
Physics and Imaging in Radiation Oncology 20 (2021) 69–75

2405-6316/© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

Review Article 

A systematic review and quality of reporting checklist for repeatability and 
reproducibility of radiomic features 

Elisabeth Pfaehler a,*,1, Ivan Zhovannik b,c,1, Lise Wei d, Ronald Boellaard a,e, Andre Dekker c, 
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A B S T R A C T   

Purpose: Although quantitative image biomarkers (radiomics) show promising value for cancer diagnosis, 
prognosis, and treatment assessment, these biomarkers still lack reproducibility. In this systematic review, we 
aimed to assess the progress in radiomics reproducibility and repeatability in the recent years. 
Methods and materials: Four hundred fifty-one abstracts were retrieved according to the original PubMed search 
pattern with the publication dates ranging from 2017/05/01 to 2020/12/01. Each abstract including the key
words was independently screened by four observers. Forty-two full-text articles were selected for further 
analysis. Patient population data, radiomic feature classes, feature extraction software, image preprocessing, and 
reproducibility results were extracted from each article. To support the community with a standardized reporting 
strategy, we propose a specific reporting checklist to evaluate the feasibility to reproduce each study. 
Results: Many studies continue to under-report essential reproducibility information: all but one clinical and all 
but two phantom studies missed to report at least one important item reporting image acquisition. The studies 
included in this review indicate that all radiomic features are sensitive to image acquisition, reconstruction, 
tumor segmentation, and interpolation. However, the amount of sensitivity is feature dependent, for instance, 
textural features were, in general, less robust than statistical features. 
Conclusions: Radiomics repeatability, reproducibility, and reporting quality can substantially be improved 
regarding feature extraction software and settings, image preprocessing and acquisition, cutoff values for stable 
feature selection. Our proposed radiomics reporting checklist can serve to simplify and improve the reporting 
and, eventually, guarantee the possibility to fully replicate and validate radiomic studies.   

1. Introduction 

“Radiomics”, the automated extraction of imaging biomarkers from 
patients’ scans has gained an increasing interest in the last decade. 
Several radiomics studies have reported promising results for cancer 
diagnosis, prognosis, or evaluation of treatment response [1–3]. 
Radiomics studies span common volumetric imaging modalities such as 
Computed Tomography (CT), Positron Emission Tomography (PET), and 

Magnetic Resonance Imaging (MRI). The numbers of studies investi
gating applications of radiomics have increased dramatically in the last 
years. In 2019 alone, 728 studies were indexed in PubMed relating to 
radiomics studies. However, there remains a translational gap between 
academic study and clinical utilization [4]. One challenge that makes a 
clinical implementation of radiomics difficult is the problem of repli
cating published results. These difficulties are due to the unavailability 
of input images and software used for computations, poor reporting of 
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study design, and lack of metadata associated with radiomic studies [5]. 
External validation of radiomic models has been hampered by models 
trained on small institutional cohorts, prevalence of overfitting and high 
false positive discovery rates [6]. Additionally, there is a dissonance 
between the study design methodology and guidelines from TRIPOD 
(transparent reporting of a multivariable prediction model for individ
ual prognosis or diagnosis) [7] that strongly recommends the validation 
of prediction models on independent (non-randomly partitioned) data
sets and full transparency in reporting. 

In a previous review aiming to find a consensus in literature on 
reproducible and repeatable features, the authors indicated a lack of 
clear consensus in radiomics methodology. Moreover, the review 
concluded that deficiencies in reporting of study design, methodology 
and results were hampering the transparency and reproducibility of 
radiomic studies [5]. However, the previous effort to identify a subset of 
features likely to be generally reproducible and repeatable, via a 
quantitative meta-analysis, was encumbered by two issues identified in 
the literature: (i) incomplete reporting of radiomic analysis procedure 
and (ii) heterogeneity in metrics used to report feature repeatability 
and/or reproducibility. Thus, it was not possible in previous work to 
perform a conclusive quantitative meta-analysis for every imaging mo
dality (CT, PET, MRI). 

Considering the increase in radiomic studies, this work is a revised 
review about the repeatability and reproducibility of radiomic features, 
with multiple aims: 1. to identify a set of repeatable/reproducible fea
tures for each imaging modality; 2. to verify if consensus has recently 
emerged regarding a list of major factors impacting on reproducibility/ 
repeatability; 3. to isolate a set of repeatable/reproducible features 
across different modalities in both human and phantom data; 4. to verify 
if one of the largest issues identified in previous work, being the poor 
quality of reporting, has been addressed in new studies. To address aim 
(4) and support high-quality reporting of radiomic studies, we propose a 
checklist, which includes all necessary steps to fully reproduce a 
radiomic study. 

2. Methods and Materials 

2.1. Eligibility criteria 

Peer-reviewed full-text articles in the English language eligible for 
this review must have been published between 2017/05/01 to 2020/ 
12/01. One electronic database (PubMed) was used to search for records 
(see supplementary material for query filter). Only studies investigating 
radiomic features extracted A) from one of the imaging modalities CT, 
PET, or MRI and B) from radiologic phantoms or from human persons 
suffering from at least one primary tumor were eligible for review. 
Included articles had to report on the repeatability/reproducibility of 
radiomic features at least oneof the following aspects: image acquisi
tion/reconstruction parameters, effect of image pre-processing such as 
smoothing, or segmentation method. Studies must report a statistical 
metric assessing the degree of robustness (such as the Interclass- 
Correlation Coefficient (ICC)). 

2.2. Study records 

Selection process: After the literature search, titles and abstracts were 
checked for matching the described criteria by four independent ob
servers. Each reviewer voted if an article was eligible for review. In case 
of disagreement amongst reviewers, a consensus was obtained by joint 
discussion. EP and IZ reviewed the phantom studies, while AT and LIW 
reviewed the patient studies. 

Data extraction: We extracted information about the datasets used for 
radiomics (e.g. primary tumor type, or phantom details), details about 
the segmentation method used, details about radiomic feature extrac
tion such as the interpolation method, details about the statistical 
analysis and the summary of results. Details of the reviewer form are 

given in Table 1a. DICOM attributes about the important imaging details 
are summarized in Table 1b for the imaging modalities. 

Creation of the radiomic reporting checklist: In order to generate a 
radiomic reporting checklist, we attempted to literally reproduce each 
step of a study by following the description in each manuscript. The 
checklist complements the points mentioned by Vallieres et al. [8] and 
the IBSI reference manual [9,10] and necessary information to repro
duce a patient study (i.e. patient inclusion, statistical analysis). This 
checklist was also inspired by the QUADAS-2, a tool for the quality 
assessment of diagnostic accuracy studies [9]. The development of 
“signaling questions” has been carried out by the authors of this paper, 
who have at least 5 years of expertise in the radiomic domain and are 
members of tasks forces for radiomic standardization such as the IBSI 
[10]. Each of the authors defined a list of signaling questions, which 
were fundamental to reproduce a study. After a round of discussion, the 
final list of signaling questions was obtained. If a step was not reported 
and could therefore not be replicated, this step was noted, and we 
attempted to continue to the next step with a “best guess”. This pro
cedure was followed until all steps of the radiomics workflow was 
completed or guessed. 

The risk probability was estimated as the number of “no’s divided by 
the number of “signaling” questions, expressed in percentages. 

risk of bias =
|questions answered with no|

|questions|
∙100% 

E.g. if two out of four questions were answered with a “no”, the risk 
of bias is calculated as: 

risk of bias =
2
4
∙100% = 50% 

Supplementary tables 2a-2b show the risk assessment sheets for 
human and phantom studies, respectively. The only differences between 
human and phantom studies can be found in section A. This radiomic 
checklist was proposed in order to tackle the limitations of using only 
“quality scores” to evaluate such a complex question as methodological 
quality. 

2.3. Outcomes and prioritization 

The primary outcome of this review was the degree of repeatability/ 
reproducibility of a radiomic feature. The secondary outcomes were the 
impact of image acquisition and reconstruction settings, preprocessing 
steps, and tumor segmentation on the reliability/reproducibility of 
radiomic features. Additional outcomes were the metrics used for 
reporting on reliability/reproducibility. Finally, the radiomic reporting 
checklist was used to evaluate the quality of reporting of analyzed 
studies. 

2.4. Risk of bias in individual studies 

Two reviewers independently reviewed the studies. In a discussion 
round, both observers merged their results. This step was performed in 
order to avoid that the results were biased based on single reviewer’s 
judgement. Forced consensus was used. 

3. Results 

3.1. Literature search 

A total of 451 abstracts not retrieved from the previous review were 
found while searching PubMed with the aforementioned search filter. 
After reviewing the abstracts, 42 studies fulfilled the inclusion criteria 
and seven additional studies had been included as prior knowledge in 
the field. The PRISMA flowchart illustrating the selection process is 
shown as Fig. 1. 

Of these 42 studies, 29 studies were clinical (human subjects) 
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studies. A summary on the study characteristics are displayed in 
Table 3a. Eight of these studies reported on PET, nine on MR, and twelve 
on CT images, with only one prospective study [11]. The number of 
patients included in the studies ranged from a minimum of 14 to a 
maximum of 465. Five consisted of multi-institutional studies. Most of 
the studies were focused on reproducibility, with one investigating both 
reproducibility and repeatability [12]. 

The other thirteen studies used imaging phantoms to assess repeat
ability/reproducibility. The general characteristics are summarized in 
Supplementary table 3b. Two studies reported on MR, six on PET and 
five on CT images. All studies were retrospective, with one study that 
provided a publicly available dataset [13]. Six phantom articles reported 
on feature reproducibility and seven on repeatability. 

Five clinical studies [14–17] and two phantom studies [13] made 
their image dataset publicly available or used a publicly available 
dataset. A second phantom study used a digital phantom that was 
already publicly available [18]. 

17 patient and five phantom studies used publicly available software 
to calculate radiomic feature values. Pyradiomics was used in eight 
human studies and one phantom study, and was the most frequently 
used software [19]. Three patient studies used the open-source software 
CGITA [20], two patient studies used MaZda [21], one phantom study 
used LifeX [22], and one phantom and one patient study used IBEX [23]. 
Furthermore, three studies used open-source code written in Matlab. Six 
human and three phantom studies failed to mention the programming 
language used [24]. 

The most frequently used metric to assess reproducibility was the ICC 
which was used in 19 human studies and four phantom studies. Five 
human studies and one phantom study used the Concordance Correla
tion Coefficient (CCC), however a total of four human studies and two 
phantom studies used other metrics not described above. Some studies 
used more than one metric to assess feature stability. In general, the cut- 
off value to dichotomize stable versus unstable features were highly 
heterogeneous across studies. One study failed to mention the cut-off 
value for the ICC, while the threshold for “excellent feature” stability 
differed from 0.5 to 0.85 in the other studies. One study used the half- 
width of the ICC confidence interval as threshold for repeatable fea
tures. CCC values above 0.8, above 0.7 or equal or higher than 0.85 were 
considered as robust. 

3.2. Factors impacting radiomic feature values 

The variety of analyzed settings makes it difficult to draw a general 
conclusion. In summary, all patient studies confirm that differences in 
image acquisition, reconstruction, preprocessing, and discretization 
have an impact on radiomic feature values [11,15,17,24,25–30]. While 
the sensitivity to these factors is feature dependent, this sensitivity is 
found for all cancer types and imaging modalities. To mitigate this ef
fect, Park et al. demonstrated that CT feature reproducibility can be 
improved by using a CNN-based super resolution algorithm [31]. For CT 
studies, Erdal et al. pointed out that a slice thickness of 2 mm leads to the 
most accurate shape features [32]. It remains unclear if radiomic 

Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow chart. The primary PubMed search returned 168 studies. 7 studies were 
added from primary knowledge. After abstract screening and full-text analysis, a total of 26 studies were included in the qualitative synthesis. 
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features extracted from images acquired under different conditions also 
lead to different conclusions. In one head and neck PET study, strong 
dependencies of radiomic features with respect to digital image pre- 
processing parameters was shown, but these differences were not 
important enough to affect the prognostic power of radiomic features. 
Same conclusion holds in the study about nasopharyngeal carcinoma 
[25]. 

Many studies also reported on the sensitivity of radiomic features to 
differences in segmentation [11,14,16,33–43,55]. Also here, the 
robustness is feature dependent. Some studies demonstrated that the 
majority of features was stable to differences in tumor segmentation for 
lung [39] and oesophageal cancer. However, in one lung PET study [38], 
the shape metric sphericity was found to change its prognostic value 
when using different delineations. Also in CT studies, contours delin
eated by different clinicians impacted the prognostic value of radiomic 
features. For head and neck cancer, in one PET and one MR study fea
tures were found to be very sensitive to differences in tumor delineation 
[32,33,37,44]. Overall, semi-automated and automated algorithms 
produced more stable results. 

Individual studies showed that the interpolation method, image 
discretization, voxel size and motion blurring had an effect on radiomic 
feature values [32,45–48] as listed in detail in the Supplementary 
material. 

Also results from PET phantom studies agreed that image recon
struction protocols (in particular matrix size) had strong impact on 
feature reproducibility, but with different level of sensitivity per feature 
categories. In [49], the authors pointed out that smaller volumes seem to 
result in lower repeatability of feature values. In contrast to these re
sults, Ger et al. reported that most features resulted in a good or excel
lent reliability when the phantom was scanned on the same scanner with 
different acquisition protocols [50]. 

All CT phantom studies focused on differences in acquisition settings 
such as tube current and agreed that difference in acquisition protocols 
strongly impact feature reproducibility. However, it is difficult to draw a 
consensus on which features are stable: The authors in [51] demon
strated that the use of delta radiomic features, i.e. differences of feature 
values between two different scans of the same patient, increases the 
repeatability of features. 

In one MR phantom study, Baessler et al. [52] investigated both 
reproducibility and repeatability of radiomic features using a physical 
phantom scanned using different sequences. The investigators showed 
that radiomic features extracted from FLAIR (Fluid Attenuated Inversion 
Recovery) images were more repeatable than features from T1- and T2- 
weighted images. 

3.3. Stable feature categories 

As stated above, the variety of tumor types and investigated pa
rameters makes it difficult to identify features which are in general 
robust. The feature groups found to be stable by the majority of studies 
were statistical and morphological features, as well as GLCM and 
GLRLM features, while GLSZM and NGLDM features were found to be 
less robust. However, a few studies reported the contrary: Yang et al. 
found in simulated PET lung cancer data that NGLDM features were the 
most robust, while GLCM features were the least robust feature group 
[53]. One CT phantom study showed that statistical features are less 
robust than textural features [54]. Baessler et al. also showed in their MR 
phantom study that GLSZM features were more robust than GLCM fea
tures [52]. One study showed that features extracted from Fourier 
transformed images are the most robust, a feature group none of the 
other papers investigated. The authors in [51] demonstrated that the use 
of delta radiomic features, i.e. differences of feature values between two 
different scans of the same patient, increases the repeatability of 
features. 

3.4. Radiomic reporting checklist 

Supplementary tables 4a-5b summarizes the radiomic reporting 
checklist risk assessment for clinical and phantom studies. None of the 
studies scored a zero-risk bias probability. An example of the check-list 
can be found in the Supplementary material. 

For clinical studies, the lowest median risk was achieved in the 
“study design” domain. Information about the creation of the binary 
mask (question B4-imaging domain) was the least reported item with 
only one study providing detailed information. Twelve patient studies 
missed to report on feature specific parameters (questions C5-C6- 
radiomic pipeline domain) such as feature aggregation and. In 
contrast, only three patient studies missed to provide any detail of the 
software which is a clear improvement when compared with the pre
vious review. 

For phantom studies, there were no risks of biases in the “study 
design” and “statistical analysis” domains. Compared to clinical studies 
a) all but one phantom study included a table reporting all statistical 
results (signaling question E3- data and metadata availability domain), 
and b) all but two studies failed to report on how the binary mask was 
created from the segmentation (question B4-imaging domain). 

4. Discussion 

The studies included in this review confirm almost all findings of the 
previous published review. Major issues remain the little number of 
studies that made their data publicly available, the heterogeneity of used 
metrics and cut-off values for the assessment of feature robustness, and 
the lack of detailed reporting. To ease the way to reproduce a study, we 
invite again the radiomics community to make their data and metadata 
publicly available. The variability in metrics and cut-offs used to cate
gorize the features into good/poor reproducibility/repeatability, makes 
it difficult to compare the results of the studies. While there is no evi
dence that a specific metric should be used for analysis, a description 
about the metrics, as well as statistical hypothesis underlying the data 
analysis and specific cut-offs applied should be reported to guarantee the 
transparency and the reproducibility of the study. We also strongly 
recommend the users to append as supplementary material the raw re
sults of the analysis to facilitate meta-analyses. We strongly advise to 
follow guidelines provided by the TRIPOD (transparent reporting of a 
multivariable prediction model for individual prognosis or diagnosis) 
statement for a transparent reporting of model design, development and 
evaluation. 

Even though it was hard to get a consensus on which features are 
repeatable/reproducible, all studies agreed that reconstruction settings, 
image noise, and segmentation method have a high impact on radiomic 
feature values for all imaging modalities. This implies that multi-center 
radiomic studies require harmonized images in terms of image recon
struction setting and signal to noise ratio. Using images from different 
centers without harmonizing the images itself can lead to wrong con
clusions. Further harmonization can be achieved with correction 
methods applied before feature extraction such as e.g. resampling the 
images to cubic voxels or by standardizing images via post-processing 
such as by histogram equalization of MR images or post- 
reconstruction smoothing [56,57]. Moreover, radiomics harmoniza
tion can be achieved by image domain adaptation to reduce the influ
ence of image acquisition settings as Chen et al showed in a simulation 
study [58]. However, it still has to be validated if these methods can be 
used for radiomic analysis as it might be that by standardizing the im
ages important textural information gets lost. 

Additionally to the standardization of images, there are methods 
aligning radiomic features. One of the most popular methods is the so- 
called ComBat, which has been applied to CT [59] and PET features 
[57], but still requires a large-scale validation. However, even though, 
these algorithms to correct for multi-center effects are being developed, 
it is still important to keep this correction as small as possible. Therefore, 
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when using multi-centric data, it is essential that the images are as 
comparable as possible in terms of image acquisition. Moreover, patient 
cohorts across institutions/scanners should be comparable, i.e. the 
number of patients with a positive/negative outcome should be com
parable across the datasets of each institution/scanner type. Otherwise 
the findings using a radiomic model can be due to inter-scanner differ
ences of radiomic features and not to differences caused by variability in 
tumor characteristics. 

To ensure a valid and reproducible analysis of PET studies, it should 
be carefully checked if reported tracer dose and uptake time are correct 
and the conversion from image data in Bq/ml to SUV units is accurate. If 
the liver is displayed in the image, this can be checked by drawing a 3 
cm2 in the liver and verifying that the mean SUV inside the ‘liver’ sphere 
is in the range between 1.5 and 2.5. Higher/lower values are an indi
cation for calibration or other errors and these images should be veri
fied, corrected or excluded from the analysis. If the liver is not displayed 
in the image such as for brain images, a digital reference object can be 
used to verify the correct conversion to SUV as proposed by Pierce et al. 
[60] 

To minimize the effect of different segmentations, a (semi-) auto
matic segmentation method might be preferred, as automatic ap
proaches reduce inter-observer variability and yield a higher 
reproducibility than manual segmentations [61]. The most suitable 
segmentation method for radiomic analysis has to be identified what has 
to be done for each imaging modality and cancer type separately. Likely, 
several segmentation methods will be a good candidate as they yield 
similar accuracy and repeatability. 

Regarding the quality of reporting, we invite the users to provide not 
only their software but also the metadata associated with it such as in
formation about the programming language. In general, we recommend 
that each software used for feature calculation should be tested if it 
complies with the benchmarks provided by IBSI. In this way, feature 
values extracted by different software packages become comparable 
which is one important step in the standardization of radiomic feature 
values. 

However, also many studies included in this review missed to report 
details of preprocessing steps. This missing information has the conse
quence that the study itself becomes non reproducible and the results are 
not comparable with other studies. In conclusion, to make radiomic 
studies comparable across centers, pre-processing steps should be stan
dardized for each imaging modality as suggested by Park et al. [31]. This 
includes the discretization method as well as the bin number/bin width 
of choice as it has an impact on radiomic feature values [62,63]. Since 
radiomic features can be sensitive to differences in voxel size, it is rec
ommended to interpolate the images before feature extraction to an 
isotropic voxel size. This step and the used interpolation method should 
be reported if applied and the radiomic community should agree on 
which kind of resampling is the preferred one. Almost all studies did not 
report any information related to the generation of the binary mask from 
the original data. However, different software tools are available to go 
from a contour to the final binary mask, therefore it is important to state 
it. 

Most studies reported on the robustness of first order and local 
textural features such as GLCM and GLRLM features, while global 
textural features (such as GLSZM features) were found to be less robust. 

One limitation of the current review is that it was not possible to 
draw a general conclusion on which features are reproducible and can 
be used in the clinic what was one of the original aims of this review. The 
variety of analyzed settings and used metrics makes it impossible to 
perform a quantitative synthesis of the analyzed articles. Unfortunately, 
since the last review, the radiomics community did not came to a 
consensus on which metric is the most adequate to use in a radiomics 
setting. 
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