function relate to the psychology 

of the individual. Instead, we argue that understanding brains and social networks in the 

context of one another is not only important but indeed critically necessary, because the 

two are interacting systems: brain dynamics shape learning and behavior [24], including 

social interaction [25]; likewise, social contexts alter brain structure and function [26,27]. 

Integration of theories and methods linking brain activity and structure to activity and 

structure within social networks holds great promise to improve our knowledge of the 

single human by improving our ability to predict behavior, derive core psychological 

and neurocognitive principles, and distinguish brain health and disease [28]. In addition, 

integration of social network and brain dynamics holds great promise to improve our 

knowledge of the collective by improving our ability to predict group behavior [29,30], 

gain deeper insight into underlying mechanisms, and potentially intervene more efficiently. 

For example, questions of communication between individuals and across groups, as well as 

broader classes of learning and decision making, can be conceptualized both in terms of the 

neural and psychological mechanisms supporting the decisions and behaviors of each actor 

(e.g., a decision to share a piece of information, an unconscious facial response to learning 

a piece of information), as well as how individuals mutually influence one another. In these 
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ways, linking brain and social networks opens new avenues for discovering principles that 

fundamentally underlie individual decision making, person to person interactions, and the 

broader organization of society.

Although several pieces of this puzzle remain to be discovered, we focus on one example 

– the neurobiology of how ideas and behaviors spread within social networks – to illustrate 

ways in which brain network dynamics and social network dynamics might be studied in 

parallel. Specifically, ideas and behaviors are transmitted and adopted over a period of 

time, either through verbal or non-verbal communication. This process involves biological 

coupling (e.g., of language patterns [31–33], non-verbal signals [34–36], and brain activity 

between communicators and receivers [37–39]). Because the behavioral and cognitive 

processes supporting idea and behavior spread can change over time, tools to reveal their 

neurophysiological underpinnings must be tuned to characterize and quantify temporally 

expansive phenomena. Complementing time-varying univariate approaches including 

parametric modulation analysis [40], here we focus on dynamic network approaches as 

a natural set of tools that meet these requirements, and that can specifically be used to 

understand interactions between brain systems implicated in idea and behavior spread, 

including the brain’s value system and the default mode network [41]. By characterizing 

patterns of functional connectivity and their changes over fine scale temporal windows, these 

approaches can be used to map communication patterns between functionally specialized 

brain areas that either directly relate to interpersonal communication patterns occurring 

during the experiment, or that predict features of interpersonal communication occurring 

outside of the experiment over longer time windows. More generally, markers of brain 

connectivity (short time scale) can be linked in a correlative or causative manner to 

communication patterns between people in social networks (longer time scale), thereby 

offering an explicit mathematical framework for integration across this multiscale network.

To unpack how multiscale network perspectives can inform both neural and social scientific 

questions related to the spread of ideas and behaviors, we begin with a discussion of selected 

brain networks that are broadly relevant to the spread of ideas and behaviors, and we review 

how a network perspective has aided our understanding of these processes. We then move 

to a discussion of recent studies that have examined brain dynamics in dyads and groups, 

which comprise intermediate building blocks of social networks, and we consider the ways 

in which broader social network structure might influence these processes. In doing so, 

we review work that has conceptualized social network structure as a type of individual 

difference that might affect and be affected by a broader array of psychological functions 

and individual behaviors [42,43]. The studies we review and the concepts we grapple with 

are illustrative of the broader potential for integrating brain network and social network 

perspectives, and motivate a set of open questions at the intersection of these domains. 

Tackling these questions calls for new methodological approaches and conceptual theories 

addressing the multiscale nature of social networks, with the smallest scales being composed 

of individual humans whose brains are teaming with interconnected units performing diverse 

computations and communicating complex information, and scaling up to explain collective 

phenomena.
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How do information and behaviors spread from person to person in 

networks?

As a central example to illustrate the idea that brain and social networks mutually influence 

one another, and that understanding such interactions has value, we will consider the 

fact that ideas [44,45], emotions [46–49], and behaviors [46–48,50,51] can spread from 

person to person in both online and offline social networks [52]. What are biological 

mechanisms for these phenomena? Social scientists have asserted that belonging and 

coordination are critical for human survival [53,54]; being part of a group confers many 

advantages including the potential to guard or defend from predators and the elements, 

and to learn optimal behaviors from others, thereby ensuring maintenance and availability 

of resources and safety. In parallel, neuroscientists have characterized a wide range of 

brain systems relevant to communication and decision making. However, the question of 

how ideas and behaviors spread between brains, through social networks, has only begun 

to be addressed [55]. In the following sections, we review studies in individuals, as well 

as research branching into dyads and networks, that speak to the cognitive mechanisms 

of, neurophysiological manifestations accompanying, and network influences on idea and 

behavior spread. Collectively, this growing body of literature provides an example for 

thinking about a broader framework for traversing levels of analysis from brains to social 

networks. Bringing these ideas together, we then argue that there are important open 

questions about how ideas and behaviors spread that could be solved by modeling brains 

and social networks within a multiscale network framework.

Brain networks within individuals

Cognitive processes supporting the spread of ideas and behaviors

Although many cognitive processes may support the spread of ideas and behaviors 

from person to person, reward-driven learning in ventral striatum (VS) and ventromedial 

prefrontal cortex (vMPFC) is central to the successful spread of ideas and behaviors, such 

that people are more likely to share ideas when they believe the outcome of sharing will be 

positive [55]. In this context, communicators’ intentions to share information [56,57], and 

their success in doing so [57–59], are associated with activity within the communicator’s 

value system, which can weigh the potential value of sharing one piece of information over 

another, or over not sharing it at all. In this case, sharers may find value in sharing content 

that they themselves find valuable, but self-disclosure and social bonding may also be 

inherently valuable ends that can motivate sharing ([56,60–62], for reviews and information 

on inputs to the value calculation, see [44,55]). In parallel, neural activation in the analogous 

brain systems of receivers who are exposed to information about others’ beliefs, preferences, 

and actions also contributes to the likelihood that the receivers updates their own beliefs, 

preferences, and actions to align with those of the communicators [55,63–67].

Brain network dynamics supporting the spread of ideas and behaviors

Brain areas implicated in the communication or reception of ideas and behaviors, however, 

do not operate in isolation. Instead, recent advances in network neuroscience [12] suggest 

that these brain areas form hotspots within a wider, more dynamic web. In this view, 
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individual brain regions interact with each other (e.g., via synchronization, correlation, or 

other measures of functional connectivity) on the backbone of crisscrossing white matter 

tracts comprised of large bundles of myelinated neuronal axons [68]. Recent advances 

in neuroscience and computational science have opened unprecedented opportunities to 

consider the dynamics within and between brain networks as they evolve over time 

in accordance with people’s changing mental states and behaviors [69,70]. Importantly, 

reconfiguration of regions working together provides a complementary view of brain activity 

to the more modular view that a given region tends to achieve a specific function in a 

relatively fixed manner. The dynamic network perspective can thus augment prediction 

of different behavioral outcomes in humans [24] and provide tools that are particularly 

appropriate for the study of idea and behavior spread.

Differences in the architectures and functional dynamics of key brain regions and networks 

across people can alter the tendency for a person to either spread or receive ideas or 

behaviors via a host of mechanisms. In other words, some people might tend to exhibit 

brain dynamics that promote a greater tendency to share ideas, or a greater receptivity 

to assimilating ideas. For example, preliminary evidence demonstrates that individual 

differences in connectivity within the value system (i.e., between VMPFC and VS) of 

sedentary adults [71] and smokers [72] predict their receptivity to persuasive appeals aimed 

at changing those behaviors, and explain variance in real-world health outcomes in physical 

activity and smoking cessation above and beyond univariate activity in either region alone. 

More broadly, different brain network dynamics have also been associated with variation in 

factors that might indirectly alter the tendency for a person to either spread or receive ideas 

or behaviors such as social anxiety [73], emotional state [74], and perceived social support 

[75].

Recent efforts also demonstrate that the manner in which brain networks reconfigure over 

time can predict our future decisions [76], and can track the processing of linguistic stimuli 

from words to sentences to stories [77–79], suggesting a role in the processing and uptake 

of information that is naturally provided in social contexts. Importantly, these patterns of 

brain network reconfiguration differ across different people and, thus, can be used to predict 

individual differences in learning [80,81], working memory [82], and cognitive flexibility 

[82,83], all cognitive processes that are fundamental to idea and behavior spread. Finally, 

the intrinsic dynamics of these brain networks encoding patterns of time-varying functional 

connectivity can change within a single person over short time scales as a function of 

mood, fatigue, arousal, and attention [74,84], highlighting the value of using tools capable of 

capturing network configuration over time and at different temporal scales (e.g., within and 

between experimental sessions).

As a whole, network neuroscience thus offers a perspective on human cognition [70,85] 

and provides insights into specific processes supporting the spread of ideas and behaviors. 

More broadly, the emerging consideration of network organization in the brain has the 

potential to improve our understanding of other cognitive processes that cannot be explained 

by the workings of individual regions [86]. The approach capitalizes on tools from 

network science, graph theory, and systems engineering [87], which together have offered 

fundamental insights into the architecture of multiple brain systems relevant to the spread of 
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ideas and behaviors such as the default mode system [88], the valuation system [89], and the 

mentalizing system [14].

From individuals to dyads and multiscale networks

Work on the brain network dynamics characteristic of single individuals has recently taken 

a more ‘social turn’, and begun to uncover the neural basis of how pairs of individuals 

or groups of individuals interact [90]. For example, although measures of functional 

connectivity have traditionally focused on intra-brain connectivity within brain regions 

in single subjects, they can just as straightforwardly be computed between two brain 

regions in different subjects. These sorts of calculations are referred to as inter-subject 

functional connectivity [77]. The resulting brain-to-brain networks provide an analogue 

to social networks and other social scientific approaches to studying dyads and groups, 

but fractionate the ‘atomic’ definition of the person into brain regions. These within-brain 

networks can then be integrated in a comprehensive framework of dyads, groups, or even 

larger communities or cultures. Taking this step is more than a mere thought exercise, but 

instead can offer new insight about the underpinnings of thoughts and emotions and how 

they spread in our inherently social world.

In the case of ideas spreading through social networks, the strength of coupling between 

brain activity in communicators and receivers [38,39,91], as well as between receivers 

exposed to shared content [92], is associated with the success of the communication process, 

i.e., the successful transmission of signals into the brain networks of the receiver [37,93]. 

For example, greater synchrony in several parts of the value system and default mode 

network more broadly (medial prefrontal cortex, MPFC; striatum; posterior cingulate; and 

temporal parietal junction, TPJ) has been associated with more successful communication 

between a communicator telling a story and a listener who was later asked to recall details 

of that story [38]. Furthermore, activity within a subset of the synchronized brain regions 

(MPFC; striatum; and dorsolateral prefrontal cortex, dLPFC) in listeners actually precede 

the corresponding activity in the speaker’s brain, a process termed ‘anticipatory coupling’, 

emphasizing the bidirectional nature of communication. Moving from communicating 

pairs to even larger networks, analyses of inter-subject brain connectivity across networks 

of individuals demonstrate that brain-to-brain networks become increasingly efficiently 

organized as the level of interaction between subjects increases [94]. Complementary work 

demonstrates that people who are closer to one another in their social networks show more 

similar brain responses to stimuli such as movie clips, even controlling for demographic 

similarity [95]. These data suggest that social network variables may influence how people 

process information, or that people who process information more similarly may more easily 

communicate and become friends.

Biological synchrony is thought to allow communicating pairs of individuals to co-regulate 

their actions according to shared goals [96]. The growing body of research directly 

examining the brains of people communicating [90] lays the foundation on which to 

consider how ideas and behaviors flow in social networks by pointing towards dyads and 

chains of person-to-person communication as the key building blocks of social networks. 

Yet, both brain and social systems are known to operate as interconnected networks with 
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emergent collective behaviors [97,98]. Thus, work examining neural processes in dyads, 

chains and more complex configurations such as triangles, might help illuminate how and 

why ideas spread in small groups and larger populations [99]. What are the network factors 

– both in brains and social systems – that influence how ideas are propagated and how 

behaviors are transmitted across groups? Likewise, similar questions can be asked regarding 

how social network structure might influence a much wider array of social, cognitive and 

emotional processes in individuals and groups.

Drawing on methods from social sciences that study dyads and groups, neuroscientists have 

begun to consider how brain activity across individuals synchronizes and what effects this 

might have on interpersonal communication and decision-making more broadly. Although 

preliminary evidence illustrates that brain activity in one actor can be correlated with 

activity in other actors, many questions remain unanswered, including those about the brain 

networks involved, their interrelationships across actors, and the influence of broader social 

network structures on brain activity within individuals and pairs. Understanding when, why, 

and how ideas and behaviors spread can benefit from linking these levels of analysis.

Multiscale networks spanning brain and social networks

To address questions of mechanism across levels of analysis, it is important to note that 

because network architectures are present and influential across levels of the social hierarchy 

– from individuals, to pairs, to groups – techniques from network science offer ways in 

which to link mechanisms of cross-scale phenomena [23]. Beyond the fact that network 

analysis is applicable to both brain and social networks independently, we envision that 

multiscale network analysis could provide some unique insights. Specifically, mathematical 

modeling of such a multiscale network could offer a new and parsimonious way of 

integrating findings from individual brains with findings relevant to social groups (e.g., 

about how ideas and behaviors spread). This notion builds on (i) recent advances in 

the mathematics of multilayer networks [100], including tools for representation [101], 

characterization [102], and inference regarding function [103], and (ii) the application of 

these tools to real-world multilayer systems with structures that are analogous to those 

observed in brain-human-group networks [104–106]. These studies offer concrete intuitions 

for how information can be created, manipulated, and processed in regions and networks in 

one brain and, based on those computations, the information could be transmitted from that 

brain to another brain in the social network, via processes of active transmission, learning, 

diffusion, or contagion to name a few (See Box 2, Multilayer Brain-Social Networks, and 

Box 3, A multilayer network model of how ideas and behaviors spread).

Given that people, and hence their brains, do not function in isolation, it also makes sense 

to consider how the structure of interconnections between people who influence one another 

might change the way a given individual operates. Thus, in the next section, we turn our 

attention to the ways in which the structural properties of a social network might moderate 

the brains of individual actors and vice versa.
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In what ways do different social network structures and dynamics shape 

brain and behavior? In what ways do different brains shape the network 

positions we occupy?

The idea that the social fabric that surrounds humans contributes to psychological and 

biological functioning is not new. For example, decades of research have demonstrated 

links between social support and biological function in animals and humans [107–110] 

and cultural psychologists have argued that individuals both influence and are influenced 

by their social environments [111]. Extending this logic, the brain influences the social 

networks people are in and how individuals interact within them, but the social dynamics 

and social network structure also influence how people’s brains work. By formalizing these 

relationships, mathematical models of social network structure and resources with models of 

brain function may provide new insight in both domains (see Box 4). In line with this goal, a 

growing body of literature has begun to explore the ways in which social network properties 

(including specific structural features) relate to brain structure and function. Several of these 

findings suggest that the structure and function of the brain’s mentalizing system, as well as 

regions involved in affective processing, display particularly strong covariation with social 

network features.

Mentalizing, operationalized as accurately reporting on someone else’s mental state [112], 

and empathizing with others [113] are both processes that covary with social network 

size. In monkeys, experimentally manipulating social group size increases the structure 

and function of brain regions associated with the processing of social cues [114]. In 

humans, social network size also covaries with grey matter volume within regions associated 

with mentalizing [115], as well as broader emotion processing systems composed of the 

amygdala, orbitofrontal cortex, and connectivity between amygdala and cortical regions 

[116–118]. Also in humans, social network diversity, but not size, is associated with global 

white matter integrity at the borders of dmPFC, a key component of the mentalizing system 

[119], and in the corpus callosum.

Differing social network properties are also associated with functional differences in 

processing within systems necessary for navigating the social world. For example, during 

resting state scans, those with larger social networks show greater connectivity between the 

amygdala and parts of the value system implicated in social affiliative behavior, as well as 

brain regions implicated in social perception [118]. It is likely that social network structures 

both shape the types of social interactions that people have and are also shaped by individual 

differences in the tendency to use the brain in particular ways. To this end, teens who occupy 

social network positions with greater potential for information brokerage (i.e., connect more 

friends who did not otherwise know one another) also use brain regions implicated in 

mentalizing more when making recommendations to others [120]. It is possible that those 

who have more opportunities to translate information between others would need to practice 

mentalizing more, or that people who tend to do so more would naturally gravitate to 

network positions that make use of that tendency.
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Mentalizing tendencies may also be associated with other advantages that are reflected in 

terms of brain function in perceivers and social targets. First, more popular people are 

perceived by others differently than less popular people are; when network members viewed 

the faces of more popular people in their social networks, popular faces elicited increased 

activity in functionally localized brain regions associated with mentalizing and valuation, 

with the effects of mentalizing mediated by value-related activity [121]. Interestingly, these 

effects were strongest in the most popular individuals, who were also the most accurate in 

knowing how others viewed them [121]. These data are consistent with the idea that brain 

and social network variables may mutually influence each other, with activity in value and 

mentalizing systems helping perceivers identify important social referents.

The brain’s mentalizing system in lateral temporal cortex and temporal parietal junction 

may also encode information about the social network position of people more broadly; in 

one study, these regions automatically distinguished the social network position of people 

within a social network whose faces participants observed in an fMRI scanner [122]. 

Separate regions that have been associated with processing social status, including mPFC, 

temporal poles, and fusiform gyrus, also encoded information about eigenvector centrality, 

a measure of prestige that captures the degree to which a participant is connected to well

connected others [122]. The authors note that these features of the social network were 

encoded automatically upon perception of the social referents (the task involved viewing 

of brief videos of network members and indicating whether the video was the same as 

the previous video played, and did not call any specific attention to social judgment). This 

highlights one value of integrating brain data with social network data, since the social 

perception processes in question occur quickly and often outside of conscious awareness. 

Thus, determining the mechanisms would likely be difficult with self-reports alone.

Moving forward, a more comprehensive and systematic investigation of how different social 

network properties (e.g., size, closure) relate to brain structure and function across a range 

of tasks, groups, and stages of development will help fill in this picture. Recent findings 

have begun to address different types of social ties (e.g., friends versus kin; varying levels of 

closeness in a social network) may be processed differently in the brain [123], highlighting 

the need for more nuanced hypotheses and analyses that account for multiscale structure 

in both social networks and brain networks. In addition, although the growing body of 

studies reviewed above suggest promise in integrating social network analysis with measures 

of brain structure and function, almost none of this work has explicitly modeled networks 

both within the brain and between individuals (c.f. [124]), which we argue is an important 

intersection to consider.

Current Frontiers and Open Questions

Frontiers for network neuroscience

Adopting a multiscale perspective suggests several possible extensions to extant network 

neuroscience findings. For example, it remains an exciting open question to determine 

the extent to which the brain network dynamics described in early network neuroscience 

investigations might vary across social contexts (e.g., between people who inhabit different 

social network structures), cultures, and stages of development. Likewise, variation in brain 
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network dynamics might contribute to variation in social network structures, and it would be 

interesting to examine these dynamics in different cultural contexts.

Frontiers at the intersection of brain and social network science

As noted in our introduction, the term ‘social network’ encompasses multiple forms of 

interacting, multiscale networks of friends, family, co-workers, and communities. Work at 

the intersection of brain science and social network science has only begun to scratch 

the surface of how a wide range of social network types (e.g., core networks versus full 

networks [125–130]; strong versus weak ties [131–133]; online versus offline networks 

[134,135]) might influence and be influenced by brain function across the lifespan. In 

addition, tools for describing the social networks that individuals inhabit range from 

objective logs of specific ego-centric networks (e.g., Facebook [120,136]) to subjective 

assessments of the support available from a range of others (e.g., [136]) to interactions with 

supportive others [137]. Finally, within a given network, a number of features– ranging from 

measures of size to measures of topological complexity– might be differentially associated 

with brain structure and function for different types of tasks.

Many open questions remain at the intersection between brain networks and social networks. 

Arguably some of the most fundamental questions relate to notions of causality. To what 

extent do social network dynamics cause changes in brain dynamics? And to what extent 

do brain dynamics cause changes in social network dynamics? Most existing research at 

the intersection of brain and social network science has been correlative; in addition to 

building a deeper and broader picture of how a wide range of cognitive, affective, and social 

processes interact, experiments that determine causality will also substantially advance 

science in both domains. Longitudinal studies that span key transitions (e.g., from high 

school to college) will also provide insight into the direction of causality because both brain 

networks and social networks can change appreciably over this time scale. Indeed, tracking 

associations between changes in brain network and social network functioning over time 

provides a standard of evidence between cross-sectional and experimental designs [138].

A second set of questions relates to how other external processes might change the workings 

of brain and social networks. What environmental factors moderate the interactions between 

social and brain network dynamics? In what ways do cultural variables influence social 

and brain network dynamics? In what ways might interactions between brain networks and 

social networks vary across development (e.g., in children versus adolescents versus adults)? 

In each case, we hold that the time is ripe for hypotheses bridging brain and social networks, 

and building on both recent preliminary data and recently developed computational tools and 

methods.

Potential applications

Efforts aimed at understanding and integrating the study of social and brain network 

dynamics will advance understanding of basic psychological principles and aid in deriving 

fundamental principles about the organization of society. But even beyond fundamental 

knowledge, work at this intersection has the potential to improve real-world practice 

in clinical treatments for mental and physical disorders, predicting behavior change in 
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response to persuasive messages, and improving educational outcomes including learning 

and creativity. For example, if people whose brain and/or social networks show differential 

response to treatments, logged information (e.g., from social media) could aid in providing 

tailored interventions. Similarly, educational environments could be constructed in which 

groups of students work with one another in tailored social networks to maximize individual 

learning potential. Indeed, improved knowledge in these domains also has the potential to 

aid in constructing optimal teams for group learning and for task performance in education, 

corporate, medical, defense, or other contexts. These possibilities motivate collaborative 

alliances between social scientists, neuroscientists, and network scientists in building and 

fine-tuning laboratory experiments, real-world studies, computational infrastructure, and 

fundamental mathematical theory that bridges the divide between individual brains and 

social groups by depicting the two as fundamentally interconnected levels in a multiscale 

network.
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Trends Box

• Network neuroscience provides new ways of understanding the complex 

patterns of structural connections and functional coupling in the human brain.

• Social network analysis offers systematic ways to quantify social 

environments and interactions among persons and people groups.

• Recent trends bring these two types of analysis together to understand how 

brain networks and social networks interact to influence the behaviors of 

individuals, groups and populations.

• The confluence of these fields is beginning to shed light on how ideas and 

behaviors spread from person-to-person, and has the potential to inform 

health, education and community intervention.
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Outstanding questions box

• To what extent do social network dynamics cause changes in brain dynamics?

• To what extent to do brain dynamics cause changes in social network 

dynamics?

• What factors moderate the interactions between social and brain network 

dynamics?

• In what ways do other cultural and environmental variables influence social 

and brain dynamics and the relationship between them?

• In what ways does development across the lifespan influence social and brain 

network dynamics and the relationship between them?

• To what extent can understanding and integrating the study of social and 

brain network dynamics support practical advances such as tailoring clinical 

treatments for mental and physical disorders, predicting behavior change 

in response to persuasive messages, and improving educational outcomes, 

including learning and creativity.

• To what extent can understanding and integrating the study of social and brain 

network dynamics advance understanding of basic psychological principles 

and aid in deriving fundamental principles about the organization of society?

• Could improved knowledge in these domains aid in constructing optimal 

teams, for group learning and for task performance in education, corporate, 

medical, defense, or other contexts?
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Box 1

Measurement of integrated social and brain networks

Scaling up beyond individuals to pairs or groups of subjects requires either simultaneous 

measurement in the form of hyperscanning [139], or posthoc analyses that take data 

from individuals who engaged in the same experience and link that data together 

after acquisition [140]. One way in which the latter can be accomplished is by 

exposing participants to the same time locked stimuli and then examining the degree 

to which different participants show intersubject correlation in response to those 

stimuli [37,92,141]. An extension of this approach involves collecting brain activity 

in communicators as they communicate and receivers as they receive – this method 

similarly allows time locked analysis of a common time series [37,91,92,141]. Scaling 

this approach from dyads to networks, one study constructed multi-brain networks of 

2 speakers and 10 listeners, connected in a single network, to measure synchronous 

communication between network members [142]. These approaches pave the way to 

understand the manners in which brain network dynamics in one person might influence 

or reflect the brain network dynamics in another.

In addition, it is important to note that both brains and social systems have both 

structural and functional network organization, and both aspects of the systems may 

be important in understanding system-system interactions. In the human brain, while 

functional networks are defined based on similar time-varying patterns of regional 

activity, structural networks are defined based on estimates of white matter tracts 

connecting region pairs [143,144]. Structural network organization in the brain varies 

appreciably across individuals [145], over developmental time scales [146], and over 

healthy aging [147]. This organization has been linked to individual differences in 

cognitive function [148], and to differences in the patterns of functional connectivity 

that support it [149–151].

Just as brain networks can be described in terms of structure and function, social 

networks can likewise be described in terms of the structure of social ties that surround 

an individual (i.e., who knows or is connected to whom [1,42,131,134,152]) and 

infrastructure that connects them [153] as well as functional interactions in which people 

engage (e.g., communication networks [154–156]) and the quality of the relationships 

between people (e.g., liking [121]). As with brain networks, the structure of social 

networks varies appreciably across individuals [42,134], and within individuals over 

development [157] and as their context changes [158], though there is some consistency 

in an individual’s “signature” network characteristics [154].
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Box 2

Multilayer Brain-Social Networks

Intuitively, the brain-social multiscale network has two layers: the brain network layer 
in which regions are nodes, and structural or functional connections are edges, and the 

social network layer in which people are nodes, and inter-personal relationships are 

edges. An important question is how these distinct layers get connected up with one 

another to form a multilayer structure. Arguably the simplest way in which to link the 

two layers it to note that all brain areas of person 1 are linked by interlayer links to the 

node in the social network that represents person 1. Similarly, all brain areas of person 

2 are linked by interlayer links to the node in the social network that represents person 

2. In this multilayer network, information in one region in person 1 can be transmitted 

to another region in person 1 via the brain network; that transmission of information can 

lead to a change in the idea of person 1, which can then be transmitted from person 1 to 

person 2 via the social network.

To summarize, this architecture is composed of region-to-region links in the brain 

network layer only, person-to-person links in the social network layer only, and region-to

person links that bridge across layers in the multilayer network. While a useful starting 

point, recent data suggests that this multilayer network also contains a fourth kind of 

link: a region-to-region link across persons where a brain area in one person can be 

linked by temporal synchronization of activity to the brain area of another person. Such 

brain-to-brain connectivity could reflect shared neural representations that arise from 

assumptions based on cultural knowledge or other variables, which may be, but are not 

required to be directly reflected in behavior.

The key advantage of the multilayer framework is that it enables one to formally develop 

and integrate (i) models of information transmission across links in the brain network, 

(ii) models of idea transmission across links in the social network, (iii) models of brain

to-brain synchrony, and (iv) models of computation, cognition, emotion, and perception 

that translate information into ideas across region-to-person links. Such models can then 

be used to probe and predict how perturbations at one node in one network layer (e.g., 

brain) can impact on another node in another network layer (e.g., social).
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Box 3

A multi-layer network model of how ideas and behaviors spread

Ideas and behaviors spread from brain to brain through social networks. We offer one 

example of the type of multi-scale network model we envision linking neuro- and 

social scientific models to explain when, why and how ideas and behaviors spread. 

From the neuroscience side, decisions, including whether to share information as a 

communicator, or act on that information as a receiver, can be modeled in terms 

of reinforcement learning [159,160]. The reinforcement learning perspective argues 

that personal subjective value maximization guides behavior [161–164]. Under this 

framework, when making choices, the brain is thought to compute a predicted reward 

for each potential course of action. Choices that result in more reward than expected are 

reinforced, and choices that result in less reward (or more punishment) than expected are 

devalued [165]. In parallel, social psychologists have highlighted that learning can take 

place not only with respect to an actor’s own experience, but also through observational 

and social learning from the experiences of others [93,166,167]. This learning occurs in 

conjunction with brain systems supporting simulation [167] and understanding of other’s 

experiences and perspectives (i.e., mentalizing) [93,168,169]. Likewise, the spread of 

ideas and other group-based problems are also critically influenced by the structure and 

composition of the social network (e.g., [2,8,170,171]).

Bringing these ideas together with a multi-scale network perspective, the flow of ideas 

and behaviors through social networks could be mathematically modeled by integrating 

concepts from reinforcement learning and social learning with network science. Here, 

an actor’s choices could be modeled using terms that capture information about the 

structure and function of brain networks within and between individuals. For example, at 

the individual level, such a model would characterize activity within and interactions 

between brain systems within the individual that support valuation, simulation and 

mentalizing as the actor learns from her own choices and the choices she observes 

in others [172]. Consistent with foundational research in social and developmental 

psychology and sociology on how individuals function within dyads, groups, and 

societies, such a model would also explicitly model the actions of social referents 

surrounding the actor. Finally, to capture the multi-scale nature of networks of brains 

communicating with one another, the model could account for the strength of coupling 

between key brain systems of actors within the network, as well as the structure of the 

individuals in the network (e.g., Figure 3).

For example, the probability that an idea spreads from a sharer (s) to receiver (r), could 

be modeled in terms of activation (A) and connectivity (C) matrices capturing (i) activity 

within the potential sharer’s brain (e.g., with nodes in the value and mentalizing systems) 

when describing the idea, (ii) activity and connectivity within parallel regions within the 

receiver’s brain during exposure to the ideas, and (iii) coupling between the two. Further, 

one could include a matrix capturing the number and position of other social referents 

(relative to the sender and receiver) who hold the same view within the social network 

(N). An example model could be written as follows:
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P spreadsr = As+Cs+Ar+Cr+Asr+Csr+Ns+Nr + error

Although each of these pieces has been modeled in isolation in prior work, such an 

integrated social reinforcement learning model mathematically links models of brain 

dynamics with social network structure and dynamics, and allows a more integrated 

theory of how ideas and behaviors spread in a social world [24].
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Box 4

Multiscale network models: description, prediction, and perturbation

In principle, the multilayer network framework can be used to model how the change in 

time-varying activation of a single region (node) in the brain network layer can alter the 

state (e.g., mental or behavioral) of a person (node) in the social network layer. Key types 

of open questions in the field can be divided into questions of description, prediction, and 

perturbation.

First efforts to describe the architecture of the multilayer brain-social network could 

focus on quantifying the relative strengths of the different sorts of links present. Quite 

generally, one set of studies has focused on quantifying the strength and topology of 

inter-regional links present in brain networks during tasks related to idea transmission 

and receptivity; a second set of studies has focused on quantifying the strength and 

topology of brain-to-brain synchrony during perception; and a third set of studies has 

focused on quantifying the strength and topology of interpersonal links present in social 

networks that support idea spread and idea contagion. However, at present no single 

study has attempted to quantify the strength of region-to-region links within brain 

networks, brain-to-brain links across individuals, person-to-person links within social 

networks, and region-to-person links bridging brain networks to social networks during a 

single task and with the same individuals. The challenge in doing so will be to address 

the fact that each of these links may need to be estimated on different time scales 

– with region-to-region links being estimable by fMRI over short time windows, and 

person-to-person transmission of ideas potentially occurring over longer time windows in 

social networks.

After quantifying the strength of different sorts of links, one might wish to predict 

how far an idea might be expected to spread through a given sort of social network 

when the pattern of activity and connectivity in a single brain changes. Answering this 

question will require the construction of causal models for information transmission 

across links in a brain network, idea transmission across links in a social network as 

potentially modulated by the likelihood of brain-to-brain synchrony, and the translation 

of information within a brain region to an idea that is transmittable across persons via 

intra-personal processes related to computation, cognition, emotion, and perception. The 

construction and integration of such causal models will provide specific predictions about 

how perturbations at one node in one network layer can impact on another node in 

another network layer.

The development of such predictions then motivates perturbative empirical studies that 

can validate or disprove the predictions. One particularly interesting way in which to test 

causal predictions in brain-social multilayer networks is to expand behavioral network 

science experiments [171,173,174] by integrating neuroimaging and neurocognitive 

phenotyping. Specifically, one could recruit a large group of individuals (e.g., 30<N<50), 

place each individual on a network of communication according to their neural markers 

of receptivity or influence, and quantify idea or behavior transmission in the group. Such 

an experimental setup would allow one to test causal predictions such as that a person 
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whose brain network has been statistically linked to high capacity for social influence 

would have a bigger impact on population-level behaviors if placed in a point of high 

betweenness in the communication network than if placed in a point of low betweenness 

and low degree.
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Figure 1. Building hypotheses bridging brain networks and social networks
How can we move from typical data collected in a neuroimaging experiment to a multiscale 

network? Neural regions of interest (e.g., blue and green dots in the top panel) can be treated 

as nodes in a network, connected to one another by estimates of white matter structure 

or by estimates of functional connectivity such as a Pearson correlation between pairs of 

regional mean BOLD time series (e.g., in the top panel, the blue and green lines represent 

the timeseries from each region of interest over the course of a task in an MRI scanner; see 

also Box 1). By encoding these relationships in a connectivity matrix (depicted in shades 

of red in the top panel), one can first determine the strength of connectivity between brain 

regions in a single individual during different task conditions (in the top panel, the weight 

of the edges connecting the regions of interest in the right-most brain image represents the 

strength of the correlation between the timeseries of those nodes). Creating such a matrix 

can also address hypotheses not only about individuals acting in isolation, but also about the 

interplay between brain networks supporting mutual influence between individuals in social 

networks (e.g., processes facilitating the spread of ideas or behaviors), as depicted by lines 

connecting brain regions across different people’s brains in the middle panel. In addition, it 

is possible to model how an individual’s social network resources or placement within their 

social network relate to their brain or behavior as depicted in the bottom panel. Adapted 

from Schmaezle et al. (2017).
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Figure 2. Multiscale network nature of idea and behavior spread
Ideas and behaviors spread from mass media and from person to person through brain 

networks within social networks. Here we illustrate the complex and heterogeneous 

organization of social networks where people (nodes) are connected by relationships of 

various strengths (edges), which can be defined in different ways depending on the study 

being conducted and the hypothesis being tested. A propagation chain between three 

individuals within this social network begins with the person who is the source of the 

information, who is connected to the primary receiver, who may in turn decide to share to a 

secondary receiver. Adapted from Scholz & Falk, in press.
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Figure 3. Mathematical models of the multiscale mechanisms of idea and behavior spread
Building an integrated theory of how ideas and behaviors spread from person-to-person 

could benefit from models that explicitly bridge network models of brain structure and 

function, mathematical models of human behavior, and quantitative statistics summarizing 

social network structure and function, as well as interactions between each of these levels 

of analysis. In this conceptual schematic, we illustrate the idea that time-varying changes 

in regional activation, brain network architecture, behavioral measures, and social network 

resources can be linked mathematically in a formal modeling framework. As detailed in 

Box 3, it is possible to bridge reinforcement learning with network science such that an 

actor’s choices are modeled in terms of their own behavior and neurophysiology, but also 

with terms that account for the actions of social referents surrounding the actor, as well 

as the brain and social network structures of the individuals in the network. Adapted with 

permission from Bassett & Mattar, TICS (2017).
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Figure 4. Example findings linking brain dynamics and social network position
a) Greater changes in connectivity within the mentalizing network during social exclusion 

versus inclusion are associated with less dense friendship networks among adolescent males. 

Reproduced with permission from Schmaelzle et al. (2017). b) Multi-voxel patterns within 

the mentalizing system and other key brain regions are systematically associated the social 

network position of classmates seen in an fMRI experiment. Reproduced with permission 

from Parkinson et al. (2017).
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