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Abstract

Zero-shot learning (ZSL) is one of the most promising avenues of annotation-efficient machine 

learning. In the era of deep learning, ZSL techniques have achieved unprecedented success. 

However, the developments of ZSL methods have taken place mostly for natural images. ZSL 

for medical images has remained largely unexplored. We design a novel strategy for generalized 

zero-shot diagnosis of chest radiographs. In doing so, we leverage the potential of multi-view 

semantic embedding, a useful yet less-explored direction for ZSL. Our design also incorporates 

a self-training phase to tackle the problem of noisy labels alongside improving the performance 

for classes not seen during training. Through rigorous experiments, we show that our model 

trained on one dataset can produce consistent performance across test datasets from different 
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sources including those with very different quality. Comparisons with a number of state-of-the-art 

techniques show the superiority of the proposed method for generalized zero-shot chest x-ray 

diagnosis.

Index Terms—

Multi-view; self-training; x-ray; zero-shot

1. INTRODUCTION

Zero-shot learning (ZSL) is the art that empowers machine learning strategies to identify 

objects from previously unseen classes with the help of their semantic descriptions. 

Typically, a ZSL method is trained with data points from several classes called seen 
classes. The trained model is expected to identify test data points from classes not seen 

during training (unseen classes). This is achieved through the use of auxiliary information 

about seen and unseen classes in the form of semantic descriptions. Therefore, auxiliary 

information are of pivotal importance in a ZSL method [1]. A generalized ZSL (GZSL) 

method is the one where the test data may belong to either seen or unseen classes.

There have been several remarkable developments in the design of ZSL methods involving 

natural images for applications including classification [2], [3], object detection [4]–[6], and 

segmentation [7], [8]. Because of its ability to identify new classes, ZSL may be potentially 

useful in radiology diagnosis, especially for the diagnosis of rare diseases from radiology 

images. However, due to a number of compelling factors, there has been practically no 

development in designing ZSL methods for radiology diagnosis. One such challenge is 

the presence of noisy (incorrect) labels in large scale radiology image datasets. Most such 

datasets employ automated rule-based approaches for the extraction of labels from radiology 

reports. Even with small ambiguities in sentences, such models may end up producing 

wrong labels. The noise in labels presents a major difficulty in training ZSL systems.

Typical ZSL methods operate by mapping some form of feature vectors corresponding to 

input data (such as visual feature vectors if image is input) to a semantic space constructed 

from auxiliary information. The semantic space contains points bearing the characteristics of 

each target class. These points are called semantic signatures of the corresponding target 

classes. Classification of the input data is performed based on the semantic signature 

closest to the projection of input data in the semantic space. However, semantic spaces 

constructed from text-based auxiliary information are often devoid of cues about visual 

traits that define a class. This gives rise to semantic gaps in embeddings [9] and adversely 

affects the performance of a ZSL method. Furthermore, since semantic spaces are important 

in the design of ZSL methods, meaningful use of multiple semantic spaces is likely to 

facilitate a ZSL method [10]. However, constructing multiple independent semantic spaces 

and meaningfully combining them is a challenging problem, especially in the field of 

radiology diagnosis due to the relative scarcity of auxiliary information.

We propose a novel GZSL method for chest x-ray diagnosis by addressing the above 

challenges. Our goal is to train a model with the chest x-ray images corresponding to a set 
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of abnormalities in such a way that the model can be used for the diagnosis of a different set 

of abnormalities from chest x-rays alongside the abnormalities used for training the model. 

To that end, we introduce a first-of-its-kind trait-guided multi-view semantic embedding 

strategy. Our model consists of three semantic spaces. While two of the semantic spaces 

are constructed from x-ray and CT radiology reports, respectively, visual traits are used for 

designing the third. Most diseases and conditions diagnosable from chest x-rays can also 

be diagnosed from chest CTs having richer information. Hence, the CT semantic space, 

alongside the x-ray semantic space is also expected to provide useful information for chest 

x-ray diagnosis. We design a two-branch autoencoder to perform semantic embeddings into 

the above two semantic spaces. The third semantic space is constructed from visual traits 

used by the radiologists for the diagnosis of the target diseases. In each of the two branches 

of our model, we introduce a novel guiding network that exploits the trait-based semantic 

space to alleviate the problem of semantic gaps for embeddings into the x-ray and CT 

semantic spaces. Finally, we introduce a self-training which involves fine tuning the initial 

model by data points, most confidently identified by the initial model. Self-training helps 

to address the problem of noisy labels in training data and improve performance for unseen 

classes. In this work, our contributions are as follows:

• We design a method for generalized zero-shot diagnosis of chest x-rays.

• Information from three semantic spaces created using x-ray reports, CT reports 

and visual traits, respectively, are meaningfully combined using a two-branch 

autoencoder.

• We utilize visual traits through a novel guiding network to alleviate the problem 

of semantic gaps in embeddings.

• The problem of noisy labels is addressed using a self-training method that also 

helps to improve the performance for unseen classes.

• Our model, trained on one dataset, can be used for test data from a diverse set of 

sources.

The rest of the paper is organized as follows. After presenting the related works in Section 

II, we describe the proposed method in Section III. The experiments are presented in Section 

IV followed by conclusions in Section V.

II. RELATED WORK

A. Zero-shot Learning

Most existing ZSL techniques project input data points to a semantic space where the 

target classes are represented by a point, termed as semantic signatures. Based on the 

availability of training data points, ZSL methods are divided into two categories, inductive 

ZSL and transductive ZSL. Inductive methods use data points only from the seen classes 

during training. Among the inductive methods, Romera-Paredes et al. have proposed a 

linear mapping from input features to class-specific attributes [11]. An autoencoder based 

method has been designed in [12]. For a generative model that operates by learning 

visual-semantic and semantic-visual mappings, see [3]. Bucher et al. have introduced a 
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zero-shot semantic segmentation method with self-training [7]. In [13], the authors propose 

to re-train a pre-trained neural feature extractor to learn the mapping from extracted features 

to semantic signatures. ZSL by synthesizing examples through a variational autoencoder has 

been presented in [14].

Transductive ZSL methods assume the availability of unlabelled training data from unseen 

classes alongside labelled training data from seen classes. Among transductive ZSL 

methods, ZSL via shared model space learning has been proposed in [15]. Ye et al. [16] 

have designed an ensemble of networks for ZSL. See [2] for ZSL through the use of gradient 

matching generative networks [2]. In [17], the authors use priors from visual structures to 

learn semantic embedding. The use of structural constraints in this method helps to alleviate 

the domain shift problem.

B. Multi-view Learning

Learning through the use of multiple independent (generated independently from each other) 

semantic spaces (views) is called multi-view learning. Independent and useful information 

from multiple semantic spaces is likely to facilitate ZSL [10]. However, there are very 

few ZSL methods that have explored multi-view learning due to challenges in designing 

complementary semantic spaces. Among those, Zhang et al. have designed a multi-modality 

fusion method for ZSL [10]. A strategy of multi-view ZSL through score level fusion can be 

found in [1]. In [18], the authors propose a transductive ZSL method to address the domain 

shift problem through the use of multiple semantic views. This model employs canonical 

correlation analysis for learning the embedding space.

C. Deep Learning for Chest X-ray Diagnosis

The advent of deep learning has revolutionized the field of automated diagnosis of radiology 

images including chest x-rays. Lakhani et al. have designed a CNN model to detect 

pulmonary tuberculosis from chest x-rays [19]. Attention-guided CNN for thorax disease 

diagnosis from chest x-rays has been proposed in [20]. See [21], for a deep learning based 

model to detect pulmonary nodules. In [22], an ensemble of deep neural networks has been 

introduced for localization of pneumonia in chest x-rays. Recent works based on deeper and 

denser networks [23]–[25] seem to provide a promising direction for automated diagnosis of 

chest radiographs.

However, all of the above methods are data-hungry. Data-efficient deep learning models 

are relatively rare for medical images. Out of those methods, see [26] for few-shot and 

[27] for one-shot MRI segmentation. A few-shot chest x-ray diagnosis model has been 

proposed in [28]. Data-efficient models have also been used for brain imaging modality 

recognition [29], medical image registration [30], volumetric medical image segmentation 

[31], and differential diagnosis at brain MRI [32]. Nevertheless, zero-shot diagnosis of chest 

radiographs is mostly unexplored. To the best of our knowledge, apart from our recently 

published method [33], there exists no other method for the zero-shot diagnosis of chest 

radiographs. In [33], we find that an ensemble learning strategy with autoencoders may be 

useful for zero-shot diagnosis of chest x-rays. In the present work, we design a transductive 

GZSL method through multi-view semantic embedding with self-training for chest x-ray 
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diagnosis. Although we use the proposed model for chest x-ray diagnosis, our design 

principle may be potentially extended to other modalities of radiology images as well.

III. METHODS

In designing a GZSL method for the diagnosis of chest x-rays, we first divide the chest 

diseases and conditions of interest into seen and unseen classes. Next we consider the fact 

that the use of disease-specific auxiliary information from different independent sources 

may lead to improvement in performance [10]. Hence, we design a multi-view semantic 

embedding (MVSE) network using two semantic spaces constructed from x-ray reports and 

CT reports, respectively. Thus, x-ray reports and CT reports act as the sources of auxiliary 

information in our design. The motivation of using CT reports for the diagnosis of x-ray 

images stems from the following fact. All the diseases and conditions diagnosable from 

chest x-rays can also be diagnosed from chest CTs [34]. Therefore, chest CT reports may 

provide useful cues about such diseases.

However, the semantic spaces constructed from the above radiology reports do not explicitly 

incorporate the visual traits that a radiologist may use for the diagnosis of x-ray images. 

This causes the problem of semantic gaps [9] when we try to perform semantic embedding 

for x-ray images. To address this problem, we construct a third semantic space using visual 

traits that guides the semantic embeddings to the semantic spaces constructed from the x-ray 

and CT reports through guiding networks integrated inside the MVSE network. Thus, the 

visual traits are the third source of auxiliary information alongside x-ray reports and CT 

reports in our method.

Most radiology image datasets, including the ones we use, contain noisy labels that 

adversely affect training. To deal with this, we introduce a self-training step in our method. 

Self-training also helps to improve the performance of the model for unseen classes. From a 

functional perspective, the proposed method is divided into three steps, namely, pre-training, 

multi-view semantic embedding and self-training. The steps are described next. A schematic 

diagram of the proposed model is presented in Fig. 1.

A. Pre-training

Pre-training involves two operational sub-steps. Those are: construction of semantic spaces 

and feature extraction.

1) Construction of Semantic Spaces: Three semantic spaces are used in our model. 

These are as follows:

X-ray Semantic Space:  This semantic space is constructed from x-ray reports using the 

word2vec [35] model of [36]. The model, trained with x-ray reports outputs a vector of real 

numbers for each seen and unseen class. These vectors are referred to as x-ray signatures.

CT Semantic Space:  The CT semantic space, consisting of CT signatures is constructed 

using Intelligent Word Embedding [37], [38], a word2vec model. Note that the x-ray and 

CT signatures are generated offline from x-ray and CT reports, respectively, without paired 
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images. Apart from signature generation, we do not use x-ray or CT reports in any stage of 

our method. Both the x-ray and CT semantic spaces only capture the semantic context of the 

corresponding radiology reports. They lack visual cues causing semantic gaps in embedding. 

To overcome this problem, we construct trait semantic space with the help of visual traits.

Trait Semantic Space:  In constructing trait semantic space, we utilize visual traits which 

radiologists use to recognize the diseases (classes) of interest. These traits (and their possible 

values) are: location (lung/pleura, or mediastinum), position (upper half of image, or lower 

half of image), opacity (high, medium, or low), distribution (focal, local, bilateral, or 

diffuse), border sharpness (clear-cut edge, or indistinctive edge), size (less than 25% of 

lungs, 25 to 50% of lungs, or more than 50% of lungs), and aspect ratio (low [round], or 

high [elongated]). A detailed description of visual traits for different diseases and conditions 

of interest are presented in the Appendix titled On the Visual Traits.

Since there are 18 possible values across 7 traits, we create 18-dimensional trait signatures 

for each disease of interest. Each dimension usually assume one of three values: 0, 0.5 or 

1. These values are crude estimates of their frequency of occurrence for the given class 

of finding: 0 indicates relatively low (tending to zero) frequency, 1 indicates relatively 

high frequency, and 0.5 indicates uncertain or medium frequency. Thus the trait signatures 

provide a crude-form information obtained from the visual observation of a lesion by a 

radiologist.

2) Feature Extraction: Prior to semantic embedding for GZSL, we extract visual 

features from x-ray images. A CNN based feature extractor [39] with DenseNet [23] 

backbone is used for this purpose. We choose this feature extractor because of its success in 

few-shot chest x-ray diagnosis [28]. DenseNet can utilize information from the seen classes 

for useful feature extraction through strengthening feature propagation and encouraging 

feature re-use during training. The output from the penultimate layer of the feature extractor 

network is used as the feature vector for an input chest x-ray image. Note that the feature 

extractor is trained with x-ray images of only the seen classes.

B. Multi-view Semantic Embedding

For generalized zero-shot diagnosis of a chest x-ray, we need to map the visual feature 

vector, extracted from the x-ray image, to the semantic signatures of a disease or condition 

from the set of diseases and conditions of interest. Recall that for each disease and condition 

of interest, we have three semantic signatures obtained from x-ray reports, CT reports 

and visual traits, respectively. We utilize these signatures in a way such that semantic 

embeddings are performed by minimizing semantic gaps between visual features and 

semantic signatures.

To this end, we design a multi-view semantic embedding (MVSE) network. This network 

aims to map the visual feature vector extracted from an x-ray image to the x-ray signature 

and CT signature corresponding to a disease or condition present in that x-ray image. We 

propose a novel approach to guide these mappings with the help of trait signatures.
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Since our feature extractor is trained with images of only the seen classes, the feature 

vectors corresponding to the images of unseen classes are likely to be noisy. Additionally, 

as discussed earlier, there may be noisy labels associated with the training images (of seen 

classes) as well. Training the feature extractor with such noisy labels may encourage noise 

in feature vectors corresponding to the images of seen classes too. Autoencoders [40] are 

useful in dealing with noise in the input feature vectors. Therefore, we design the MVSE 

network using autoencoder architectures.

The MVSE network is a two-branch autoencoder with a common input layer (see Fig. 1). 

The visual feature vectors obtained from the feature extractor are applied to this layer. Each 

of the two branches of the MVSE network has an encoder-decoder architecture [40]. While 

one branch maps the visual feature vectors to the x-ray semantic space (x-ray branch), the 

other branch maps those feature vectors to the CT semantic space (CT branch). Let the 

dimension of each x-ray signature and CT signature be d. Then the x-ray branch and the CT 

branch have hidden layers of dimension d.

1) X-ray Branch & CT Branch: Consider input feature vectors F applied to the 

common input layer of the MVSE network. The x-ray branch creates a hidden space 

representation HX of F before reconstructing it as FX at the output. Therefore HX is a point 

in the x-ray semantic space. The CT branch performs similar operation by creating a hidden 

space representation HCT for F and reconstructs it at the output as FCT.

The hidden spaces of the x-ray branch and the CT branch are meant to be the x-ray and 

CT semantic spaces, respectively. Therefore, the hidden space representations of an input 

feature vector should ideally lie close to its corresponding semantic signatures in x-ray 

and CT semantic spaces. To ensure this, we use an embedding loss alongside the standard 

reconstruction loss of autoencoders at each branch.

Reconstruction Loss:  Both the x-ray and the CT branch of the MVSE network have 

a reconstruction loss component. For the x-ray branch with input feature vectors F and 

reconstructed output FX, the reconstruction loss is

LX
re = FX − F . (1)

The CT branch has a similar reconstruction loss. Considering the reconstructed output FCT 

from the CT branch for input feature vectors F, the reconstruction loss for the CT branch is

LCT
re = FCT − F . (2)

Embedding Loss:  The embedding loss components are meant to capture the proximity 

of projections in the hidden layer for the input feature vectors from their corresponding 

semantic signatures. Consider a data point n from class c. Let its projection in the hidden 

layers of x-ray branch and CT branch be HX (n) and HCT (n), respectively. In the x-ray 

semantic space, let DX (n) be the distance between hidden layer projection HX (n) and the 
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x-ray signature of class c. Then for the set of training data Ntr, the embedding loss for the 

x-ray branch is

LX
em = ∑

n ∈ Ntr
DX n .

(3)

Similar embedding loss can be defined in CT branch. Let DCT (n) be the distance between 

projection HCT (n) and the CT signature of class c in the CT semantic space. The embedding 

loss for the CT branch is defined as

LCT
em = ∑

n ∈ Ntr
DCT n .

(4)

As mentioned earlier, semantic embeddings by minimization of the above loss functions 

are likely to give rise to semantic gaps [9] due to not having visual cues in the above 

semantic spaces. The problem of the gaps can be alleviated if embeddings can be guided by 

visual traits. Considering this fact, we utilize explicit visual cues through trait signatures. We 

introduce guiding networks to guide the semantic embeddings to the x-ray and CT semantic 

spaces.

2) Guiding Networks: The guiding networks have an encoder-decoder architecture. 

There are two guiding networks (see Fig. 1), one integrated to the x-ray branch (abbreviated 

as GN-X) and the other to the CT branch (abbreviated as GN-CT). The goal of the guiding 

networks are to make the hidden space representations of the x-ray and CT branches richer 

in terms of visual cues.

Towards that end, GN-X takes HX (the hidden space representations in x-ray branch) as 

input and projects it to a guiding hidden space which is meant to be the trait semantic 

space. Let the guiding hidden space representation of HX by GN-X be HX−G. In order 

to incorporate visual information in HX from the trait semantic space, we want HX−G to 

lie close to the corresponding trait signatures. This is achieved by the minimization of 

embedding loss in GN-X. Since guiding networks follow an autoencoder architecture, we 

also minimize standard reconstruction loss. Thus a guiding network is an autoencoder inside 

an autoencoder.

The guiding network of CT branch (GN-CT) also operates identically. HCT, the hidden space 

representation of F in the CT branch as applied as input to the GN-CT. Let the guiding 

hidden space projection of HCT in GN-CT be HCT−G. The two guiding networks GN-X and 

GN-CT are trained by minimizing the following loss functions.

Reconstruction Losses of the Guiding Networks:  For GN-X, let the input be HX, and 

the reconstructed output be HX. Similarly, for GN-CT, let the output for input HCT be HCT . 

Then the reconstruction losses for GN-X and GN-CT, respectively, are
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LX − G
re = HX − HX ,

LCT − G
re = HCT − HCT .

(5)

Embedding Losses of the Guiding Networks:  The embedding losses for the guiding 

networks measure the proximity of projections from trait signatures in the trait semantic 

space. For training data n, belonging to class c, let the hidden space representation by 

GN-X and GN-CT be HX−G(n) and HCT−G(n), respectively. Assume the distance of the 

corresponding trait signature (i.e. trait signature of class c) from HX−G(n) in the trait 

semantic space of GN-X to be DX−G(n) and that distance from HCT−G(n) in the trait 

semantic space of GN-CT to be DCT−G(n). Then the embedding losses for GN-X and 

GN-CT, respectively, are

LX − G
em = ∑

n ∈ Ntr
DX − G n ,

LCT − G
em = ∑

n ∈ Ntr
DCT − G n .

(6)

Minimization of the above loss components in the guiding network during the training of the 

multi-view semantic embedding network (MVSE) requires HX (hidden space representation 

in x-ray branch) and HCT (hidden space representation in CT branch) to contain meaningful 

visual information. Thus, through the use of the guiding networks, the representations of the 

input feature vectors in the x-ray and the CT semantic (hidden) spaces (i.e. HX and HCT) are 

made to have meaningful visual cues. This alleviates the problem of semantic gaps.

3) Training: The training of the MVSE network involves training of the x-ray and CT 

branches and the corresponding guiding networks GN-X and CN-CT. In order to train the 

MVSE network, we first define the total loss of x-ray branch and the total loss of CT branch. 

The total loss of x-ray branch consists of reconstruction loss of x-ray branch (i.e. LX
re) from 

(1), embedding loss of x-ray branch (i.e. LX
em) from (3), reconstruction loss of GN-X (i.e. 

LX − G
re ) from (5), and embedding loss of GN-X ((i.e. LX − G

em ) from (6). The total loss of the 

x-ray branch is

LX = LX
re + αLX

em + λ LX − G
re + αLX − G

em , (7)

where α is a pre-defined constant indicating the relative importance of reconstruction loss 

and embedding loss. The constant λ indicates the relative importance of the loss component 

of guiding network w.r.t. that of the x-ray branch. In a similar fashion, the total loss of the 

CT branch is

LCT = LCT
re + αLCT

em + λ LCT − G
re + αLCT − G

em , (8)

Then, using the total losses of x-ray and CT branch, we define the total loss of the network
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L = LX + γLCT , (9)

with γ being a pre-defined constant indicating the relative important of x-ray and CT 

branches. The MVSE network is trained by minimizing the total loss L. Notice that the 

minimization of L enforces minimization of the loss of the guiding networks resulting in 

reduction of semantic gaps as discussed before.

C. Self-training of MVSE Network

Once the MVSE network is trained, we perform a self-training of the network. The novel 

self-training strategy helps to deal with the problem of noisy labels and improves the 

diagnosis of the unseen classes. For self-training, we form a self-training set with unlabeled 

x-ray images from both the seen and unseen classes.

Self-training involves two steps, initial inference and model fine-tuning. During initial 

inference, we predict class probabilities of images from the self-training set. Then for each 

seen and unseen class, we choose the M images identified by the trained MVSE network 

with the highest confidence. Finally, we fine-tune the model with these M images per class. 

Since the images used for self-training are the images predicted with the highest confidence 

by the MVSE network, it is less likely that their predicted labels would be incorrect. 

Therefore, self-training the MVSE network with these images (and the corresponding 

predicted labels) alleviate the problem of noisy labels that might be present in the initial 

training data. Also, since we use unlabeled images from unseen classes as well during 

self-training, the self-trained MVSE network is likely to have richer information about 

the unseen classes leading to improvement in performance. The steps of self-training are 

described next.

1) Initial Inference: In this step, we use unlabeled images from the self-training set to 

find the top M images per seen and unseen classes, identified with the highest confidence by 

the trained MVSE network. Consider an input x-ray image I(n). Let RX (n, k) be the distance 

between its projection in the x-ray semantic space and the x-ray signature of the kth class. 

Also assume the distance between the projection of I(n) in the CT semantic space and the 

CT signature of the kth to be RCT (n, k). If RX (n, k) is small, the x-ray branch should assign 

class label k to the self-training data n with more confidence. The same is true for the CT 

branch with RCT (n, k). Therefore, we define the confidence of the x-ray branch in assigning 

class label k to self-training data n to be βX (n, k) = 1/RX (n, k); and that for the CT branch 

to be βCT (n, k) = 1/RCT (n, k). Consequently, the overall confidence of the trained MVSE 

network for assigning class label k to the self-training data n is

β n, k = 1
2 βX n, k + βCT n, k . (10)

The top M self-training data per class (seen and unseen) based on the above confidence 

score are used for fine-tuning the model.
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2) Model Fine-tuning: The initial trained model of the MVSE network is next fine

tuned with the above top M data per class by minimizing the loss of (9). The self-trained 

model is used for generalized zero-shot diagnosis of chest x-rays.

D. Generalized Zero-shot Diagnosis of Chest X-rays

Since we design a GZSL method, the test chest x-ray image may belong to either seen or 

unseen classes. Consider a test image I(te). Let the extracted feature vector be F(te) with its 

projections HX (te) and HCT (te) in the x-ray and CT semantic spaces, respectively. Assume 

RX (te, k) to be the distance of HX (te) from the x-ray signature of class k. Similarly, 

consider RCT (te, k) to be the distance of HCT (te) from the CT signature of class k. The 

smaller the values of RX (·, ·) and RCT (·, ·), the higher the corresponding class probabilities. 

Hence considering a total of C classes, the class probability assigned to the test image by the 

x-ray branch and CT branch, respectively, are :

pX te, k = RX te, k −1

∑k = 1
C RX te, k −1

pCT te, k = RCT te, k −1

∑k = 1
C RCT te, k −1 .

(11)

To find out the final class probability assigned to the test x-ray image by the self-trained 

MVSE network, we assign a dynamic importance to the x-ray and CT branches. Since each 

branch has an autoencoder architecture, the importance is assigned based on the quality of 

reconstruction of the test feature vector F(te) by each of the branches. Following (1) and (2), 

we calculate the reconstruction error for F(te) in the x-ray and CT branches. Let these errors 

be EX (te) and ECT (te), respectively. We want the branch with the lower error to have a 

more significant role in the diagnosis of the particular test x-ray image. Therefore, the final 

class probability from the self-trained MVSE network for the test image is

p te, k = EX te −1pX te, k + ECT te −1pCT te, k
EX te −1 + ECT te −1 (12)

Consequently, the class label assigned by the self-trained MVSE network is given by

c te = argmax
k

p te, k . (13)

Thus the final diagnosis of an input x-ray is performed using the self-trained MVSE 

network.

E. Implementation Details

1) Signature Generators & Feature Extractor: The signature generators for creating 

x-ray and CT signatures are implemented using word2vec [36] models. In particular, to 

design the CT signature generator, we use the Intelligent Word Embedding method [37], 
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pre-trained on 117,816 CT reports (obtained from Stanford medical center and University 

of Pittsburgh medical center [37]). The x-ray signature is implemented by training the 

word2vec model of [36] using 112,120 Chest X-ray reports corresponding to the images 

of NIH chest x-ray dataset [41]. For both the signature generators, we use standard pre

processing of texts [37]. The above signature generators produce 160-dimensional signature 

vectors for each disease of interest.

We use DenseNet-121 following the weight initialization protocol of [39] to design the 

feature extractor. The model is trained by minimizing the summation of weighted binary 

cross-entropy losses [41] for multi-label chest x-ray disease classification on the seen classes 

with a mini-batch size of 16. We employ the Adam optimizer with the standard parameters 

(β1 = 0.9 and β2 = 0.999) [42] and an initial learning rate of 0.001 (with a decay factor of 

10 whenever the validation loss reaches a plateau after an epoch) for training. The model 

with the lowest validation loss is used as the feature extractor. The feature extractor is 

frozen before training the MVSE network. We flatten the 1024 feature maps of dimensions 

7×7 from the penultimate layer of DenseNet-121 to get a 50176-dimensional feature vector 

corresponding to each input x-ray image.

2) MVSE Network: A two-branch autoencoder with a common input layer (CIL) is 

used for designing the MVSE network. CIL is a fully connected layer that maps the 50176

dimensional feature vectors from the feature extractor to 10000 dimensions. CIL is followed 

by a batch-normalization, an activation and a dropout layer with dropout probability 0.5. 

Subsequently, we have an x-ray branch and a CT branch, both with encoder-decoder 

architectures. The encoder layers of both the branches map 10000-dimensional output from 

CIL to 2048, 512 and 160 dimensions (hidden space), respectively. The decoder layers of 

both the branches perform the inverse operation by mapping 160-dimensional hidden space 

representations to 512, 2048, 10000 and 50176 dimensions, respectively. The encoder and 

decoder layers of both the branches (except the last encoder layer of x-ray branch) are 

followed by a batch-normalization, and an activation function. We use leaky ReLU (with a 

negative slope of 0.01) as the activation functions.

The guiding networks in the x-ray and CT branches also have encoder-decoder architectures. 

The encoder layers of the guiding networks of x-ray and CT branch map the 160

dimensional hidden space representations of the corresponding branches to 40 and 18 

dimensions, respectively. The decoder layers map the 18-dimensional guiding hidden space 

representations to 40 and 160 dimensions, respectively. Each encoder and decoder layer of 

guiding networks is followed by batch-normalization. While the last encoder layers of the 

guiding networks use a ReLU activation, a leaky ReLU (with a negative slope of 0.01) 

activation is used after every other layer of the guiding networks.

During initial training of the MVSE network, we take a mini-batch size of 128. Self-training 

is performed with a mini-batch size of 32. The Adam optimizer with the standard parameters 

(β1 = 0.9 and β2 = 0.999) [42] is employed for both initial training and self-training. We 

use different combinations of seen and unseen classes for our experiments. Following are 

the values for α, λ, and γ for combinations 1, 2, and 3 (abbreviated C1, C2 and C3, 

respectively) for the initial training and self-training. The values of α for the initial training 
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involving C1, C2 and C3 are 1, 0.0001, and 0.0001, respectively. The values for of α for 

self-training involving C1, C2 and C3 are 0.03, 0.0001, and 0.1, respectively. The values of 

λ for the initial training involving C1, C2 and C3 are 0.01, 0.01, and 1, respectively. The 

values of λ for self-training involving C1, C2 and C3 are 0.001, 0.01, and 1, respectively. 

The values of γ for the initial training involving C1, C2 and C3 are 1000, 1, and 0.1, 

respectively. The values of γ for self-training involving C1, C2 and C3 are 1000, 10, and 

1000, respectively. The MVSE network is trained with one label corresponding to each 

training feature vector. If there are multiple labels associated with a training feature vector, 

we randomly choose one of those labels for training.

IV. EXPERIMENTS & RESULTS

A. Dataset & Experimental Settings

We use three different chest x-ray datasets for our experiments. These are the NIH chest 

x-ray dataset [41] (abbreviated as NIH), Open-i dataset [43] (abbreviated as Open-i), and a 

dataset created using the chest x-ray images mined from PubMed Central [44] (abbreviated 

as PMC). Frontal images from these datasets are used for our experiments. As explained 

earlier, the image labels of the above datasets are likely to be noisy due to the use of 

rule-based label extraction. Hence, we use a hand-labeled subset of 900 images from NIH 

dataset (abbreviated as NIH-900) [45] to evaluate the performance of our method on a 

dataset with less noisy labels. The NIH, NIH-900, Open-i and PMC datasets contain 11014, 

508, 531, and 103 test images, respectively. We also perform experiments on a subset from 

the CheXpert dataset [46] containing 4236 images. Through these experiments, we look into 

the utility of the proposed method in the diagnosis of fracture and support devices as unseen 

classes from the CheXpert dataset alongside the aforementioned seen classes of different 

combinations from the NIH-900 dataset. IRB approvals have been obtained for the use of 

the images of the NIH [41] and NIH-900 [45] datasets and the corresponding reports. The 

research on the anonymized Open-i [43], PMC [44], and CheXpert [46] images did not 

require IRB approval.

While our model is trained using the training images of NIH dataset, it is tested on NIH-900, 

Open-i, PMC and the test images of NIH dataset. Therefore, the performance of our model 

on Open-i and PMC indicates the robustness of the proposed training across datasets from 

different sources. Images of the PMC dataset are obtained from the published research 

papers. As a result, these images may be of lower resolution compared to the images of 

the NIH dataset. Hence, the performance on PMC would indicate the applicability of our 

method on images of different qualities as well.

For our experiments, we consider nine classes of chest diseases and conditions, namely, 

cardiomegaly, consolidation, edema, effusion, emphysema, infiltration, nodule, pneumonia, 

and pneumothorax. The x-ray, CT and trait signatures for this nine classes are visualized in 

the corresponding semantic spaces through t-SNE plots in Fig. 2. We form three different 

combinations of seen and unseen classes from these. For each combination, three out of 

these nine classes are randomly selected (without replacement) as unseen classes while the 

rest are treated as seen classes. Note that the unseen classes of each combination are disjoint. 

We perform one set of experiments for each of the three combinations. The names of the 
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unseen classes for each combination are presented in Table I (the rest of the nine classes 

are seen classes for the corresponding combination). While the trait signatures for most 

of these classes are obtained following the procedure mentioned in Section III-A, the trait 

signature for pneumonia is obtained by adding a small constant value to every dimension 

of the trait signature of consolidation due to their similarities of appearance. The initial 

learning rate for initial training (ILR-IN), initial learning rate for self-training (ILR-SE), and 

M (the number of data points per class used for self-training) for each combination are also 

presented in the table. We run the initial training for 15, 20, and 30 epochs, respectively, 

for combinations 1, 2, and 3. Self-training is performed through 32, 30, and 20 epochs, 

respectively, for combinations 1, 2, and 3. The datasets in our experiments are multi-label 

datasets. Hence, for an input images, if the class label predicted by our model matches with 

one of the ground-truth class labels, we consider it as a true positive diagnosis.

B. Comparisons and Analysis of Performance

Following the usual protocol, we evaluate the performance of the proposed GZSL method in 

terms of its performance for the seen and unseen classes [9], [12]. In particular, we evaluate 

recall on seen classes ReS , recall on unseen classes ReU , and the harmonic mean of the 

recall values for the seen and unseen classes Reℋ . The seen recall is the ratio of the sum 

of true positive detections for individual seen classes to the total number of examples in seen 

classes. The unseen recall is the sum of true positive detections for individual unseen classes 

to the total number of examples in unseen classes.

We consider several state-of-the-art methods for comparison. These methods are ESZSL 

[11], DeViSe [13], SAE [12], GMN [2], and GDAN [3]. However, each of the above 

competing methods can utilize only one semantic space in contrast to two semantic 

spaces (and a guiding semantic space) in the proposed method. Therefore, we train each 

competing method with x-ray and CT signatures separately and evaluate the corresponding 

performance. Hence, for each competing method, we have two sets of results; one 

corresponding to x-ray signatures (indicated by (X) following the name of the method) 

and the other corresponding to CT signatures (indicated by (CT) following the name of the 

method).

The performances of different methods for combination 1 of seen and unseen classes are 

presented in Table II. Notice that the proposed method outperforms all the competing 

methods for all the datasets in terms of Reℋ by a significant margin. For a GZSL method, 

the test data may come from either seen or unseen classes. Hence Reℋ (that takes into 

account both the seen recall and unseen recall) is the most important performance metric for 

GZSL. Thus we find that for combination 1 of seen and unseen classes, the proposed method 

is superior.

Similar trends may be observed from Fig. 3 (a) and Fig. 3 (b) where we have presented the 

results of different methods for combination 2 and combination 3, respectively. From these 

figures, it is evident that with rare exceptions, our method is better than other methods in 

terms of the harmonic mean of seen and unseen recall Reℋ . Notice that although some 

of the competing methods outperform the proposed method in terms of seen recall, those 
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methods fall well behind our method in terms of the performance on the unseen classes. 

Therefore in terms of a balanced performance for both the seen and unseen classes, our 

method is found to be superior. The performance of the proposed method in terms of 

seen precision, unseen precision, and the harmonic mean of seen and unseen precision is 

presented in Table III. The seen precision is the ratio of the sum of true positive detections 

for individual seen classes to the sum of the total detections for individual seen classes. The 

unseen recall is the sum of true positive detections for individual unseen classes to the sum 

of the total detections for individual unseen classes.

In reviewing Table I and Fig. 3, we find our method to be more consistent in performance 

across datasets from different sources compared to the competing counterparts. This is 

an important observation since we use the proposed model trained only on the NIH 

training dataset to evaluate performance on test datasets from different sources. This 

consistency indicates the robustness of our model across datasets, an important requirement 

in developing clinically applicable systems. Detection results on some example x-ray images 

from different datasets are presented in Fig. 4. The performance of our method for the 

PMC dataset demands special attention in this context. From Fig. 4, notice that the PMC 

images may contain external markings (such as an arrow in the PMC image of the second 

last column) as well. Given the difference in the quality of the PMC images (including 

the possible presence of such external markings) compared to the high-resolution training 

images, the performance of the proposed method is encouraging. We further statistically 

compare the performance of the proposed method with two of its closest competitors 

SAE(X) and SAE(CT). The comparison is performed through Wilcoxon Signed-Rank 

Test [47]. The results indicate that the performance of the proposed method in terms of 

harmonic mean is statistically significantly higher (p < 0.01) than that of SAE(X). Also, the 

performance of the proposed method in terms of harmonic mean is statistically significantly 

higher (p < 0.01) than that of SAE(CT).

From the description of the visual traits in the Appendix titled On the Visual Traits, we find 

that different diseases and conditions of interest have different visual presentations in x-ray 

images. Therefore, when the feature extractor is trained with the images of seen classes 

from a particular combination of seen and unseen classes, the feature extractor learns to 

differentiate those seen classes based on their distinctive visual characteristics. These visual 

characteristics may also help to differentiate each unseen class of that combination from all 

other seen and unseen classes. In such a situation, our MVSE network is expected to achieve 

superior performance using the feature vectors from the feature extractor. However, if such 

visual characteristics are not helpful in discriminating different unseen classes from other 

seen and unseen classes, the performance of the MVSE network may not be good.

Consider combination 1. The seen classes are consolidation, effusion, pneumothorax, 

infiltration, nodule, and pneumonia. As evident from the description of the visual traits, 

the feature extractor is likely to differentiate the seen classes based on visual features related 

to six out of the seven visual traits, namely position, opacity, distribution, border sharpness, 

size, and aspect ratio. The feature extractor may not utilize the visual features related to 

the trait location since this trait does not help to differentiate among the seen classes. From 

the Appendix titled On the Visual Traits, we find that the visual features related to the 
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aforementioned six visual traits are also useful for differentiating the unseen classes of 

combination 1 (i.e. cardiomegaly, emphysema, and edema). Therefore, for combination 1, 

the performance of the MVSE network is superior.

For the other two combinations, the seen classes include cardiomegaly which can be 

differentiated from all other classes merely based on visual features related to the trait 

location. Cardiomegaly is a dominant finding in our training dataset. As a result, for 

combinations 2 and 3, the feature extractor may rely predominantly on visual features 

related to the trait location. However, as evident from the descriptions of the visual traits, 

visual features based on location may not be useful for differentiating the other classes. This 

is likely to cause the inferior performance of our model for combinations 2 and 3.

We present several examples of incorrect diagnosis from the NIH-900 dataset in Fig. 5. 

There are several possible reasons why our method fails for these examples. First, small 

size of a lesion often makes it hard to detect. Consider the left most image in Fig. 5. 

Edema is a reasonable detected label for this image since the lungs have a diffusely reticular 

pattern. However, the ground truth label pneumothorax is tiny and hard to detect. Similarly, 

in the third image from left, our system misses the ground truth label nodule which is 

very tiny. Second, insufficient or incorrect ground truth labels may also cause failure of the 

method. Consider the second image from the left. The ground truth labels for this image 

should have included both edema and pneumonia. In that situation, the predicted label by 

the model (pneumonia) would have been a correct label and this would have been a true 

positive detection. However, because of the insufficient ground truth labels (ground truth 

label is edema), this example is considered as an incorrect detection. Finally, multiple factors 

together may be responsible for incorrect diagnosis. Consider the right most image in Fig. 5. 

It should have been a normal image since the blood vessels are very clear and numerous in 

both lungs. Therefore, the ground truth label cardiomegaly is incorrect. However, since our 

system assigns one of the nine target diseases and conditions to a query image, the detected 

label (edema in this case) is wrong. While we could not detect a normal image due to a 

design constraint (that our model has to assign one disease or condition to a query image), 

an incorrect ground truth label is also noted for this example. A normal versus abnormal 

chest x-ray classifier such as [48] might be useful in this context as a pre-processing step to 

filter normal chest x-ray images prior to applying chest x-rays in our model.

Next, we look into the role of self-training in our formulation. For this, we evaluate the 

different recall values using our method after the initial multi-view semantic embedding and 

after self-training. These values are presented in Table IV. Notice that in most of the cases, 

the harmonic mean values of seen and unseen recall have improved after self-training. In the 

majority of cases, this is due to improvement in unseen recall after self-training. This shows 

the utility of self-training in performance improvement, especially for the unseen classes.

Finally, we perform experiments involving classes outside the combinations presented in 

Table I. For this, we take the CheXpert [46] dataset. We choose fracture and support devices 

as unseen classes alongside the seen classes of combinations 1, 2, and 3 as mentioned in 

Table I. Following the existing experimental protocols, we do not use any labeled images 

of unseen classes for initial training or self-training. However, unlabeled images of different 
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classes are used for self-training. Thus, for these experiments, the unseen classes in each 

combination are replaced by fracture and support devices. We also generate x-ray, CT and 

trait signatures for fracture and support devices offline prior to these experiments. The 

performance is evaluated on a mixed dataset that contains images of seen classes from 

the NIH-900 dataset, and images of unseen classes from a subset of the CheXpert dataset. 

The results of these experiments are reported in Table V. Notice that even with the new 

unseen classes from CheXpert dataset, the performance in two out of the three combinations 

(combinations 1, and 2) are comparable to the performances for the original combinations 

using the proposed method (see Table II, and Fig. 3 ). This shows the utility of the proposed 

method for the diagnosis of new unseen classes from a different dataset.

C. Ablation Studies

1) On Decision Making using the Two Branches: In the proposed MVSE network, 

the final decision on the class label of an input is made using decisions from both the 

x-ray and CT branches. We look into the contribution of each branch in this decision 

making process. For this, we perform two sets of experiments, one using only the x-ray 

branch for decision making (abbreviated as MVSE (X)) and the other using only the CT 

branch (abbreviated as MVSE (CT)). The harmonic mean of recall values using the above 

experiments, alongside those using the proposed method are presented in Table. VI. While 

MVSE (X) show poor performance for most of the cases, the performance of MVSE (CT) 

is usually better. However, very rarely the performance of single branch (either x-ray or 

CT) is better than that of the proposed method. This justifies our decision making using the 

decisions from two branches instead of decision making using one of the branches. Thus, 

we conclude that both the branches are important in our design. The x-ray branch and the 

CT branch use x-ray and CT signatures, respectively, for decision making. Therefore, we 

also conclude that both the x-ray and CT signatures (generated from x-ray and CT reports, 

respectively) play important roles in the performance of our model.

2) Role of the Guiding Networks: Next we look into the role of the guiding networks. 

For this, we calculate the harmonic mean of recall values using the proposed method without 

the guiding networks in x-ray and CT branches. The improvement in results obtained using 

the guiding networks in the proposed method compared to that obtained without the guiding 

networks in the proposed method are presented in Fig. 6. Notice that in eleven out of the 

twelve cases, there have been improvements due to the use of the guiding networks. These 

results clearly indicate the usefulness of visual traits employed through the guiding networks 

in the proposed design.

3) On the Usefulness of Text-based Semantic Spaces: We use two text-based 

semantic spaces constructed from radiology reports in our design. These are the x-ray and 

CT semantic spaces. Next we look into the importance of these two text-based semantic 

spaces in our design. To that end, we exclude the x-ray signatures and CT signatures from 

our design and use only the trait signatures for training and testing. Therefore, for this 

study, the network is trained without using the embedding loss of x-ray branch (see (3)) 

and the embedding loss of CT branch (see (4)) (since these are the loss components that 

use x-ray and CT signatures). Self-training is also performed in a similar fashion excluding 
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the embedding losses of x-ray and CT branches. After self-training, the final diagnosis 

of an input x-ray image is performed using its projections in the hidden spaces of the 

guiding networks of x-ray branch and CT branch. Let these projections corresponding to 

an input query image I(te) be HX−G(te) and HCT−G(te), respectively. We evaluate the class 

probabilities following (11) using HX−G(te) in place of HX (te), HCT−G(te) in place of HCT 

(te), and trait signatures in place of x-ray and CT signatures. Using these class probabilities, 

we find the class label assigned to the query x-ray image following (12) and (13). Thus, 

we perform the diagnosis of input x-ray images through the use of only trait signatures 

in our network. The results of this ablation study are presented in Table VI alongside the 

performance of the proposed method. Notice that the performances using only the trait 

signatures are significantly inferior to that using the proposed method for all the datasets 

and combinations. This shows the utility of the text-based semantic space (x-ray and CT 

semantic spaces) in our design.

4) Effect of the Number of Data Points for Self-training: During the self-training 

phase of our method, we use the top M data per class to self-train the model. A small 

value of M implies the use of a small number of data, identified with high confidence for 

self-training. On the other hand, when M is large, the number of data points for self-training 

is large. But those data includes the one identified with less confidence as well. Hence, it 

is non-trivial to find an optimal value of M. Towards this end, we calculate the harmonic 

mean values of seen and unseen recall by self-training our model with number of data points 

corresponding to different values of M. An example plot of harmonic mean values as a 

function of M has been presented in Fig. 7. Notice that for most of the datasets, the best 

value of harmonic mean is achieved for M = 45 in combination 3 of seen and unseen classes. 

Hence we choose M = 45 for combination 3. In the case of combinations 1 and 2, the best 

values are obtained for M = 25. Thus the number of data points for self-training affects the 

performance of our model. We find the optimal value of M through this study.

5) On the Feature Extractor: We use DenseNet-121 as our feature extractor. In order 

to look into the importance of DenseNet backbone for the feature extractor, we re-run all 

the experiments for every combination of seen and unseen classes and for all the datasets by 

using a feature extractor with a different backbone network. In particular, we take ResNet-18 

[49] as the backbone network, and train the ResNet-based feature extractor with the images 

of seen classes for every combination. Thus, for training the ResNet-based feature extractor, 

we follow a training protocol similar to that of our DenseNet-based feature extractor. The 

512 feature maps of dimensions 7 × 7 from the penultimate layer of ResNet-18 are flattened 

to obtain a 25088-dimensional feature vector corresponding to an input x-ray image. The 

initial training, and self-training of the proposed MVSE network and inference by the 

MVSE network after self-training are performed using these 25088-dimensional feature 

vectors following the protocols similar to the proposed method. The results obtained using 

these feature vectors from the ResNet-based feature extractor for the different combinations 

of seen and unseen classes and different test datasets are presented in Table VII. This 

table also shows the performance of the proposed method with the feature extractor having 

DenseNet-121 as the backbone network. Notice that the ResNet-based feature extractor 

performs better compared to our DenseNet-based feature extractor for the unseen. However, 

Paul et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



when it comes to the recall values for the unseen classes (and harmonic mean of seen and 

unseen recall values), the performance of ResNet-18 is significantly inferior compared to 

DenseNet-121. Thus, we conclude that the DenseNet-based feature extractor used in our 

method generalizes better for the unseen classes compared to its ResNet-based counterpart.

V. CONCLUSIONS

We introduce a multi-view semantic embedding network, guided by visual traits for 

generalized zero-shot diagnosis of chest radiographs. The performance of the model is 

enhanced through a self-training that helps to deal with noise in labels alongside boosting 

the performance for unseen classes. The robustness of our method for datasets from different 

sources is established through rigorous experiments with different combinations of seen 

and unseen classes. The robustness achieved through our model may be potentially helpful 

in the development of a clinically applicable system from our proof-of-concept design. 

Through our experiments, we show that integrating auxiliary information from different 

complementary sources is beneficial for GZSL methods. It is also found that inclusion of 

visual traits for auxiliary information may help to alleviate the problem of semantic gaps in 

embedding leading to improvement in performance. Finally, self-training is found to have 

significant impact on the performance of a GZSL method, especially for the unseen classes. 

In the future, we would like to use the visual traits for finding trait-based salient image 

features to be utilized in a zero-shot diagnosis model. We would also look into alleviating 

the potential impact of class imbalance in our training data.
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APPENDIX: On the Visual Traits

For our experiments, we consider nine classes of chest diseases and conditions, namely, 

cardiomegaly, consolidation, edema, effusion, emphysema, infiltration, nodule, pneumonia, 

and pneumothorax. These nine classes can be visually described using the following seven 

traits manually defined by a radiologist.

• Location: Anatomical location-wise, cardiomegaly is not within the lung area, 

while the other eight classes always occur within the lung area.

• Position: In terms of pixel position, edema and emphysema may appear in both 

the upper and lower portion of the images. Effusion and cardiomegaly often 

appear in the mid to lower part of the image, while the other four classes may 

appear in single or multiple random locations.

• Opacity: Among the diseases and conditions of our interest, pneumothorax and 

emphysema always have low opacities (air density), while the other seven classes 

may have medium (soft tissue density) to high (bone density) opacities. Bone 

density includes calcification in fracture, fibrosis, mass, and nodule.
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• Distribution: Among the nine classes, edema and emphysema may appear on 

both left and right sides of the image. While nodules usually appear unilaterally, 

cardiomegaly always appears in the center. The other five classes appear 

randomly.

• Border Sharpness: The sharpness of the border of lesions corresponding to 

different diseases are different. Pneumothorax, effusion, and cardiomegaly 

always have clear-cut margins. However, the other six classes have indistinct 

margins.

• Size: The typical sizes of different lesions are different. Nodules are mostly less 

than 25% of the lung volume, whereas edema, infiltration, and emphysema may 

exceed 50% or more of the lungs. The other five classes are diverse in size.

• Aspect Ratio: Some lesions can be visually distinguished in terms of their 

shapes. Pneumothorax and effusion have linear shapes (high aspect ratios), while 

the other seven classes of lesions have round or varied shapes (low aspect ratios).

Thus, while some diseases may share certain imaging features in terms of the visual 

traits (for example, pneumothorax and effusion both have high aspect ratios), each disease 

possesses a unique set of visual traits.
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Fig. 1. 
A schematic diagram of the proposed method with the feature extractor and the multi-view 

semantic embedding (MVSE) network. In this diagram, ΨX (·), ΨCT (·) and ΨT (·) are the 

x-ray, CT and trait signatures corresponding to different diseases and conditions. The MVSE 

network has a common input layer (CIL) and two parallel branches (x-ray branch and CT 

branch) with guiding networks.
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Fig. 2. 
A visualization of the semantic spaces through t-SNE plots. The signatures corresponding to 

the different diseases and conditions of interest in the x-ray, CT and trait semantic spaces are 

presented using different colors.
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Fig. 3. 
Comparative performances of different methods in terms of seen recall, unseen recall and 

harmonic mean of seen and unseen recall (Harmonic Mean) for (a) combination 2, and (b) 

combination 3 of seen and unseen classes from Table I
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Fig. 4. 
The performance of the proposed method on chest x-ray images from different datasets for 

combination 3 of seen (S) and unseen classes (U). If the detected label matches with one 

of the ground truth labels, it is considered as a correct (green) detection; otherwise, it is 

considered as an incorrect (red) detection. The PMC image of the second last column is an 

example showing the presence of external marking (an arrow).
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Fig. 5. 
Examples of incorrect diagnosis in the NIH-900 dataset using the proposed method (CXR, 

GT, D, and C indicate chest x-ray images, ground truth labels, detected labels, and the 

combination of seen and unseen classes, respectively).
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Fig. 6. 
Percentage of improvements in harmonic mean values for different datasets and 

combinations from Table I using the proposed method with the guiding network compared 

to the proposed method without the guiding network.
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Fig. 7. 
The harmonic mean values of seen and unseen recall (HM) for different values of the 

number of data per class for self-training (M) in case of combination 3 of seen and unseen 

classes.
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TABLE I

THE NAME OF THE UNSEEN CLASSES, INITIAL LEARNING RATE FOR INITIAL TRAINING (ILR-IN), INITIAL LEARNING RATE FOR 

SELF-TRAINING (ILR-ST), AND NUMBER OF DATA POINTS PER CLASS USED FOR SELF-TRAINING (M) FOR THE DIFFERENT 

COMBINATIONS (C) OF THE UNSEEN AND SEEN CLASSES.

C Unseen Classes ILR-IN ILR-ST M

1 Cardiomegaly, Edema, Emphysema 10−6 10−6 25

2 Consolidation, Effusion, Pneumothorax 10−6 10−7 25

3 Infiltration, Nodule, Pneumonia 10−7 10−6 45
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TABLE III

PERFORMANCE OF THE PROPOSED METHOD IN TERMS OF SEEN PRECISION PRS , UNSEEN PRECISION PRU , AND HARMONIC 

MEAN OF SEEN AND UNSEEN PRECISION PRℋ  FOR DIFFERENT COMBINATIONS OF SEEN AND UNSEEN CLASSES FROM TABLE I.

Test Dataset PrS PrU Prℋ

Combination 1

NIH 37.23 11.27 17.31

NIH-900 49.64 33.76 40.19

Open-i 28.17 48.11 35.53

PMC 34.62 19.61 25.03

Combination 2

NIH 8.52 32.28 13.48

NIH-900 28.16 36.8 31.9

Open-i 36.75 20.54 26.35

PMC 12.99 38.46 19.42

Combination 3

NIH 8.71 9.25 8.97

NIH-900 22.08 15.16 17.98

Open-i 40.76 13.99 20.83

PMC 16.28 11.67 13.59
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TABLE IV

THE EFFECT OF SELF-TRAINING WITH DIFFERENT RECALL VALUES (SEEN RECALL, UNSEEN RECALL AND HARMONIC MEAN OF 

SEEN AND UNSEEN RECALL (HARMONIC MEAN) AFTER THE INITIAL MULTI-VIEW SEMANTIC EMBEDDING (INIT) AND AFTER 

SELF-TRAINING (ST).

Test Dataset
Seen Recall Unseen Recall Harmonic Mean

Init ST Init ST Init ST

Combination 1

NIH 33.22 30.12 15.3 19.67 20.95 23.8

NIH-900 46.29 40.72 34.5 45.4 39.54 42.93

Open-i 52.12 37.74 24.32 41.13 33.16 39.36

PMC 31.43 25.71 12.12 30.3 17.5 27.82

Combination 2

NIH 7.66 8.68 33.22 31.9 12.45 13.65

NIH-900 33.17 38.24 29.74 27.96 31.36 32.3

Open-i 27.94 34.15 31.25 28.75 29.5 31.22

PMC 20.34 16.95 25 22.73 22.43 19.42

Combination 3

NIH 20 9.28 3.22 8.83 5.54 9.05

NIH-900 27.33 17.23 6.73 19.81 10.8 18.43

Open-i 32.74 24.87 6.43 29.08 10.75 26.81

PMC 15.28 9.72 9.68 22.58 11.85 13.59
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TABLE V

RESULTS ON THE MIXED DATASET CONTAINING IMAGES OF SEEN CLASSES FROM THE NIH-900 DATASET AND IMAGES OF UNSEEN 

CLASSES FROM THE CHEXPERT DATASET THROUGH SEEN RECALL RES , UNSEEN RECALL REU  AND HARMONIC MEAN OF 

SEEN AND UNSEEN RECALL REℋ  FOR DIFFERENT COMBINATIONS OF SEEN CLASSES.

Seen Combination ReS ReU Reℋ

1 15.19 68.03 24.83

2 41.67 29.4 34.47

3 29.75 7.01 11.35
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TABLE VI

HARMONIC MEAN VALUES OF SEEN AND UNSEEN RECALL USING ONLY THE X-RAY BRANCH OF THE MVSE NETWORK (MVSE 

(X)), ONLY THE CT BRANCH OF THE MVSE NETWORK (MVSE (CT)), ONLY THE TRAIT SIGNATURES (MVSE(T)), AND 

THE PROPOSED METHOD FOR DIFFERENT DATASETS AND COMBINATIONS.

Dataset MVSE (X) MVSE (CT) MVSE (T) Proposed

Combination 1

NIH 0.00 23.61 7.28 23.8

NIH-900 0.00 38.62 15.74 42.93

Open-i 0.00 35.64 15.93 39.36

PMC 0.00 24.35 0.00 27.82

Combination 2

NIH 10.99 1.26 7.39 13.65

NIH-900 25.24 3.92 8.70 32.3

Open-i 21.93 2.66 2.08 31.22

PMC 10.76 0.00 3.36 19.42

Combination 3

NIH 5.90 11.67 8.56 9.05

NIH-900 14.52 19.08 10.22 18.43

Open-i 11.41 28.62 11.85 26.81

PMC 9.70 10.99 12.95 13.59
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TABLE VII

PERFORMANCE OF THE MVSE NETWORK USING FEATURE EXTRACTOR WITH RESNET-18 AS BACKBONE ( RESNET-18), AND 

DENSENET-121 AS BACKBONE (PROPOSED) IN TERMS OF SEEN RECALL RES , UNSEEN RECALL REU  AND HARMONIC 

MEAN OF SEEN AND UNSEEN RECALL REℋ  FOR DIFFERENT COMBINATIONS (C) OF SEEN AND UNSEEN CLASSES.

C Test Dataset
ResNet-18 Proposed

ReS ReU Reℋ ReS ReU Reℋ

1

NIH 36.18 8.74 14.08 30.12 19.67 23.80

NIH-900 49.85 6.06 10.81 40.72 45.40 42.93

Open-i 65.45 3.01 5.75 37.74 41.13 39.36

PMC 31.43 6.06 10.16 25.71 30.30 27.82

2

NIH 20.01 2.33 4.17 8.68 31.90 13.65

NIH-900 33.64 2.38 4.45 38.24 27.96 32.30

Open-i 24.33 3.61 6.29 34.15 28.75 31.22

PMC 16.95 0.00 0.00 16.95 22.73 19.42

3

NIH 27.77 7.94 12.35 9.28 8.83 9.05

NIH-900 25.25 2.96 5.29 17.23 19.81 18.43

Open-i 25.83 0.00 0.00 24.87 29.08 26.81

PMC 23.61 3.23 5.68 9.72 22.58 13.59
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