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Abstract
Stomata are central players in the hydrological and carbon cycles, regulating the uptake of carbon dioxide (CO2) for photo-
synthesis and transpirative loss of water (H2O) between plants and the atmosphere. The necessity to balance water-loss and 
CO2-uptake has played a key role in the evolution of plants, and is increasingly important in a hotter and drier world. The 
conductance of CO2 and water vapour across the leaf surface is determined by epidermal and stomatal morphology (the 
number, size, and spacing of stomatal pores) and stomatal physiology (the regulation of stomatal pore aperture in response 
to environmental conditions). The proportion of the epidermis allocated to stomata and the evolution of amphistomaty are 
linked to the physiological function of stomata. Moreover, the relationship between stomatal density and [CO2] is mediated 
by physiological stomatal behaviour; species with less responsive stomata to light and [CO2] are most likely to adjust stoma-
tal initiation. These differences in the sensitivity of the stomatal density—[CO2] relationship between species influence the 
efficacy of the ‘stomatal method’ that is widely used to infer the palaeo-atmospheric [CO2] in which fossil leaves developed. 
Many studies have investigated stomatal physiology or morphology in isolation, which may result in the loss of the ‘overall 
picture’ as these traits operate in a coordinated manner to produce distinct mechanisms for stomatal control. Consideration 
of the interaction between stomatal morphology and physiology is critical to our understanding of plant evolutionary history, 
plant responses to on-going climate change and the production of more efficient and climate-resilient food and bio-fuel crops.
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An introduction to the origination 
and evolution of stomata—the importance 
of linking morphology and physiology

Stomata are tiny pores, ranging from 10 to 80 µm in length, 
that regulate leaf gas exchange by facilitating the diffusion 
of carbon dioxide (CO2) from the atmosphere to the chlo-
roplast for photosynthesis (PN) and preventing excessive 
water-loss through transpiration. A stomatal complex is a 
pore enclosed by two guard cells, and in many plants sur-
rounded by subsidiary cells (Edwards et al. 1998). Stomatal 
control is achieved via physiological regulation of guard cell 
turgor modifying stomatal pore aperture (Franks and Far-
quhar 2007), and morphological adjustment of the number 
and size of stomata on newly developing leaves (Woodward 
1987). Stomata play a role in maintaining plant homeostasis, 
and represent an essential adaptive trait that has shaped plant 
evolutionary history (Robinson 1994; Haworth et al. 2011b; 
McAdam and Brodribb 2012b), and are a critical attribute 
in the development of more productive and ‘climate-proof’ 
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food and biomass crops (Roche 2015; Lawson and Vialet-
Chabrand 2019). In this review, we surmise that coordinated 
stomatal physiological and morphological responses operate 
in tandem to exert stomatal control. The majority of research 
has focused on stomatal physiology or morphology in isola-
tion without consideration for co-occurring responses in the 
accompanying trait that can influence stomatal control. We 
show how the requirement to balance CO2-uptake against 
transpirative water-loss has generated a range of stomatal 
physiological and morphological strategies to regulate leaf 
gas exchange.

The earliest ‘stomata-like’ structures were not involved 
in gas exchange, but in the distribution of spores by allow-
ing sporophyte tissues to dry more rapidly (Duckett et al. 
2009). The evolutionary exaptation of these early stomata 
acted as a selective advantage by facilitating the diffusion of 
CO2 from the external atmosphere to the chloroplast (Chater 
et al. 2016). The earliest true stomata that originated ~ 410 
million years ago (Fig. 1) are identical to their modern ‘kid-
ney-shaped’ equivalents, indicating that their form and func-
tion has remained largely unaltered (Edwards et al. 1998). 
Stomatal conductance (Gs) of CO2 (Gs CO2) into the leaf and 
water vapour out of the leaf (Gs H2O) occur simultaneously. 
As CO2 in the form of bicarbonate (HCO3−) is assimilated 
during photosynthesis, this creates a concentration gradient 
between the external atmosphere and the chloroplast fol-
lowing Fick’s law. The movement of CO2 experiences two 
main impeding resistance steps at the stomata and mesophyll 
layer. At the interface between the internal air-space and 
mesophyll, CO2 is hydrated to HCO3−, the moist surfaces of 

the mesophyll cells result in in the air within the leaf becom-
ing more humid than the external atmosphere, inducing the 
diffusion of water vapour from the leaf through the stomatal 
pores (Cowan 1978; Harley et al. 1992). The costs and ben-
efits associated with the requirement to exert stomatal con-
trol to balance CO2-uptake against water-loss has acted as an 
evolutionary driving force over Earth history (Fig. 1) (Rob-
inson 1994; McAdam and Brodribb 2012b; Elliott-Kingston 
et al. 2016; Haworth et al. 2017b). The origination of many 
major groups of plants (Haworth et al. 2011b) and morpho-
logical and physiological developments such as the planate 
leaf (Beerling et al. 2001) and C4 photosynthesis (Monson 
2003; Osborne and Beerling 2006; Sage et al. 2012) have 
coincided with declining or low atmospheric concentrations 
of carbon dioxide ([CO2]) (Fig. 1). Concomitant changes in 
factors such as temperature and/or water availability have 
induced selective pressures affecting photosynthesis and 
water use efficiency, specifically at the stomatal level, along-
side [CO2] (Ehleringer and Monson 1993). Molecular evi-
dence suggests the divergence of the angiosperms occurred 
during the Jurassic (201–145 Ma), but the expansion and 
diversification of the angiosperms occurred later during the 
Cretaceous (145–65 Ma) (Bell et al. 2005; Barba-Montoya 
et al. 2018) as [CO2] declined and [O2] rose decreasing rates 
of PN relative to photorespiration (Fig. 1) (Haworth et al. 
2017b). In extant plants, photosynthesis is positively related 
to Gs (Fig. 2), with the highest rates occurring in the more 
recently derived angiosperms, indicative of selective pres-
sures favouring high rates of gas exchange. Those species 
with higher rates of Gs will require a greater proportion of 
the leaf epidermis to be devoted to stomata (A%) through 
higher stomatal density (SD) and/or stomatal size (SS). The 
selective pressures that lead to high Gs also render plants 
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Fig. 1   Biogeochemical modelled atmospheric [CO2] over the past 
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son and Morris 2018); b origination of stomata (Edwards et al. 1998; 
Duckett et al. 2009); c development of the planate leaf (Beerling et al. 
2001); d origination of conifers (Leslie et al. 2018); e origination of 
cycads and ginkgoales (Tralau 1968; Pant 1987; Shen et al. 2005); f 
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vulnerable to desiccation during episodes of low water avail-
ability or high evapotranspirative demand (Robinson 1994). 
Therefore, these selective pressures may also favour effective 
and rapid stomatal control (closure) to ensure plant survival 
during unfavourable conditions (Haworth et al. 2018b). 
Traits that confer a strong selective advantage rapidly 
become universal within a population (e.g. McNeilly 1968). 
However, a common stomatal control mechanism in terms of 
stomatal density, size, spacing and physiological behaviour 
is not apparent. The diversity of observed stomatal control 
mechanisms likely reflects trade-offs imposed by the interac-
tion of factors such as habitat, water transport, leaf lifespan/
economics and the legacy of evolutionary history. Moreover, 
it is worth bearing in mind that basal groups with stomatal 
physiological and morphological traits that are considered 
to be ‘more primitive’ are still successful today, indicating 
that selective processes do not act exclusively at the level of 
stomata and gas exchange but that other cost/benefits may 
determine the success of a species. In this paper, we will 
outline the evolution of physiological stomatal behaviour 
and stomatal morphology in terms of optimal allocation of 
the epidermis to gas exchange and optimality in stomatal 
behaviour. We will discuss their interaction in determining 
stomatal control, the implications for the use of the ‘stomatal 
method’ to reconstruct palaeo-[CO2], and the development 
of more productive and stress resistant crop varieties.

Physiological stomatal behaviour

Opening and closing of the stomatal pore allows plants to 
regulate CO2-uptake and water-loss in response to the pre-
vailing environmental conditions and the physiological sta-
tus of the plant. Factors such as light, [CO2], leaf to air VPD, 
and plant water status interact to determine the degree of sto-
matal opening (Merilo et al. 2014; Ou et al. 2014; Haworth 
et al. 2018a). There are two main categories of physiological 
stomatal behaviour: active, where ions are pumped across 
the cell membrane to alter guard cell water potential and 
turgor, and passive, where guard cell water potential follows 
changes in whole leaf water status (Cowan 1978; Franks 
and Farquhar 2007; Ruszala et al. 2011). Regulation of the 
stomatal pore aperture is more rapid in species with active 
than passive stomatal behaviour (Brodribb and McAdam 
2011; Doi et al. 2015; Haworth et al. 2015; Elliott-Kingston 
et al. 2016). The capacity to adjust Gs in response to fluctuat-
ing conditions, and thus optimise WUE over the short-term, 
may be considered a selective advantage (Cowan 1978). 
However, the lack of universality of active stomatal physi-
ological behaviour may indicate costs associated with the 
capacity to detect and signal a shift in environmental condi-
tions that is then manifested in the modulation of guard cell 
turgor. Selective pressures may not strongly favour optimal 

physiological stomatal behaviour in particular habitats and 
leaf lifespans as evidenced by the widespread persistence 
of plant groups and traits considered to be more basal. It 
is likely that the contrast between typically active and pas-
sive stomatal behaviour may be gradual rather than distinct 
(Haworth et al. 2013).

Photosynthetic processes are fundamentally driven by 
light (in the production of adenosine triphosphate, ATP, 
and reduced nicotinamide adenine dinucleotide phosphate, 
NADPH). Light is the central signal affecting stomatal 
opening / closing, with stomatal responses to factors such 
as high [CO2] and leaf to air VPD only occurring in the 
presence of light (Heath 1950; Shimazaki et al. 2007). The 
mechanisms underpinning stomatal opening in the light vary 
between species (Williams et al. 1983; Doi et al. 2015). Blue 
light stimulates stomatal opening by inducing the transport 
of potassium ions across the guard cell plasma membrane 
(Assmann and Shimazaki 1999). This pumping of potas-
sium ions into the guard cells is observed in lycophytes, 
ferns, gymnosperms and angiosperms, suggesting that it 
originated in early plant lineages (Doi et al. 2015). How-
ever, the concentration of potassium ions in bryophytes dur-
ing stomatal opening is not consistent with a flux from the 
subsidiary cells into the guard cells (Pressel et al. 2018). 
Stomatal opening is then sustained by red light driving PN 
in the mesophyll which lowers [CO2] in the sub-stomatal 
internal air-space (Ci) (Sharkey and Raschke 1981; Roelf-
sema et al. 2002); this maintains a constant ratio between Ci 
and the external atmospheric [CO2] (Ca) under steady state 
conditions (Mott 1988). Photosynthesis within the guard 
cells may induce an increase in the concentration of malate 
(Ogawa et al. 1978; Shimazaki et al. 2007), and availability 
of ATP to pump ions into the guard cells (Tominaga et al. 
2001; Suetsugu et al. 2014), resulting in stomatal opening 
as guard cell turgor increases. Guard cell chloroplasts are 
observed in most plant species (Zeiger et al. 2002) and are 
highly abundant in groups such as ferns (Doi and Shimazaki 
2008), suggesting that they may play a fundamental role in 
maintaining stomatal opening in more basal groups. Dark-
ness, or a reduction in the availability of light, induces a 
lowering of the concentration of osmolytes within the guard 
cell, reducing the water potential gradient between the guard 
cell and the surrounding subsidiary cells. The subsequent 
loss of turgor in the guard cells then causes a reduction in 
stomatal pore aperture (Shimazaki et al. 2007).

A limitation of much analysis of stomatal physiological 
behaviour has been a lack of consistency between studies 
that has impeded comparability. It is noteworthy, that the 
speed of stomatal opening and closing are closely corre-
lated (Fig. 3a) and broad patterns may be present in sto-
matal sensitivity to both light and [CO2] (Fig. 3b). It may 
then be possible to draw wider inferences from evolutionary 
studies of the underlying stomatal light response from the 
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kinetics involved in both stomatal closure and opening. The 
speed of stomatal opening/closing (measured as the rate of 
change in Gs over the initial 50% of the Gs response: Gs50%) 
and the extent of stomatal opening/closing (where closing 
can be expressed as the percentage closure or ‘tightness’: 
Fig. 3b) during a transition from dark to light (McAdam 
and Brodribb 2012b; Doi et al. 2015; Kardiman and Ræbild 
2017; Xiong et al. 2018; Lawson and Vialet-Chabrand 2019; 
Lima et al. 2019), or light to dark (McAdam and Brodribb 
2012b; Doi et al. 2015; Haworth et al. 2015, 2018b; Elliott-
Kingston et al. 2016; Xiong et al. 2018) have been used 
to differentiate stomatal physiological response to light 
between plant groups with diverse evolutionary histories. It 
has been suggested that the evolutionary history of a species 
strongly affects its physiological stomatal behaviour (Elli-
ott-Kingston et al. 2016; Hõrak et al. 2017). Plant groups 
that originated during episodes of low palaeo-atmospheric 
[CO2] (palaeo-[CO2]) exhibit faster rates of stomatal clo-
sure during a transition from light to dark conditions than 
groups that diverged when palaeo-[CO2] was higher (Fig. 1)
(Elliott-Kingston et al. 2016). The speed of stomatal clo-
sure in basal angiosperms (such as Amborella trichopoda) 
is identical to rates observed in ferns and gymnosperms. The 
fastest rates of stomatal closure are found in more derived 
angiosperms, in particular the monocots (Haworth et al. 
2018b). This increased stomatal responsiveness to light in 
the angiosperms may be correlated with differences in ratios 
of sucrose and malate acting as mesophyll derived signals 
regulating stomatal behaviour (Lima et al. 2019).

An instantaneous increase in atmospheric [CO2] favours 
PN over photorespiration (Sharkey 1988; Tolbert et  al. 
1995; Haworth et al. 2017b). The stimulation in PN associ-
ated with elevated [CO2] allows plants to lower Gs to main-
tain a constant Ci: Ca ratio and increase WUE (Mott 1988; 

Eamus 1991; Franks and Beerling 2009a). This reduction 
in Gs can be achieved through decreases in stomatal pore 
aperture (Assmann 1999; Ainsworth and Rogers 2007), 
SD (Woodward 1987; Hu et al. 2019) or SS (Lammertsma 
et  al. 2011; Haworth et  al. 2016). Sub-ambient [CO2] 
(i.e. < 400 μmol mol−1) generally induces stomatal opening 
as higher Gs promotes diffusion of CO2 from the external 
atmosphere into the leaf (Heath 1948; 1950; Centritto et al. 
2003). Experiments involving the separation of the epider-
mis and mesophyll layer suggest that guard cells sense and 
respond to sub-ambient [CO2] independently. However, sto-
matal closure as [CO2] rises above ambient requires physical 
contact between the epidermis and the mesophyll (the site 
of most PN within the leaf) (Mott et al. 2008; Fujita et al. 
2013); this is strongly indicative of a mesophyll derived sig-
nal such as bicarbonate sensed by carbonic anhydrases (Hu 
et al. 2010; Engineer et al. 2014). Instantaneous exposure 
to a range of [CO2] levels suggested that lycophytes, ferns, 
gymnosperms and angiosperms all showed stomatal open-
ing at sub-ambient [CO2], but only angiosperms exhibited 
reduced Gs at [CO2] above ambient (Brodribb et al. 2009). 
This led to a hypothesis proposing that a transition from 
passive to active stomatal control in [CO2] and abscisic acid 
(ABA) sensitivity had occurred between the angiosperms 
and plant groups with more ancient evolutionary origins 
(Brodribb and McAdam 2011). The apparent divergence in 
stomatal CO2 sensitivity between the angiosperms and the 
lycophytes, ferns and gymnosperms may be linked to differ-
ences in calcium (Brodribb and McAdam 2013; Funk and 
Amatangelo 2013) and malate—sucrose (Lima et al. 2019) 
signalling. However, this evolutionary transition hypothesis 
was not supported by further gas exchange measurements 
that showed stomatal response to above ambient [CO2] in 
lycophytes, ferns and gymnosperms (Chater et al. 2011; 
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Ruszala et al. 2011; Haworth et al. 2013, 2015; Franks and 
Britton‐Harper 2016; Hasper et al. 2017; Hõrak et al. 2017) 
and genetic analyses indicating that the genes responsible for 
[CO2] and ABA sensitivity occur in ancient plant lineages 
such as mosses and lycophytes (Chater et al. 2011, 2013; 
Ruszala et al. 2011; Lind et al. 2015; Cai et al. 2017).

Plant water status influences stomatal opening through 
hydraulic (leaf water potential) and chemical (such as plant 
hormones or changes in the pH of the xylem stream) signals 
(Wilkinson et al. 1998; Rodrigues et al. 2008; Tombesi et al. 
2015; Brunetti et al. 2019). The timing and interaction of 
these chemical and hydraulic signals varies between spe-
cies, affecting their response to reduced water availability. 
In the monocot grasses Zea mays (Tardieu et al. 1992) and 
Arundo donax (Haworth et al. 2017a) an increase in free-
[ABA] is observed prior to any reduction in leaf water poten-
tial, characteristic of isohydric stomatal behaviours (Sade 
et al. 2012). In contrast, hydraulic signals precede chemical 
signals in Populus nigra (Marino et al. 2017), Metasequoia 
glyptostroboides (McAdam and Brodribb 2014), Olea euro-
paea (Dbara et al. 2016) and Vitis vinifera (Correia et al. 
1995; Tombesi et al. 2015). An increase in free-[ABA] sur-
rounding the guard cell apoplast induces stomatal closure 
(Hartung 1983) by opening the SLAC1 anion channel and 
releasing ions such as potassium and chloride from the guard 
cell protoplast (Geiger et al. 2009). The increase in apo-
plastic free-[ABA] may be due to increased root to shoot 
transport via the xylem (Davies and Zhang 1991), enhanced 
conversion of inactive glucose-conjugated ABA stored in the 
vacuole to active free-ABA in the cytosol of cells within the 
leaf (Dietz et al. 2000; Seiler et al. 2011), reduced catabo-
lism (Saito et al. 2004) and a promotion of synthesis in the 
leaves and stems of plants (Bauerle et al. 2004; Manzi et al. 
2015; Brunetti et al. 2019). The interaction of hydraulic and 
hormonal signals determines stomatal response to soil dry-
ing. Stomatal [ABA] sensitivity is increased as leaf water 
potential falls (Tardieu and Davies 1992), and the retention 
of high concentrations of free-ABA within the leaf after re-
watering maintains stomatal closure (Tombesi et al. 2015). 
Application of exogenous ABA to an evolutionary range of 
plants has produced contrasting results that have suggested 
that ABA sensitivity either developed in the angiosperms 
(Brodribb and McAdam 2011) or was acquired early in 
plant lineages (Ruszala et al. 2011; Grantz et al. 2019). Re-
watering of plants after water deficit, when free-[ABA] lev-
els in the leaf were still comparatively high (McAdam and 
Brodribb 2012a) and short-term foliar synthesis of free-ABA 
(McAdam and Brodribb 2015) supported interpretations of 
an evolutionary transition toward stomatal ABA sensitiv-
ity in the angiosperms. However, substitution of the open-
stomata 1 (OST1) kinase which regulates the SLAC1 anion 
channel in ABA insensitive Arabidosis thaliana with the 
orthologue from the sporophyte of the moss Physcomitrella 

patens (which is not involved in gas exchange) restored ABA 
sensitivity in the A. thaliana mutants (Chater et al. 2011). 
Moreover, transcriptome analysis suggests that the proteins 
responsible for ABA signalling are present in mosses, lyco-
phytes, ferns and angiosperms (Hanada et al. 2011; Lind 
et al. 2015; Cai et al. 2017). This discrepancy between 
observations of stomatal ABA sensitivity and insensitivity 
in ferns may be accounted for by their environment, with 
the relative humidity at which ferns are grown influencing 
the degree to which ABA affects Gs (Hõrak et al. 2017). It is 
noteworthy that while ferns exhibited ABA sensitivity, the 
extent and speed of the stomatal response was lower than 
that observed in the angiosperms (Hõrak et al. 2017; Grantz 
et al. 2019; Kübarsepp et al. 2020). Further analysis of the 
speed of stomatal responses under standardised conditions 
is required to explore any evolutionary patterns, character-
ise environmental influences on stomatal speed, classify the 
biochemical mechanisms regulating stomatal physiological 
behaviour in different plant groups, and identify the genes 
responsible for future crop development programs.

A wide variety of physiological stomatal behaviours are 
observed in response to light, [CO2], water availability, and 
leaf to air VPD. It is likely that evolutionary trends are pre-
sent in the stomatal physiology of extant plants. However, 
it seems that this is unlikely to be on a binary ‘presence’ 
or ‘absence’ basis of stomatal physiological function (cf. 
Brodribb and McAdam 2011). The reality is almost certainly 
more complex and involves the interaction and influence of 
evolutionary trade-offs, acclimation to environmental/habitat 
conditions (including stress), ontogeny, and leaf economics. 
This picture may also be complicated by both ancient and 
modern plant groups that have ‘lost’ active stomatal physi-
ological behaviours (Haworth et al. 2015; Hõrak et al. 2017) 
and questions of whether selective pressures have favoured 
optimality in certain habitats. Stomatal physiological behav-
iour is likely to be a combination of both ‘active’ and ‘pas-
sive’ responses (Franks 2013), as exemplified by the differ-
ing interactions of ABA and hydraulic signals in stomatal 
response to drought (Tardieu and Davies 1992; Tardieu et al. 
1992; McAdam and Brodribb 2014; Tombesi et al. 2015; 
Brunetti et al. 2019).

Stomatal morphology, density and size

A key difference in stomatal morphology and physiological 
function is observed between the ‘dumb-bell’ stomata of the 
monocots and the ‘kidney-shaped’ stomata possessed by the 
majority of plants (Fig. 4) (Chen et al. 2017). The guard cells 
of dumb-bell stomata generally have a lower volume than 
kidney-shaped guard cells. This enables a greater relative 
turgor change when osmolytes are moved across the guard 
cell plasma membrane. Moreover, specialised subsidiary 
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cells alongside the guard cells play a prominent role in mov-
ing osmolytes into the guard cells thus reducing their own 
turgor. This loss of turgor in the subsidiary cells allows the 
guard cells to expand, displacing the subsidiary cells. The 
mechanical advantage of the dumb-bell stomata along with 
their comparatively lower volume relative to surface area 
allow more rapid adjustments in stomatal pore area over 
larger pore areas (Franks and Farquhar 2007). This ena-
bles monocots to adjust their Gs more rapidly than species 
with kidney-shaped stomata (Fig. 4a–d) (Elliott-Kingston 
et al. 2016; McAusland et al. 2016; Haworth et al. 2018b). 
Despite the apparent advantages conferred by dumb-bell sto-
mata (Haworth et al. 2018b), this adaptation is restricted to 
the Poaceae (Nunes et al. 2020). This may suggest that the 
origination of dumb-bell stomata is more complex than the 

evolution of other adaptations such as C4 metabolism that 
developed on numerous occasions (Sage et al. 2012), or that 
dumb-bell stomata incur selective costs. Nonetheless, this 
is a key area of interest in terms of improving the optimal 
performance of stomata in crop plants.

The number, size, and distribution of stomata determine 
the limits for stomatal physiological adjustment (Drake et al. 
2013; Haworth et al. 2013; Kardiman and Ræbild 2017), 
and are correlated to modelled (de Boer et al. 2011; Dow 
et al. 2014; McElwain et al. 2016) and measured rates of 
Gs (Haworth et al. 2018b; Xiong and Flexas 2020). An 
inverse relationship is found between SD and SS in both 
living and fossil plants (Hetherington and Woodward 2003; 
Franks and Beerling 2009b; Lammertsma et al. 2011; de 
Boer et al. 2016; Haworth et al. 2018b) (Fig. 5a). This SD/
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SS relationship may be a simple reflection of geometry, in 
that it is not possible to fit high densities of large stomata 
over a leaf surface due to space constraints and the effect 
on the structural integrity of the leaf (at least one epider-
mal cell generally separates stomatal complexes: Peterson 
et al. 2010), and are coordinated with the structure of the 
mesophyll (Lundgren et al. 2019; Baillie and Fleming 2020). 
Nevertheless, evidence suggests that the inverse relationship 
between SD and SS may also have an adaptive significance. 
More ancient plant lineages such as ferns, lycophytes and 
cycads generally exhibit lower densities of large stomata, 
while high densities of small stomata are generally found 
in the angiosperms (Fig. 5a). This has been attributed to 
the palaeo-[CO2] in which specific plant groups originated 
(Franks and Beerling 2009b). High densities of small sto-
mata are considered to shorten the diffusion distance for 
CO2 from the external atmosphere to the chloroplast and 
maximise the potential for gas exchange for a given A%, 
thus serving as a selective advantage for angiosperms that 
originated in comparatively lower palaeo-[CO2] (Franks and 
Beerling 2009b; de Boer et al. 2016). Combined physiologi-
cal and morphological analysis is required to assess whether 
a high SD/SS ratio does in fact serve as a selective advantage 
depending upon the growth strategy of the species (e.g. leaf 
lifespan and investment), environmental factors (e.g. [CO2], 
atmospheric pollution) and biotic factors (such as pathogen 
entry via the stomata: Muir 2015) given the persistence and 
continued evolutionary success of more ancient species with 
comparatively low SD/SS ratios. Study of within species 
changes in the SD/SS relationship and any potential func-
tional significance of shifts in the ratio of SD to SS is also 
required. The arrangement of stomata over a leaf surface is 
also reliant upon the water transport capacity of the leaf. An 
increase in the complexity of leaf veins may have enabled 
eudicot angiosperms to support higher numbers of small sto-
mata over the leaf surface (Brodribb and Feild 2010; de Boer 
et al. 2012) alongside the generally greater conductivity of 
xylem vessels compared to tracheids (Sperry et al. 2007).

Stomatal density, size, and distribution are set during 
leaf development (e.g. Lake et al. 2001; Šantrůček et al. 
2014). The determination, division, and expansion of cells 
into epidermal pavement, subsidiary or guard cells is regu-
lated by a series of genes (SPEECH, MUTE, and FAMA) 
(MacAlister et al. 2007; Zoulias et al. 2018). Mutants of 
the moss P. patens lacking the genes that encode these 
transcriptome regulators lacked stomata-like structures 
in the sporophylls, suggesting that the genetic apparatus 
to regulate stomatal patterning originated in early plant 
lineages (Chater et al. 2016). Manipulation of these same 
genes enabled the development of rice (Oryza sativa) vari-
eties with 50–80% lower SD values than the unaltered con-
trol. Under elevated [CO2] the rice genotypes with lower 
SD exhibited enhanced tolerance to drought but this was 

not apparent at ambient [CO2] (Caine et al. 2019) indi-
cating that optimality may be favoured by the pressures 
exerted under specific environmental conditions. However, 
while reducing SD in crops may decrease water-loss it will 
also limit CO2-uptake for PN (Bertolino et al. 2019), the 
potential of a crop to exploit episodes favourable to PN 
(McAusland et al. 2016; Haworth et al. 2018b), the capac-
ity to generate root-mass flow for the uptake of mobile 
nutrients (Van Vuuren et al. 1997; Caird et al. 2007), and 
the potential for evapotranspirative cooling (Jones 1999; 
Beerling et al. 2001). These are critical constraints that 
should be considered in any attempt to adjust the stomatal 
morphology of crop plants without consideration of sto-
matal physiological behaviour.

The distribution of stomata over the leaf surface also 
plays an important role in the capacity for leaf gas exchange. 
The majority of plant species possess stomata on the abaxial 
leaf surface (hypostomatous distribution) (Salisbury 1927; 
Peat and Fitter 1994; Muir 2015). Hypostomaty is consid-
ered to represent the primitive state of stomatal distribu-
tion, as an increased incidence of amphistomaty in more 
derived plants is indicative of an evolutionary trend (Mott 
et al. 1982). Amphistomatous species possess stomata on the 
abaxial and adaxial leaf surfaces. Utilising both leaf surfaces 
increases the potential for leaf gas exchange and reduces 
the impact of mesophyll limitations on PN (Parkhurst 1978; 
Mott et al. 1982; Peat and Fitter 1994; Muir 2018; Xiong 
and Flexas 2020). The majority of amphistomatous species 
exhibit high rates of PN and occupy high light environments 
suited to rapid growth (Parkhurst 1978; Mott et al. 1982; 
Haworth et al. 2018b; Muir 2018). This suggests that higher 
PN through enhanced capacity for gas exchange may have 
acted as a selective pressure favouring the development of 
amphistomaty (Mott et al. 1982) (Fig. 2). However, there 
may be some selective costs associated with amphistomaty. 
Increasing the allocation of the entire leaf surface for gas 
exchange may render plants more vulnerable to excessive 
water-loss during periods when water availability is low 
and/or evapotranspirative demand high. In the case of spe-
cies such as Olea europaea occupying arid environments, 
where for extended periods water availability limits growth 
to a greater extent than the potential for photosynthetic 
CO2-uptake, minimising water-loss by largely restricting gas 
exchange to one surface may be advantageous (Guerfel et al. 
2007). Amphistomatous species may also be more vulner-
able to infection via pathogenic fungi which enter the leaf 
through stomata (Muir 2015) and higher stomatal conduct-
ance is associated with increased entry of toxic atmospheric 
gases (Hoshika et al. 2020). The majority of amphistomatous 
species have equal distributions of stomata on the abaxial 
and adaxial surfaces (so-called ‘perfect’ amphistomaty), sug-
gesting that the selective pressures acting on stomatal dis-
tribution tend to strongly favour either ‘optimal outcomes’ 
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of amphistomaty or hypostomaty with little evolutionary 
benefit for partial amphistomaty (Muir 2015).

Optimal allocation of the epidermis 
and stomatal kinetics

The greater the allocation of the epidermis as stomata, the 
higher the capacity for CO2− uptake but also the potential 
for water-loss. Modifying plants to possess lower SDs may 
be a successful approach to enhancing drought tolerance 
by decreasing Gs (Hepworth et al. 2015; Bertolino et al. 
2019; Caine et al. 2019); however, restricting maximum 
Gs constrains the ability of plants to take-up CO2 and fully 
exploit transient conditions favourable to growth (Fig. 6a 
and b). As outlined earlier, increasing stomata density has 
evolutionary value in a ‘low [CO2] world’, but also exposes 
plants to negative consequences when encountering stress. 
Plants with both highly physiologically functional stomata 
(i.e. the capacity to adjust stomatal pore aperture rapidly) 
and a large proportion of the epidermis allotted to stomata 
may be most suited to improve crop productivity and WUE 
(e.g. Haworth et al. 2018a; Durand et al. 2019). Across a 
diverse evolutionary range of plants, the speed of stomatal 
closure (during a transition from saturating light conditions 
to darkness: e.g. Fig. 4a and b) was positively correlated 
with the proportion of A% (Fig. 6c) (this relationship was 
apparent utilising both absolute and normalised values of 
Gs50%). The highest rates of Gs50% adjustment and values of 

A% were found in the monocot angiosperms, suggesting an 
evolutionary trajectory favouring more responsive stomata 
and higher A%, possibly in response to selective pressures 
induced by declining Cenozoic [CO2] (Fig. 1). Those species 
with more responsive stomata possess stomatal complexes 
evenly distributed across the entire epidermis (Fig. 6d). 
The capability to utilise both leaf surfaces for gas exchange 
(Fig. 6a) was accompanied by increased stomatal function 
with a comparatively tight transition observed between 
hypostomatous and amphistomatous distributions and the 
speed of stomatal closure (Haworth et al. 2018b). This is 
consistent with observations of a bimodal split in stomatal 
distribution between perfect hypostomaty or amphistomaty 
(Muir 2015). The evidence would suggest that allocating a 
high proportion of the epidermis to stomata is not viable 
unless accompanied by highly responsive physiological sto-
matal behaviour (Fig. 6c). It can be envisaged that selective 
pressures have acted to favour both increased physiological 
stomatal control (Franks and Farquhar 2007; Raven 2014) 
and greater A% (Franks and Beerling 2009b; de Boer et al. 
2016) in unison (Haworth et al. 2018b). The fast growing 
monocot A. donax possesses one of the highest A% values 
and extremely responsive stomata (Fig. 4). Moreover, under 
conditions of drought stress, as the concentration of free-
ABA within the leaf rises, the stomata of A. donax become 
increasingly sensitive to changes in light intensity and CO2 
availability (but not leaf to air VPD) (Haworth et al. 2018a). 
Similar increases in stomatal sensitivity to light have been 
observed in Nicotiana tabacum (Gerardin et  al. 2018), 

Fig. 6   The relationships 
between A% to PN a (non-linear 
regression) and Gs, b (non-lin-
ear regression). The rate of Gs 
decrease during a light to dark 
transition (Gs50%) versus A%, c 
(linear regression), the percent-
age of stomata on the adaxial 
leaf surface, d (non-linear 
regression) and PN, e (non-
linear regression). Presented as 
in Fig. 2 (data from Haworth 
et al. 2018b)
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Populus euramericana and Populus nigra (Durand et al. 
2019) grown under water deficit. Increasing the sensitiv-
ity of guard cells to free-ABA could further enhance the 
functionality of stomata to optimise PN and WUE over the 
short-term (Mega et al. 2019). The stomatal patterning and 
function of a species such as A. donax may serve as a useful 
ideotype in maximising photosynthetic gain during optimal 
conditions, but also tolerance to drought through effective 
physiological stomatal control. Phenotyping of species with 
high A% and Gs50% will enable characterisation of attributes 
conducive to high PN and optimal stomatal behaviour along-
side the identification of genes that underpin these traits to 
develop more productive and climate resilient crops.

Higher densities of small stomata are not only consid-
ered to represent a selective advantage by reducing the dif-
fusion distance for CO2-uptake (de Boer et al. 2016), but also 
respond more rapidly to external stimuli. The lower surface 
area to volume ratio of smaller guard cells is proposed to 
allow more rapid fluxes of ions into and out of the guard cell 
plasma membrane, thus enabling faster and more sensitive 
adjustment of pore aperture and Gs (Raven 2014; Lawson 
and Vialet-Chabrand 2019). Higher densities of smaller sto-
mata were associated with faster rates of Gs increase during 
stomatal opening of five Banksia (Drake et al. 2013), eleven 
rainforest eudicots (Kardiman and Ræbild 2017), two Popu-
lus (Durand et al. 2019) and 16 pteridophyte (Kübarsepp 
et al. 2020) species. However, across a more diverse range 
of plants (ferns, cycads, Ginkgo biloba, conifer and eudicot/
monocot angiosperms) with differing stomatal morpholo-
gies and physiological behaviours the rate of Gs decrease 
during stomatal closure was not related to SS (Fig. 5b) 
(Elliott-Kingston et al. 2016; Haworth et al. 2018b) or the 
SS:SD ratio (Fig. 5d), but was positively correlated to SD 
(Fig. 5c) (Haworth et al. 2018b). Analysis of Gs to a step 
change from low to high and back to low light suggested that 
the speed of stomatal response was related to size in dumb-
bell but not kidney-shaped guard cells (McAusland et al. 
2016). In closely related plants with similar physiological 
stomatal control, morphology likely plays a significant role 
in determining stomatal function (e.g. Drake et al. 2013). It 
may be hypothesised that stomatal control is determined by 
the interaction of stomatal morphology (e.g. Woolfenden 
et al. 2018) and physiology (e.g. Brodribb and McAdam 
2011), and the respective contributions of morphology or 
physiology to stomatal control likely varies between species 
(Haworth et al. 2018b).

Increased yield achieved through traditional breed-
ing programs has been accompanied by higher Gs (Roche 
2015), but not necessarily enhanced stomatal function and 
WUE (e.g. Lauteri et al. 2014). This raises the possibility 
that further selection on the basis of optimal stomatal physi-
ological behaviour and enhanced allocation of the epidermis 
may be effective in promoting yield and stress tolerance. 

The optimisation of stomatal control is extremely complex, 
resulting in a range of strategies that vary depending upon 
the growth conditions (Gerardin et al. 2018; Haworth et al. 
2018a; Durand et al. 2019). Nonetheless, greater A% requires 
more responsive stomata (Fig. 6c) (Haworth et al. 2018b). 
This relationship has likely played a central role in plant evo-
lutionary history (Haworth et al. 2011b), and also informs 
the traits required to underpin productive and climate proof 
crops in the future (Haworth et al. 2018a; Faralli et al. 2019). 
Identification of the quantitative trait loci that encode stoma-
tal pattering and physiological function should be a priority 
in developing crops with the epidermal patterning and sto-
matal morphological/physiological traits required to comple-
ment enhanced biochemical photosynthetic efficiency (e.g. 
Leegood 2013).

Stomatal responses to [CO2] 
and implications for the stomatal method 
of Palaeo‑[CO2] reconstruction

As the substrate for PN, the availability of CO2 in the atmos-
phere exerts a strong influence on leaf gas exchange (Fig. 1). 
As [CO2] increases, Gs generally declines. Reduced Gs can 
be directly achieved in the short-term by physiological sto-
matal closure (Jarvis et al. 1999; Centritto et al. 2003) and an 
acclimation response (Centritto et al. 1999) over the longer 
term by reductions in SD (Woodward 1987) that possibly 
develops into an adaptation over multiple generations (Bet-
tarini et al. 1998; Watson-Lazowski et al. 2016). Indeed, 
the inverse correlation between SD or stomatal index (SI: 
a normalised ratio of epidermal cells to stomata which 
gauges stomatal initiation) and [CO2] is one of the most 
well-established relationships in botany (Woodward 1987; 
Beerling and Chaloner 1993a; Woodward and Kelly 1995; 
Beerling and Kelly 1997), and has been utilised extensively 
to infer the palaeo-[CO2] in which fossil leaves developed 
(e.g. Passalia 2009; Smith et al. 2010; Jing and Bainian 
2018; Steinthorsdottir et al. 2019). Species specific SD and 
SI responses (in both occurrence and extent) to the avail-
ability of CO2 can be assessed by analysis of the number 
of stomata and epidermal cells in the leaves of historical 
herbarium specimens collected during the last ~ 250 years as 
[CO2] has risen from 280 to above 400 μmol mol−1, [CO2] 
enrichment studies, and over altitudinal gradients where 
the partial pressure of CO2 (pCO2) varies (but the concen-
tration of CO2 remains constant, uncoupling the effect of 
[CO2] from CO2-availability) (Woodward 1987; Woodward 
and Bazzaz 1988; Beerling and Chaloner 1993b; Kürschner 
et al. 1997, 2008; Kouwenberg et al. 2003; Haworth et al. 
2010; Lammertsma et al. 2011; Hu et al. 2019). However, 
the SD and SI response to [CO2] varies between species in 
the occurrence of any relationship (some plant groups such 
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as the cycads do not alter SD or SI to [CO2] and are known 
as ‘SD non-responders’: Haworth et al. 2011c), the extent of 
the SD or SI response and the [CO2] range over which SD 
or SI responds (Beerling and Chaloner 1993a; Kürschner 
et al. 1996; Kürschner 1997; Haworth et al. 2013; Hu et al. 
2015; Hill et al. 2019). For example, many angiosperms 
alter SD and SI to [CO2] below 400 μmol mol−1, but reach 
a ‘ceiling of response’ at [CO2] levels above current ambi-
ent (Kürschner et al. 1996; Kürschner 1997). In contrast, 
many conifers continue to reduce SD and SI at [CO2] above 
400 μmol mol−1 (Haworth et al. 2011a). This pattern may 
be associated with the generally more active physiological 
behaviours observed in the angiosperms resulting in less 
pronounced morphological responses to elevated [CO2] 
(Haworth et al. 2013, 2015). An inherent weakness in the 
‘stomatal method’ of reconstructing palaeo-[CO2] is that it 
is not possible to determine whether an extinct fossil plant 
was a SD responder or not. One possible explanation for the 
variation in SD and SI responses to [CO2] is the interaction 
between stomatal morphology and physiology in determin-
ing stomatal control. As described earlier, physiological 
stomatal behaviours can be categorised as ‘active’ or ‘pas-
sive’. Figure 7a and b show typical active (the black line 
and data points) and passive (the grey line and data points) 
Gs responses to a light to dark transition and step increases 
in [CO2]. When grown in atmospheres of elevated [CO2], 
those plants with active physiological stomatal behaviour 
generally show lower SD, SI and A% responses on newly 
developed leaves than their counterparts with passive physi-
ological stomatal behaviour (Fig. 7c–h). It is possible to infer 
two stomatal control strategies to [CO2]; ‘passive stomatal 
behaviour/SD responders’ and ‘active stomatal behaviour/
SD non-responders’ (Haworth et al. 2015). However, the 
SD and SI response to [CO2] is not clearly bimodal (as in 
the occurrence of perfect hypostomaty and amphistomaty), 
with species exhibiting a range of responses along these two 
extremes (e.g. Fig. 7g), consistent with observations that 
many plants utilise combinations of both active and passive 
physiological stomatal behaviour (Franks 2013; Brunetti 
et al. 2019). Stomatal physiology and morphology operate 
in tandem to determine stomatal control in response to [CO2] 
(Haworth et al. 2015). This relationship is key to predictions 
of stomatal and transpirative responses to [CO2] (e.g. Ball 
et al. 1987; Gao et al. 2002; Medlyn et al. 2011). Considera-
tion should also be given to the efficacy of modelling maxi-
mum Gs based on stomatal morphological parameters alone 
(in particular when the presence of stomatal occlusions such 
as wax plugs are neglected: e.g. McElwain et al. 2016).

Active and passive physiological stomatal behaviours 
have been demonstrated in a wide range of plant groups 
(Brodribb et al. 2009; Brodribb and McAdam 2011; Ruszala 
et al. 2011; Haworth et al. 2015). The wax cuticle is fre-
quently the only structure preserved in fossil plants (e.g. 

Oldham 1976; Watson 1977; Carrizo et al. 2019). From this 
‘exoskeleton’ of the leaf it is not possible to demonstrate the 
type of physiological stomatal behaviour exhibited by a fos-
sil plant (Haworth et al. 2013), as even closely related spe-
cies exhibit contrasting physiological behaviours, and many 
plants have ‘lost’ the capacity for active stomatal physiology 
(Doi et al. 2015; Hõrak et al. 2017). However, in light of the 
observation that A% is strongly related to stomatal respon-
siveness (Fig. 6c), it may be possible to infer the likelihood 
of a fossil plant being a SD responder on the basis of A%. 
If cycads are excluded (as a group cycads exhibit low A% 
and do not alter SD: Haworth et al. 2011c), it is possible to 
observe that species with an A% around 1.0–1.5% are more 
likely than species with an A% above 2.0% to alter stomatal 
initiation in response to an increase in [CO2] (Fig. 8). The 
lack of a SD response in the cycads may be associated with 
their origination during a period of comparatively high-
[CO2] combined with an already low SD that reduces the 
potential of further SD adjustment and enable a minimum 
rate of leaf gas exchange (Haworth et al. 2011c). The appar-
ent relationship between A% and the relative change in SI is 
more robust than that of SD. This may reflect the more vari-
able nature of SD as leaf expansion may be affected under 
elevated [CO2]. It should be stressed that this relationship 
is built upon an assumption, and may not apply to distantly 
related extinct fossil plants. However, palaeobotanists may 
assess the A% of fossil plants to gauge the likelihood of the 
SD and SI values of their target species reflecting the palaeo-
[CO2] in which the leaf developed. Further [CO2] enrich-
ment studies should assess possible relationships between 
A% and the responsiveness of stomatal initiation to [CO2] 
more robustly, alongside material analysis of guard cell 
structures to determine their likely physiological function 
(e.g. Carter et al. 2017; Woolfenden et al. 2018) to refine the 
stomatal palaeo-[CO2] method by identifying traits likely to 
indicate whether or not a fossil plant was a SD-responder.

Conclusions

Plant gas exchange is crucial to plant growth, survival during 
abiotic stress, and the cycling of CO2 and water. Stomatal 
conductance is determined by the interaction of stomatal 
physiological behaviour and stomatal morphology. However, 
stomatal physiology and morphology have too often been 
considered in isolation. Here, we have shown that the coor-
dination of stomatal morphology and physiology has played 
a central role in plant evolution, allowing the angiosperms 
to exploit more of the leaf epidermis for photosynthetic 
CO2-uptake (Fig. 6) and shaped plant responses to atmos-
pheric [CO2] (Fig. 7). Increased physiological stomatal func-
tionality, such as the origination of dumb-bell stomata, will 
inevitably effect stomatal morphology. Indeed, the selective 



877Oecologia (2021) 197:867–883	

1 3

pressures acting upon stomatal physiological behaviour also 
influence stomatal morphological adaptation. The diverse 
range of stomatal control strategies observed likely reflect 
trade-offs between the selective costs and benefits involved 
in exerting stomatal control in a multitude of environments 

and the investment in each leaf. As [CO2] increases and tem-
peratures rise globally alongside more frequent droughts in 
semi-arid and arid regions, an understanding of stomatal 
control will be fundamental to the development of more 
productive climate resilient crops. Modification of stomatal 
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to darkness (darkness ∆Gs) or a change in [CO2] from 400 to 
2000 μmol mol−1 ([CO2] ∆Gs): c) ∆A% versus darkness ∆Gs (linear 

regression P = 0.0007.517 × 10–4; F1,19 = 16.067; R2 = 0.458); d ∆A% 
versus [CO2] ∆Gs (linear regression P = 5.718 × 10–5; F1,19 = 26.502; 
R2 = 0.582); e ∆SD versus darkness ∆Gs (linear regression 
P = 2.489 × 10–6; F1,19 = 43.771; R2 = 0.697); f ∆SD versus [CO2] 
∆Gs (linear regression P = 7.053 × 10–6; F1,19 = 37.383; R2 = 0.663); 
g ∆SI versus darkness ∆Gs (linear regression P = 7.754 × 10–7; 
F1,19 = 51.812; R2 = 0.7316), and; h ∆SI versus [CO2] ∆Gs (linear 
regression P = 2.455 × 10–5; F1,19 = 30.608; R2 = 0.617). Presented as 
in Fig. 2 (data from Haworth et al. 2013, 2015; Elliott-Kingston et al. 
2016).
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morphology (Bertolino et  al. 2019; e.g. Harrison et  al. 
2020) or physiology (e.g. Mega et al. 2019) in isolation is 
unlikely to achieve the ideotype characteristics of an ability 
to exploit favourable growth conditions but also withstand 
abiotic stress. High A% accompanied by highly functional 
and responsive stomata would reflect optimal stomatal con-
trol for any fast growing crop species cultivated in drought 
prone areas. Analysis of fast growing and drought resistant 
eudicots and monocots may enable the synthesis of stomatal 
physiological and morphological research towards develop-
ing enhanced stomatal control in future crops.
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