Skip to main content
. 2021 Dec 1;244:118613. doi: 10.1016/j.neuroimage.2021.118613

Table 1.

Sensor space LSF vs HSF trial classification results. LDA classifiers were trained on scrambled image trials to differentiate between LSF and HSF image trials. CS = cluster statistic (maximum sum of cluster t-values). Classifier's generalization bias reflects SF representational dominance with negative values for CS indicating LSF dominance. Cluster numbers are in descending order of maximum cluster statistic.

SF dominance Generalization to broadband intact Generalization to broadband scrambled Difference in generalization Intact minus scrambled
LSF(CS < 0) cluster1: p <  .005, CS = -6096.12cluster2: p < .05, CS = -4652.02cluster3: p < .05, CS = -3704.29 cluster 1: p < .05, CS  =  -1834.44 cluster1: p < 0.001, CS = -7205.50cluster2: p < 0.001, CS = -1972.94cluster3: p < .005, CS = -401.12cluster4: p < .005, CS = -356.75cluster5: p < .005, CS = -241.44cluster6: p < .005, CS = -175.46cluster7: p < .005, CS = -101.59cluster8: p < .005, CS = -90.06
HSF(CS > 0) cluster1: P < .05, CS = 2351.66 cluster1: p < .001, CS =  11,781.78 cluster2: p < .05, CS = 1801.55 n.s.