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Abstract

Kilovoltage Cone-beam Computed Tomography (CBCT)-based image-guided radiation therapy 

(IGRT) is used for daily delivery of radiation therapy, especially for stereotactic body radiation 

therapy (SBRT), which imposes particularly high demands for setup accuracy. The clinical 

applications of CBCTs are constrained, however, by poor soft tissue contrast, image artifacts, 

and instability of Hounsfield unit (HU) values. Here, we propose a new deep learning-based 

method to generate synthetic CTs (sCT) from thoracic CBCTs. A deep-learning model which 

integrates histogram matching (HM) into a cycle-consistent adversarial network (Cycle-GAN) 

framework, called HM-Cycle-GAN, was trained to learn mapping between thoracic CBCTs and 

paired planning CTs. Perceptual supervision was adopted to minimize blurring of tissue interfaces. 

An informative maximizing loss was calculated by feeding CBCT into the HM-Cycle-GAN, to 

evaluate the image histogram matching between the planning CTs and the sCTs. The proposed 

algorithm was evaluated using data from 20 SBRT patients who each received 5 fractions and 

therefore 5 thoracic CBCTs. To reduce the effect of anatomy mismatch, original CBCT images 

were pre-processed via deformable image registrations with the planning CT before being used 

in model training and result assessment. We used planning CTs as ground truth for the derived 

sCTs from the correspondent co-registered CBCTs. The mean absolute error (MAE), peak signal­

to-noise ratio (PSNR), and normalized cross-correlation (NCC) indices were adapted as evaluation 

metrics of the proposed algorithm. Assessments were done using Cycle-GAN as the benchmark. 

The average MAE, PSNR, and NCC of the sCTs generated by our method were 66.2 HU, 30.3 

dB, and 0.95, respectively, over all CBCT fractions. Superior image quality and reduced noise and 

artifact severity were seen using the proposed method compared to the results from the standard 

Cycle-GAN method. Our method could therefore improve the accuracy of IGRT and corrected 

CBCTs could help improve online adaptive RT by offering better contouring accuracy and dose 

calculation.
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1. Introduction

Lung cancer is the most common cause of cancer death in the United States, with a five-year 

survival rate of approximately twenty percent (Cronin et al., 2018). Radiation therapy plays 

an important role in the management of lung cancer, and the quality of radiation therapy 

continues to improve significantly secondary to technological advancements such as image­

guided radiation therapy (IGRT) (Eberhardt et al., 2015). More recently, wide adoption of 

SBRT has resulted in good outcomes for early-stage non-small cell lung cancer (NSCLC) 

patients (Postmus et al., 2017). In contrast to conventionally fractionated radiation, SBRT 

delivers a high dose per fraction (10 Gy to 34 Gy) over 1 to 5 fractions. It is therefore 

critical to have precise tumor alignment both to ensure adequate PTV coverage and avoid 

unnecessary treatment toxicities to organs at risk (OARs). The quality assurance of SBRT 

could be improved with more accurate fractional dose distributions.

IGRT is currently the most used technique for fractional treatment setup while treating 

lung cancer patients with SBRT. The current standard IGRT technique of linac-mounted 

kV CBCT, however, is prone to image artifacts. One major issue is streaking and 

cupping artifacts caused by scattering photons (Grimmer and Kachelriess, 2011), which 

is exacerbated in both frequency and severity for lung cancer patients because of respiratory 

motion (Zhang et al., 2010). Image artifacts can lead to errors in CT numbers, making it 

more it difficult to reliably obtain the accurate electron density information needed for dose 

calculations from CBCT Hounsfield unit (HU) values (Thing et al., 2016). It is therefore 

highly desirable to improve the quality of CBCT images to the quality level of planning CT 

images.

The many correction methods for CBCT artifacts which exist in the literature are mainly 

divided into two categories. The first includes pre-processing methods based on hardware, 

such as air-gap (Siewerdsen and Jaffray, 2000), bowtie filter (Mail et al., 2009), and 

anti-scatter grid methods (Siewerdsen et al., 2004). The underlying principle of these 

methods is to remove some of the scattered photons which reach the detector. The second 

is post-processing techniques that reduce image artifacts by estimating the effects of 

scattering photons in the projection or image domains. Examples of these include analytical 

modeling (Boone and Seibert, 1988), Monte Carlo simulation (Colijn and Beekman, 2004), 

measurement-based methods (Ning et al., 2004), and modulation methods (Zhu et al., 2006). 

For instance, high quality planning CT images can be used as prior knowledge to enhance 

CBCT images of the same patient in either the image (Brunner et al., 2011) or projection 

domains (Niu et al., 2010). Other methods mitigate shading artifacts by estimating the low­

frequency shading field from the CT or CBCT images, which is achieved by sophisticated 

image segmentation methods (Wu et al., 2015) or ring-correction methods (Fan et al., 
2015). Implementing these methods to improve scatter correction performance, requires 

concurrent consideration of computational complexity, imaging dose, scan time, practicality, 

and efficacy.

Recently, deep learning-based methods have been used to correct CBCT images across 

many body sites, such as brain, head and neck (Chen et al., 2020), and pelvis (Lei et al., 
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2019; Hansen et al., 2018). Studies showed that deep learning-based methods result in better 

image quality in corrected CBCTs than conventional correction methods using the same 

datasets (Xie et al., 2018). Adrian et al. showed that their U-Net method outperformed two 

conventional methods, deformable image registration and analytical image-based correction, 

with the lowest mean absolute error (MAE) of the resulting synthetic CT (sCT), the 

lowest spatial non-uniformity, and the most accurate bone geometry (Thummerer et al., 
2020). Harms et al. observed lower noise in sCTs and a more similar appearance to 

planning CT when compared with a conventional image-based correction method (Harms 

et al., 2019). Conventional correction methods are designed to enhance a specific aspect 

of image quality, while deep learning-based methods force the overall image quality of 

sCT to be close to planning CT. Compared with brain and pelvis, generating sCTs from 

abdomen CBCT is more challenging due to the anatomical variations in the abdomen 

introduced by respiratory motion and peristalsis. Recently, good results have been obtained 

in abdominal sites with respiratory motion (Liu et al., 2020). Liu et al. recently developed 

a cycle-consistent generative adversarial network (Cycle-GAN) method to generate sCTs 

from CBCT for pancreatic adaptive radiation therapy (Liu et al., 2020). To our knowledge, 

there are no studies in the literature specifically tailored to thoracic CBCT correction using 

deep learning-based methods. Given the even greater effects of respiratory motion in the 

chest compared to the abdomen, thoracic CBCT correction provides a challenge to the 

effectiveness of deep learning-based methods.

In this study, we proposed a new deep learning-based method for thoracic CBCT correction, 

which integrates histogram matching into a Cycle-GAN framework, called HM-Cycle­

GAN, to learn mapping between thoracic CBCT images and paired planning CT images. 

Perceptual supervision was adopted to suppress interface blurring, which is needed to get 

accurate lung contours and volume for normal tissue toxicity evaluations. Global histogram 

matching was performed via an informative maximizing (MaxInfo) loss calculated between 

planning CT and sCT derived by feeding CBCTs into the HM-Cycle-GAN. Histogram 

matching is important in the thorax, which has high tissue heterogeneity. The accurate HU 

around the boundary is important to dose calculation, particularly to SBRT and proton 

therapy. Our method produced high quality thoracic sCT images that can be used for dose 

calculation and organ segmentations.

2. Methods and materials

2.A. Data and Data Annotation

A set of planning CT images with registered fractional CBCTs of twenty lung SBRT patients 

were collected and anonymized. Each patient had 5 fractional CBCTs. In order to reduce 

the complexity of our data set, we purposely selected breathhold patients to minimize 

motion-induced artifacts. All planning CT images were acquired on a Siemens SOMATOM 

Definition AS CT scanner with a resolution of 0.977×0.977×2mm3. All fractional CBCT 

images were acquired using the on-board CBCT imager on the Varian Truebeam medical 

linear accelerator (Varian Medical System). Patients were coached to hold their breath 

during both simulation and radiation delivery.
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To reduce the impact of anatomy mismatch, original CBCT images were pre-processed via 

a two-step deformable image registration process with the planning CT in VelocityAI 3.2.1 

(Varian Medical Systems, Palo Alto, CA). First, rigid registration was performed to align 

both images. Second, the deformable image registration (DIR) algorithm in VelocityAI 

was used to register the CBCT to the planning CT. The resulting deformation vector 

field morphed the CBCT into a deformed CBCT, adopting the DICOM coordinates of 

the planning CT. The deformed CBCT and planning CT were then used as input for 

training our algorithm. The 5 fractional CBCTs along the course of the treatment have 

appreciable anatomical differences, which enhance the diversity of our data. In addition, data 

augmentation, such as rotation, flipping, re-scaling, and rigid deformation is used to enlarge 

the data variation. Furthermore, this patch-based strategy will also enlarge the training 

sample size.

2.B. Workflow

Figure 1 outlines the schematic flow chart of proposed HM-Cycle-GAN, which consists of 

two stages in the proposed CBCT correction algorithm: a training stage and a correction 

stage. As stated before, the CBCT fractions were first registered to the planning CT using 

deformable image registration algorithms in VelocityAI 3.2.1. The planning CT was used 

as the deep learning-based target of each CBCT image. Due to the artifacts in the CBCT 

images, there remained small residual mismatches between CBCT and planning CT images 

after deformable image registration. Those mismatches can be propagated and amplified 

to larger error during the CBCT-to-CT transformation as the trained model was highly 

under-constrained. In existing literature, a Cycle-GAN has been introduced to address this 

issue by simultaneously supervising an inverse CBCT-to-CT transformation model (Zhu et 
al., 2017). Unlike the original Cycle-GAN implementation, we used paired data in this work 

instead of unpaired training data. This removes intra-patient variation, which could further 

improve the network performance. Given the high similarity between the source image 

(CBCT) and the target image (planning CT), the residual image, i.e. the difference between 

the source and target images, was used to train the network. This structure of training the 

network is called a residual network, which has been shown to enhance convergence (He et 
al., 2016a).

2.C. Cycle-GAN

GANs rely on two sub-networks, a generator, and a discriminator, which work with 

opposite goals. The goal of the generator is to fool the discriminator while the goal of the 

discriminator is to identify false data provided by the generator. The competition between 

the generator and the discriminator leads to improved performance of the network. In 

our scenario, one set of training data is a planning CT and the paired CBCT. First, the 

network was trained to map a CBCT image towards a CT-like image (termed corrected 

CBCT (CCBCT) throughout this paper). The generator tries to improve the CCBCT image 

so the following discriminator cannot distinguish it from a planning CT. Conversely, the 

discriminator’s training objective is to increase the accuracy of its judgment in separating 

CCBCTs from planning CTs. The competition results in the generation of more accurate 

CCBCTs (Goodfellow et al., 2014). The two networks are then optimized under the zero­
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sum framework. To further double constrain the model, a Cycle-GAN adds the inverse 

transformation, i.e., translating the planning CT image back to a CBCT-like image.

2.D. Convolutional residual block

Promising results have been accomplished using residual block in tasks where the target 

and source image modalities share good similarity, such as CBCT and planning CT images 

(He et al., 2016b). A convolutional residual block is constructed with a residual connection 

as well as several convolutional hidden layers. An input feature map or image bypasses 

the hidden convolutional layers of a residual block via the residual connection, therefore 

assigning the hidden convolutional layers to learn the image differences between CBCT and 

planning CT. Figure 1 illustrates the generator architecture: it starts with two convolution 

layers with stride size of 2 which are installed to downscale the feature map. The feature 

map passes by multiple residual blocks and two deconvolution layers to accomplish the 

end-to-end mapping.

2.E. Loss functions

The challenge of mapping a thoracic CBCT to a planning CT is the residual anatomical 

mismatch between the deformed CBCT and planning CT. In this scenario, Cycle-GAN 

cannot produce sharp boundaries if only image distance loss (e.g., MAE and GDE) is used 

as it mixes the two sources of mismatches. Due to its ability to force the semantic similarity 

between estimated image and ground truth image, (Johnson et al., 2016), perceptual loss 

was integrated into the loss function to prioritize generating accurate tissue boundaries in the 

transformed 3D images. The perceptual loss is defined as the difference between estimated 

image and ground truth image in feature space. The features are extracted via a trained 

classification or segmentation network’s hidden layers. In this work, in order to let the 

features well-represent the lung boundary, a feature pyramid network (FPN), a segmentation 

network trained on paired thoracic CTs with lung contours (Yang et al., 2018), is used as the 

feature extracting network for perceptual loss.

Letting Fs denotes this FPN for feature extraction, we can extract multiple pyramid level 

(number of N) feature maps via Fs. Namely, the feature maps extracted from planning CT 

(ICT) and sCT (IsCT) is represented by fCT = ∪i = 1
N FS

i ICT  and fsCT = ∪i = 1
N FS

i IsCT , 

respectively. The perceptual loss is then described as follows:

Lp ICT , IsCT = ∑i = 1
N ωi

Ci ⋅ Hi ⋅ W i ⋅ Di
‖Fs

i ICT − Fs
i IsCT ‖2

2, (1)

where Ci denotes the number of feature map channels at ith pyramid level. Hi, Wi and Di 

denote the height, width, and depth of that feature map.

The competition between a generator network and a discriminator network boosts the final 

performance of the GAN network. Individually, each network’s performance is dictated by 

the design of the loss function. The original Cycle-GAN study used a two-part loss function 

which included an adversarial loss and a cycle-consistency loss (Zhu et al., 2017). The 

adversarial loss function was employed in both the CBCT-to-CT generator (GCBCT−CT) and 
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the CT-to-CBCT generator (GCT−CBCT). The adversarial loss was calculated on the output of 

discriminators. The global generator loss function can be written as:

GCT−CBCT, GCBCT−CT = argmin
GCT−CBCT, GCBCT−CT

λadv Ladv DCT + Ladv DCBCT
+Lcyc GCBCT−CT, GCT−CBCT

(2)

where λadv is a regularization parameter that control the weights of the adversarial loss.

Since both the forward and inverse transformations between the source image and target 

image are within the Cycle-GAN framework, it has the capability to differentiate synthetic 

images from real images, namely the planning CT. Therefore, a model trained under this 

framework can better process images with noise and artifacts. Given that CBCTs and 

planning CTs have similar underlying structures, in this work the Cycle-GAN is designed to 

predict the sCT to reach a similar level of both intensity accuracy and histogram distribution 

as the planning CT. Thus, the Lcyc(GCBCT−CT,GCT−CBCT) term consists of several losses, 

namely, MAE loss used to force the sCT’s voxel-wise intensity accuracy, GDE used to force 

the sCT’s structure to be similar to planning CT and thus reduce the scatter artifact, and 

MaxInfo loss, introduced in Eberhardt et al. (Eberhardt et al., 2015), to force the sCT to 

reach a similar histogram distribution level to that of the planning CT.

MaxInfo loss is used to quantify the mutual dependency between two probability 

distributions.

MaxInfo X, Y = ∑i, j, k p Xi, j, k, Y i, j, k log p Xi, j, k, Y i, j, k
p Xi, j, k ⋅ p Y i, j, k

(3)

where p(x, y) is a joint probability function of x and y. p(x) and p(y) are marginal probability 

functions of x and y.

2.F. Evaluation and Validation

Five-fold cross-validation was used for evaluation. Specifically, we first randomly and 

equally separated the twenty patients’ data into five subgroups. Four subgroups served as 

training datasets and the remaining subgroup was used for our model testing. We repeated 

the experiment five times to allow each subgroup to be used exactly once as testing data.

Planning CT was used as the ground truth for the purpose of assessing sCTs derived from 

CBCTs. Four metrics were used in our study for quantitative comparison: MAE, peak 

signal-to-noise ratio (PSNR), normalized cross correlation (NCC) and structural similarity 

index (SSIM). MAE is a magnitude of the absolute difference between the planning CT 

and sCT. PSNR is used to compare the noise level between the sCT and planning CT. 

NCC, which is commonly used in pattern matching and image analysis, is a measure of 

the similarity of image structures. SSIM is a measurement of the similarity between two 

images. The calculations of these metrics were conducted over the valid image volume of 

the CBCT and within the body outlines. To demonstrate the superior performance of the 
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proposed method comparing to the benchmark method, paired t-tests were conducted and 

p-values were calculated.

3. Results

To improve the performance of our network, we integrated two steps of supervision into 

the tradition Cycle-GAN. To demonstrate the significance of these two steps, we performed 

an ablation test for each step, i.e., comparing Cycle-GAN with perceptual supervision 

(Cycle-GAN+Perceptual) and Cycle-GAN with perceptual and Maxinfo supervision (Cycle­

GAN+Perceptual+MaxInfo) against the benchmark used in this study, the traditional Cycle­

GAN.

Fig. 2 displays the axial views of the deformed CBCT, planning CT, and the CTs 

generated by the three deep-learning-based methods listed above for a selected case. For 

this case, substantial streaking artifacts were seen on the CBCT, which could be a result of 

inconsistent breathholds during CBCT acquisition. As the result, unlike the planning CT, the 

thoracic outline, and internal structures on the CBCT were blurred, as shown in the yellow 

boxes. False inhomogeneity in HU values were observed within the breast tissue, with 

examples shown in in the red boxes. Compared to sCTs from the benchmark Cycle-GAN 

method, the sharpness of the interfaces was greatly improved in the sCTs from both methods 

with perceptual supervision. The body outline, diaphragm, bony structures, esophagus, 

trachea, heart, and other organs were easier to identify. Additionally, the correspondent sCTs 

had fewer errors across around tissue interfaces compared to CBCTs. The final proposed 

method, which added MaxInfo loss, further suppressed the false HU inhomogeneity within 

the breast tissue and other organs. Overall image noise level was also reduced. In the CBCT­

CT difference images (Fig. 2 (a3) and (a4)), major differences were seen in both breasts, 

mediastinum, and lung. The proposed method with both perceptual supervision and MaxInfo 

loss had the fewest residual differences. It demonstrated the benefits of each individual 

modification, both perceptual supervision and MaxInfo loss, in terms of improving the 

Cycle-GAN methods. Finally, the line profile shown in Fig. 2 (f) also demonstrated that the 

HUs of the sCT from our proposed method were closest to that of the planning CT.

Fig. 3 shows the coronal views of the deformed CBCT, planning CT, and the CTs generated 

by the three deep-learning-based methods. Here the improvements in resolution of the 

diaphragm, heart, and surrounding tissues were easier to observe. Particularly, the blurring 

of the diaphragm was decreased in sCTs generated from the methods with perceptual 

supervision, which could be seen in both the sCT and the difference images. Again, the 

proposed method with both perceptual supervision and MaxInfo loss had the fewest residual 

difference when compared to the planning CT. The line profile in Figure 3f again showed 

that the HUs of the sCT from our method were closest to that of the planning CT.

The histogram profile in Figure 4 again shows that the sCT from our HM-Cycle-GAN 

closely resembles the planning CT. It is known that the HU profile of the CBCT is 

drastically different from the planning CT, and therefore cannot be used to determine 

accurate dose delivery. With the inclusion of the perceptual supervision and Maxinfo loss, 

the HU histogram of the sCT (brown line in Figure 4) was more similar to that of the 
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planning CT (green line). Particularly, the peak around −100 HU was enhanced, indicating 

that the soft tissue contrast was greatly improved; both perceptual supervision and Maxinfo 

loss contributed to this improvement.

Table 1 presents the averages and standard deviations of the MAE, PSNR. NCC and SSIM 

values within the body contour of the CBCT and the sCT generated by the benchmark 

Cycle-GAN method, Cycle-GAN+Perceptual method and our final proposed method, Cycle­

GAN+Perceptual+MaxInfo, across the entire dataset, using the planning CT as ground 

truth. Incorporating perceptual supervision and MaxInfo loss into Cycle-GAN methods 

boosted the image quality of the generated sCT. Our proposed method had the best results, 

with MAE, PSNR, NCC and SSIM values of 66.2±8.2 HU, 30.3±6.1dB, 0.95±0.04, and 

0.91±0.05, respectively. The standard deviations were the smallest, indicating that our 

method not only performed the best, but also generated the most consistent results. Table 

2 shows the p-values of the paired t-tests comparing our proposed methods vs. the other 

two methods. All the p values are below 0.001, demonstrating the statical significance of 

the improvements. The performances of all the methods within the bony region are shown 

in Table 3. Our proposed method yielded superior outcome across all metrics. Paired t-tests 

were conducted and the p values are listed in Table 4. As can be seen from these two tables, 

our proposed method outperformed the other two methods within the bony region (all p 

values < 0.001).

4. Discussion

Our proposed algorithm-generated sCT closely resembles the planning CT. It has a similar 

HU histogram profile to the planning CT, which will allow for more accurate dose 

calculation. Our results were better than a recent study that used Cycle-GAN for head 

and neck, lung, and breast (Maspero et al., 2020). Our results proved that high-fidelity sCTs 

can be generated while also taking thoracic motion into account by modifying the general 

Cycle-GAN network, in this case by adopting perceptual supervision and Maxinfo loss. 

Another reason for our high fidelity is the use of paired training data instead of unpaired 

data, as anatomical mismatches in paired data are less profound compared to unpaired 

data. Although Cycle-GAN can be trained via un-paired data, the larger mismatch between 

learning target (CT) and source image (CBCT), may lead to decreased intensity accuracy 

of the synthetic CT. Paired training data frees the algorithm from tackling those anatomical 

mismatches, thereby allowing it to focus on reducing image artifacts and enhancing soft 

tissue contrast. Additionally, it made the training process faster as the initial relative 

differences in dataset are smaller.

Although the planning CT was treated as the ground truth for performance evaluation in this 

study, the planning CT is by no means the real ground truth. The planning CT was acquired 

at simulation, prior to the course of SBRT, while CBCT images were acquired on different 

days during the treatment course. One would therefore not expect the sCT to match fully 

the planning CT, since residual anatomical differences were persistent even after deformable 

image registration. However, the improvement in image quality, such as diminishing of 

scatter artifact, improving lung boundary contrast, and improving the histogram distribution 

of CBCT to be close to that of planning CT is substantial. Deformable image registration 
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(DIR) does have inherent limitations. There is not a fully clinical usable DIR algorithm to 

this date; all of the current options have to be manually assessed when running individual 

DIRs. Often, the DIR results are not acceptable. We chose Varian Velocity Al since it is a 

widely known algorithm and does relatively acceptable DIR. DIR for Lung SBRT patients 

is especially challenging due because of the respiratory motion. The example shown in 

the manuscript is one of the challenging cases with large motion-induced artifacts. In this 

study, we manually examined all CT-CBCT registration results to ensure all training data 

had acceptable registration accuracy.

One of the reasons that the proposed algorithm did well in CBCT image correction is that 

the CBCT and planning CT images are inherently similar, meaning the initial differences 

are small. However, the algorithm does not consider any physical information, compared 

to the conventional scatter-based methods. Therefore, the quality of the sCT images is 

fundamentally limited by the image quality of the initial planning CT images. If there are 

artifacts in the planning CT, they will be present in the sCT. For example, a sCT would 

inherit artifacts from implants such as shoulder prostheses, cardiac devices, or lung fiducial 

markers, if the artifacts are not corrected in the planning CT. Another limitation comes from 

the image quality of the incoming CBCT images, especially the motion-induced artifacts for 

chest CBCT. Although motion management techniques such as deep inspiration breath hold 

can reduce such artifacts, the image quality of thoracic CBCT remains suboptimal due to 

residual respiratory motion. Those artifacts may get propagated to the final sCT.

In the context of adaptive radiation therapy (ART), one needs a reliable HU-electron density 

conversion on fractional IGRT images for dose calculation purposes. Such a requirement 

is difficult to meet for CBCT due to streaking and shading artifacts, especially at tissue 

boundaries. If those issues can be solved, accurate dose calculation on CBCT images 

could be achieved. Unlike conventional scatter or artifact corrections that typically cannot 

correct HU values, our sCT images have similar HU distributions to planning CTs, making 

it possible to obtain accurate dose calculations. Although not demonstrated in this work, 

recent work by our group studied the dosimetric impact of the random forest-based method, 

which is a tradition machine learning-based method (Wang et al., 2019). Since the current 

method is more accurate than the random forest method due to the using of deep features 

as compared to knowledge-based features, we would expect improved accuracy of dose 

calculation on sCT from this method. Finally, like other deep-learning-based methods, the 

generation of the sCT only took several seconds, which would meet the demand for online 

ART.

A further application of the proposed algorithm could lie in target delineation and treatment 

planning. The model could be used to predict deformed dose distributions or organ contours 

by adopting the same CBCT image corrections (Nguyen et al., 2019). It could save dose 

calculation time and further shorten patient waiting time on the treatment couch for online 

ART. Dosimetric studies are currently in progress to further assess the model from the 

proposed method.
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Conclusion

In this work, a deep-learning-based algorithm that corrects image artifacts in thoracic CBCT 

images is presented. The proposed algorithm was trained with paired planning CT-CBCT 

data. The proposed algorithm reduced the MAE from planning CT images to CBCT images 

from an average of 110.0 HU to an average of 66.2 HU and effectively reduced the streaking 

and shading artifacts. More accurate HU distributions of sCT images could also offer more 

opportunities in quantitative imaging using CBCT.
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Figure 1. 
Flow chart of the proposed HM-Cycle-GAN. The left panel shows the framework and the 

right panel the generator and discriminator used in the framework.
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Figure 2. 
Axial views of the deformed CBCT, planning CT and these CTs generated by the three 

deep-learning-based methods. The first row (a1, b1, c1, d1 and e1) shows the axial views of 

CBCT, planning CT, sCT obtained via Cycle-GAN, Cycle-GAN+Perceptual and proposed 

method, respectively. The second row (a2, b2, c2, d2 and e2) shows two zoomed-in 

subregions highlighted in the red and yellow dash line rectangles in (a1). The third row (a3, 

c3, d3 and e3) shows the difference images between planning CT and CBCT, sCT obtained 

via Cycle-GAN, Cycle-GAN+Perceptual and proposed method, respectively. The fourth row 

(a4, c4, d4 and e4) shows two zoomed-in subregions highlighted in red and yellow dash line 

rectangles in (a1). The line profiles of CBCT, planning CT, sCT obtained via Cycle-GAN, 

Cycle-GAN+Perceptual and proposed method are plotted in (f).
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Figure 3. 
Coronal views of the deformed CBCT, planning CT and these CTs generated by the three 

deep-learning-based methods. The first row (a1, b1, c1, d1 and e1) shows the coronal 

views of CBCT, planning CT, sCT obtained via Cycle-GAN, Cycle-GAN+Perceptual and 

proposed method, respectively. The second row (a2, b2, c2, d2 and e2) shows two zoomed-in 

subregions highlighted in the red and yellow dash line rectangles in (a1). The third row 

shows (a3, c3, d3 and e3) the difference images between planning CT and CBCT, sCT 

obtained via Cycle-GAN, Cycle-GAN+Perceptual and proposed method, respectively. The 

fourth row (a4, c4, d4 and e4) shows two zoomed-in subregions highlighted in shown by red 

and yellow dash line rectangles in first row(a1). The line profiles of CBCT, planning CT, 

sCT obtained via Cycle-GAN, Cycle-GAN+Perceptual and proposed method are plotted in 

(f).
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Figure 4. 
Histograms of CBCT, planning CT, sCT obtained via Cycle-GAN, Cycle-GAN+Perceptual 

and proposed method, respectively.

Qiu et al. Page 15

Biomed Phys Eng Express. Author manuscript; available in PMC 2022 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Qiu et al. Page 16

Table 1.

Model performance results on all patients’ data. Data are reported as mean ± STD.

MAE (HU) PSNR (dB) NCC SSIM

CBCT 110.0±24.9 23.0±4.0 0.87±0.06 0.85±0.05

Cycle-GAN 82.0±17.3 28.3±6.9 0.93±0.06 0.89±0.06

Cycle-GAN+Preceptual 72.8±11.5 29.1±6.8 0.94±0.04 0.90±0.05

Proposed 66.2±8.2 30.3±6.1 0.95±0.04 0.91±0.05
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Table 2.

P-values from the paired t-test comparing the proposed method and benchmark method.

MAE (HU) PSNR (dB) NCC SSIM

Cycle-GAN <0.001 <0.001 <0.001 <0.001

Cycle-GAN+Preceptual <0.001 <0.001 <0.001 <0.001
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Table 3.

Model performance within the bony region on all patients’ data. Data are reported as mean ± STD.

MAE (HU) PSNR (dB) NCC SSIM

Cycle-GAN 165.4±42.3 20.1±7.3 0.58±0.16 0.54±0.20

Cycle-GAN+Preceptual 127.0±35.2 20.6 ±7.4 0.62±0.16 0.57±0.20

Proposed 95.5±41.7 21.5±7.3 0.78±0.17 0.69±0.20
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Table 4.

P-values from the paired t-test comparing the proposed method and benchmark method within the bony 

region.

MAE (HU) PSNR (dB) NCC SSIM

Cycle-GAN <0.001 <0.001 <0.001 <0.001

Cycle-GAN+Preceptual <0.001 <0.001 <0.001 <0.001
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